Enhancing the Fatigue Strength of the Weld Line in Advanced Polymer Injection Molding: Gas-Assisted Mold Temperature Control for Thermoplastic Polyurethane (TPU) Composites
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Procedures of Composite
2.3. Characterization Technique
3. Results and Discussion
3.1. Fatigue Test and Taguchi Analysis for PP
3.2. SEM Analysis for PP
3.3. Tensile Test and Taguchi Analysis for ABS/TPU Blends
3.4. SEM Analysis for ABS/TPU Blends
4. Conclusions
- —
- After heating, the mold temperature values are 138.5, 160, 189.5, 201.3, and 219.1 °C corresponding to 3, 6, 9, 12, and 15s. The fatigue strength of the sample increases upon increasing the heating time. Compared to the sample without mold temperature control, the sample with mold heating at 15 s has higher fatigue strength of 1.6, 1.4, 1.5, 2.1, and 5.4 times corresponding to 1, 2, 3, 4, and 5 Hz. Therefore, increasing the mold temperature before injection leads to a rise in the fatigue strength of the weld line. As the molten plastic has a higher temperature during the filling stage, the weld line bonding becomes stronger—the fatigue performance declines when improving the frequency due to the improvement in the cycle times. According to Taguchi’s analysis, factor frequency has a more significant influence on the fatigue strength of the PP sample than the heating time factor. The SEM results reveal that the surface of the weld line is much rougher than the other areas, indicating weak bonding in this area. The surface becomes rougher, with microcracks pointing out the degradation of the plastics during the fatigue test.
- —
- The UTS values of the ABS/TPU blends range from 21.3 to 36.8 MPa. Adding 15 wt.% TPU results in the highest UTS value, while with 30 wt.% TPU, the blends reach the lowest UTS value. The elastic modulus values range from 4.3 GPa to 8.4 GPa. Taguchi’s analysis points out the positive coefficient of heating time; therefore, improving the heating time leads to higher UTS, elongation, and elastic modulus values. Moreover, the TPU percentage has a higher impact rank than the heating time on the mechanical properties of the ABS/TPU blends. The SEM results of the PP/TPU blends indicate that because ABS and TPU are different phases, the boundary between them is clear. The TPU area has a dimple shape on the fracture surface due to its high ductility. Moreover, the sample surface becomes rougher when increasing the TPU ratio.
- —
- This study demonstrated the beneficial effect of gas-assisted mold temperature on the injection technique’s fatigue and tensile strength. The outcomes of this study could be applicable in various industries, ranging from automotive to consumer goods. In future work, the effects of vibration amplitude on the fatigue strength of the PP sample should be investigated. The effects of additives and samples without weld lines also need further consideration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurt, M.; Kamber, O.S.; Kaynak, Y.; Atakok, G.; Girit, O. Experimental investigation of plastic injection molding: Assessment of the effects of cavity pressure and mold temperature on the quality of the final products. Mater. Des. 2009, 30, 3217–3224. [Google Scholar] [CrossRef]
- Alvarado-Iniesta, A.; Cuate, O.; Schütze, O. Multi-objective and many objective design of plastic injection molding process. Int. J. Adv. Manuf. Technol. 2019, 102, 3165–3180. [Google Scholar] [CrossRef]
- Ageyeva, T.; Horváth, S.; Kovács, J.G. In-mold sensors for injection molding: On the way to industry 4.0. Sensors 2019, 19, 3551. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Kim, B. Increasing flow length in thin wall injection molding using a rapidly heated mold. Polym.-Plast. Technol. Eng. 2002, 41, 819–832. [Google Scholar] [CrossRef]
- Wang, G.L.; Zhao, G.Q.; Wang, J.C.; Zhang, L. Research on formation mechanisms and control of external and inner bubble morphology in microcellular injection molding. Polym. Eng. Sci. 2015, 55, 807–835. [Google Scholar] [CrossRef]
- Pandelidis, I.; Zou, Q. Optimization of injection molding design. Part II: Molding conditions optimization. Polym. Eng. Sci. 1990, 30, 883–892. [Google Scholar] [CrossRef]
- Singh, M.; Garg, H.K.; Maharana, S.; Yadav, A.; Singh, R.; Maharana, P.; Nguyen, T.V.T.; Yadav, S.; Loganathan, M.K. An Experimental Investigation on the Material Removal Rate and Surface Roughness of a Hybrid Aluminum Metal Matrix Composite (Al6061/SiC/Gr). Metals 2021, 11, 1449. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Wang, X. Development and evaluation of a new rapid mold heating and cooling method for rapid heat cycle molding. Int. J. Heat Mass Transfer 2014, 78, 99–111. [Google Scholar] [CrossRef]
- Chen, S.C.; Lin, C.Y.; Chang, J.A.; Minh, P.S. Gas-assisted heating technology for high aspect ratio microstructure injection molding. Adv. Mech. Eng. 2013, 5, 282906. [Google Scholar] [CrossRef]
- Minh, P.S.; Le, M.T. Improving the melt flow length of acrylonitrile butadiene styrene in thin-wall injection molding by external induction heating with the assistance of a rotation device. Polymers 2021, 13, 2288. [Google Scholar] [CrossRef]
- Chen, S.C.; Minh, P.S.; Chang, J.A. Gas-assisted mold temperature control for improving the quality of injection molded parts with fiber additives. Int. J. Heat Mass Transf. 2011, 38, 304–312. [Google Scholar] [CrossRef]
- Giang, N.T.; Minh, P.S.; Son, T.A.; Uyen, T.M.T.; Nguyen, T.H.; Dang, H.S. Study on external gas-assisted mold temperature control with the assistance of a flow focusing device in the injection molding process. Materials 2021, 14, 965. [Google Scholar] [CrossRef]
- Chen, S.C.; Minh, P.S.; Chang, J.A.; Hang, S.W.; Huang, C.H. Mold temperature control using high-frequency proximity effect induced heating. Int. Commun. Heat Mass Transf. 2012, 39, 216–223. [Google Scholar] [CrossRef]
- Jeng, M.C.; Chen, S.C.; Minh, P.S.; Chang, J.A.; Chung, C.S. Rapid mold temperature control in injection molding by using steam heating. Int. Commun. Heat Mass Transf. 2010, 37, 1295–1304. [Google Scholar] [CrossRef]
- The Uyen, T.M.; Truong Giang, N.; Do, T.T.; Anh Son, T.; Son Minh, P. External gas-assisted mold temperature control improves weld line quality in the injection molding process. Materials 2020, 13, 2855. [Google Scholar] [CrossRef]
- Roth, B.; Frank, R.; Kleffel, T.; Schneider, K.; Drummer, D. High-Precision Thin Wall Bipolar Plates for Fuel Cell Applications via Injection Compression Molding with Dynamic Mold Temperature Control. Polymers 2022, 14, 2799. [Google Scholar] [CrossRef]
- Hou, B.; Huang, Z.; Zhou, H.; Zhang, Y. Automated Generation of Venting System in Plastic Injection Mold; SPE ANTEC™: Indianapolis, IN, USA, 2016; pp. 1386–1389. [Google Scholar]
- Chen, S.C.; Yang, S.P.; Chang, J.A.; Sun, S.P.; Chiu, H.S.; Hsu, C.H. Verification of Experiment and Numerical Method Simulation on Venting Design for Improving Product Surface Quality; SPE ANTEC™: Indianapolis, IN, USA, 2016; pp. 1306–1311. [Google Scholar]
- Wu, C.H.; Liang, W.J. Effects of Geometry and Injection-Molding Parameters on Weld-Line Strength. Polym. Eng. Sci. 2005, 45, 1021–1030. [Google Scholar] [CrossRef]
- Selden, R. Effect of processing on weld line strength in five thermoplastics. Polym. Eng. Sci. 1997, 37, 205–218. [Google Scholar] [CrossRef]
- Chen, C.S.; Chen, T.J.; Chien, R.D.; Chen, S.C. Investigation on the weldline strength of thin-wall injection molded ABS parts. Int. Commun. Heat Mass Transf. 2007, 34, 448–455. [Google Scholar] [CrossRef]
- Fathi, S.; Behravesh, A.H. Visualization analysis of flow behavior during weld-line formation in injection molding process. Polym.-Plast. Technol. Eng. 2008, 47, 666–672. [Google Scholar] [CrossRef]
- Ozcelik, B.; Kuram, E.; Topal, M.M. Investigation the effects of obstacle geometries and injection molding parameters on weld line strength using experimental and finite element methods in plastic injection molding. Int. Commun. Heat Mass Transf. 2012, 39, 275–281. [Google Scholar] [CrossRef]
- Moayyedian, M.; Abhary, K.; Marian, R. Improved gate system for scrap reduction in injection molding processes. Procedia Manuf. 2015, 2, 246–250. [Google Scholar] [CrossRef]
- Ge, Z.; Chen, T.; Song, Z. Quality Prediction for Polypropylene Production Process Based on CLGPR Model. Control Eng. Pract. 2011, 19, 423–432. [Google Scholar] [CrossRef]
- Patil, A.; Patel, A.; Purohit, R. An Overview of Polymeric Materials for Automotive Applications. Mater. Today Proc. 2017, 4, 3807–3815. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Recycling of Waste from Polymer Materials: An Overview of the Recent Works. Polym. Degrad. Stab. 2013, 98, 2801–2812. [Google Scholar] [CrossRef]
- Ru, J.; Huo, Y.; Yang, Y. Microbial Degradation and Valorization of Plastic Wastes. Front. Microbiol. 2020, 11, 442. [Google Scholar] [CrossRef]
- Sulyman, M.; Haponiuk, J.; Formela, K. Utilization of Recycled Polyethylene Terephthalate (PET) in Engineering Materials: A Review. Int. J. Environ. Sci. Dev. 2016, 7, 100–108. [Google Scholar] [CrossRef]
- Busico, V.; Cipullo, R. Microstructure of Polypropylene. Prog. Polym. Sci. 2001, 26, 443–533. [Google Scholar] [CrossRef]
- Ashori, A.; Nourbakhsh, A. Reinforced Polypropylene Composites: Effects of Chemical Compositions and Particle Size. Bioresour. Technol. 2010, 101, 2515–2519. [Google Scholar] [CrossRef]
- Barkoula, N.M.; Alcock, B.; Cabrera, N.O.; Peijs, T. Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites. Polym. Polym. Compos. 2008, 16, 101–113. [Google Scholar] [CrossRef]
- Paggi, M.; Berardone, I.; Infuso, A.; Corrado, M. Fatigue Degradation and Electric Recovery in Silicon Solar Cells Embedded in Photovoltaic Modules. Sci. Rep. 2014, 4, 4506. [Google Scholar] [CrossRef]
- Maxwell, A.S.; Broughton, W.R.; Dean, G.D.; Sims, G.D. Review of Accelerated Ageing Methods and Lifetime Prediction Techniques for Polymeric Materials; Crown: Middlesex, UK, 2005. [Google Scholar]
- Barré, S.; Benzeggagh, M.L. On the Use of Acoustic Emission to Investigate Damage Mechanisms in Glass-Fibre-Reinforced Polypropylene. Compos. Sci. Technol. 1994, 52, 369–376. [Google Scholar] [CrossRef]
- Eftekhari, M.; Fatemi, A. On the Strengthening Effect of Increasing Cycling Frequency on Fatigue Behavior of Some Polymers and Their Composites: Experiments and Modeling. Int. J. Fatigue 2016, 87, 153–166. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, S.; Muniappan, A.; Pimenov, D.Y.; Wojciechowski, S.; Jha, K.; Dwivedi, S.P.; Li, C.; Królczyk, J.B.; Walczak, D.; et al. In Situ Micro-Observation of Surface Roughness and Fracture Mechanism in Metal Microforming of Thin Copper Sheets with Newly Developed Compact Testing Apparatus. Materials 2022, 15, 1368. [Google Scholar] [CrossRef]
- Kagitci, Y.C.; Tarakcioglu, N. The effect of weld line on tensile strength in a polymer composite part. Int. J. Adv. Manuf. Technol. 2016, 85, 1125–1135. [Google Scholar] [CrossRef]
- Luo, J.S.; Xu, B.P.; Yu, H.W.; Du, Y.X.; Feng, Y.H. Thermoplastic polyurethane/polypropylene blends in a co-rotating non-twin screws extruder. Fibers Polym. 2015, 16, 95–104. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Tran, V.T.; Pham, T.H.N.; Nguyen, V.-T.; Thanh, N.C.; Thi, H.M.N.; Duy, N.V.A.; Thanh, D.N.; Nguyen, V.T.T. Influences of Material Selection, Infill Ratio, and Layer Height in the 3D Printing Cavity Process on the Surface Roughness of Printed Patterns and Casted Products in Investment Casting. Micromachines 2023, 14, 395. [Google Scholar] [CrossRef]
- Kannan, M.; Bhagawan, S.S.; Jose, T.; Thomas, S.; Joseph, K. Effect of sequence of nanoclay addition in TPU/PP blends: Thermomechanical properties. J. Mater. Sci. 2010, 45, 1078–1085. [Google Scholar] [CrossRef]
- De León, A.S.; Domínguez-Calvo, A.; Molina, S.I. Materials with enhanced adhesive properties based on acrylonitrile-butadiene-styrene (ABS)/thermoplastic polyurethane (TPU) blends for fused filament fabrication (FFF). Mater. Des. 2019, 182, 108044. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Hussein, E.K.; Subhi, K.A.; Al-Amiery, A. Mechanical and morphology properties of titanium oxide-epoxy nanocomposites. Int. J. Low-Carb. Technol. 2021, 16, 240–245. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Kadhum, A.A.H.; Michael, P.K.A.; Al-Amiery, A.A.; Sulong, A.B.; Nassir, M.H.; Jaaz, A.H. Unique halloysite nanotubes–polyvinyl alcohol–polyvinylpyrrolidone composite complemented with physico–chemical characterization. Polymers 2017, 9, 207. [Google Scholar] [CrossRef]
- Minh, P.S.; Nguyen, V.-T.; Nguyen, V.T.; Uyen, T.M.T.; Do, T.T.; Nguyen, V.T.T. Study on the Fatigue Strength of Welding Line in Injection Molding Products under Different Tensile Conditions. Micromachines 2022, 13, 1890. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Mallick, P.K. Effects of melt temperature and hold pressure on the tensile and fatigue properties of an injection molded talc-filled polypropylene. Polym. Eng. Sci. 2005, 45, 755–763. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Kadhum, A.A.H.; Nassir, M.H.; Al-Amiery, A.A. Optimizing injection molding parameters of different halloysites type-reinforced thermoplastic polyurethane nanocomposites via Taguchi complemented with ANOVA. Materials 2016, 9, 947. [Google Scholar] [CrossRef] [PubMed]
- Gaaz, T.S.; Sulong, A.B.; Kadhum, A.A.H.; Nassir, M.H.; Al-Amiery, A.A. Optimizing physio-mechanical properties of halloysite reinforced polyurethane nanocomposites by Taguchi approach. Sci. Adv. Mater. 2017, 9, 949–961. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Kadhum, A.A.H.; Nassir, M.H.; Al-Amiery, A.A. Absolute variation of the mechanical characteristics of halloysite reinforced polyurethane nanocomposites complemented by Taguchi and ANOVA approaches. Results Phys. 2017, 7, 3287–3300. [Google Scholar] [CrossRef]
- Gao, L.; Thostenson, E.T.; Zhang, Z.; Byun, J.H.; Chou, T.W. Damage monitoring in fiber-reinforced composites under fatigue loading using carbon nanotube networks. Philos. Mag. 2010, 90, 4085–4099. [Google Scholar] [CrossRef]
- Chandra, A.P.; Byregowda, H.V.; Gangadhar, T.G.; Angadi, G.; Krishna, M. Investigation the effect of electroplating and filler material on the tensile properties of wollastonite reinforced ABS composites. J. Phys. Conf. Ser. 2019, 1240, 012105. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Gupta, M.; Prakash, C.; Singh, R. Mechanical feasibility of ABS/HIPS-based multi-material structures primed by low-cost polymer printer. Rapid Prototyp. J. 2019, 25, 152–161. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, R.; Farina, I.; Colangelo, F.; Feo, L.; Fraternali, F. Multi-material additive manufacturing of sustainable innovative materials and structures. Polymers 2019, 11, 62. [Google Scholar] [CrossRef]
- Dhakal, N.; Wang, X.; Espejo, C.; Morina, A.; Emami, N. Impact of processing defects on microstructure, surface quality, and tribological performance in 3D printed polymers. J. Mater. Res. Technol. 2023, 23, 1252–1272. [Google Scholar] [CrossRef]
- Azadi, M.; Dadashi, A.; Dezianian, S.; Kianifar, M.; Torkaman, S.; Chiyani, M. High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing. Forces Mech. 2021, 3, 100016. [Google Scholar] [CrossRef]
Molding Parameters | Unit | Value for PP | Value for ABS/TPU Blend |
---|---|---|---|
Melt temperature | °C | 220 | 220 |
Pre-heating time | s | 0, 3, 6, 9, 12, 15 | 0, 3, 6, 9, 12 |
Mold temperature | °C | 70, 138.5, 160, 189.5, 201.3, 219.1 | 70, 138.5, 160, 189.5, 201.3 |
Injection pressure | MPa | 35 | 65 |
Injection time | s | 2 | 2 |
Drying time (85 °C) | Hour | 12 | 12 |
Holding time | s | 0.5 | 0.8 |
Holding pressure | MPa | 30 | 50 |
Injection speed | mm·s−1 | 40 | 35 |
Cooling time | s | 20 | 20 |
Level | Heating Time | Frequency |
---|---|---|
1 | 439.40 | 1158.20 |
2 | 475.60 | 783.00 |
3 | 510.80 | 403.80 |
4 | 564.00 | 217.40 |
5 | 639.80 | 67.20 |
Delta | 200.40 | 1091.00 |
Rank | 2 | 1 |
UTS (MPa) | 0 s | 3 s | 6 s | 9 s | 12 s | Average |
---|---|---|---|---|---|---|
10% TPU | 27.0 34 82 | 33.9 | 36.8 | 26.9 | 36.4 | 32.20 |
15% TPU | 35.7 27.50 | 30.8 | 35.4 | 35.8 | 36.4 | 34.82 |
20% TPU | 21.3 | 25.1 | 26.6 | 32.7 | 31.8 | 27.50 |
25% TPU | 23.0 | 35.7 | 26.2 | 32.5 | 26.5 | 28.78 |
30% TPU | 24.6 | 24.9 | 24.0 | 24.4 | 25.4 | 24.66 |
Average | 26.322 | 30.08 | 29.80 | 30.46 | 31.30 |
Level | TPU | Heating Time |
---|---|---|
1 | 32.20 34 82 | 26.32 |
2 | 34.82 27.50 | 30.08 |
3 | 27.50 | 29.80 |
4 | 28.78 | 30.46 |
5 | 24.66 | 31.30 |
Delta | 10.16 | 4.98 |
Rank | 1 | 2 |
Elongation (%) | 0 s | 3 s | 6 s | 9 s | 12 s | Average |
---|---|---|---|---|---|---|
10% TPU | 3.8 | 4.3 | 4.9 | 3.6 | 5.1 | 4.34 |
15% TPU | 4.8 | 3.9 | 4.9 | 4.4 | 5.5 | 4.70 |
20% TPU | 2.9 | 3.3 | 3.7 | 4.6 | 4.1 | 3.72 |
25% TPU | 3.0 | 4.8 | 3.5 | 4.4 | 3.7 | 3.88 |
30% TPU | 5.5 | 3.7 | 4.5 | 4.5 | 4.1 | 4.46 |
Average | 4.0 | 4.0 | 4.3 | 4.3 | 4.5 |
Level | TPU | Heating Time |
---|---|---|
1 | 4.34 | 4.0 |
2 | 4.70 | 4.0 |
3 | 3.72 | 4.3 |
4 | 3.88 | 4.3 |
5 | 4.46 | 4.5 |
Delta | 0.98 | 0.5 |
Rank | 1 | 2 |
E (GPa) | 0 s | 3 s | 6 s | 9 s | 12 s | Average |
---|---|---|---|---|---|---|
10% TPU | 8.4 | 8.0 | 7.9 | 7.5 | 7.9 | 7.9 |
15% TPU | 8.0 | 7.9 | 7.1 | 7.6 | 7.0 | 7.5 |
20% TPU | 5.2 | 7.2 | 7.5 | 7.1 | 7.7 | 6.9 |
25% TPU | 7.3 | 7.5 | 7.0 | 7.2 | 6.7 | 7.1 |
30% TPU | 5.4 | 5.9 | 4.3 | 5.5 | 5.4 | 5.3 |
Average | 6.8 | 7.3 | 6.8 | 7.0 | 6.9 |
Level | TPU | Heating Time |
---|---|---|
1 | 7.94 | 6.86 |
2 | 7.52 | 7.30 |
3 | 6.94 | 6.76 |
4 | 7.14 | 6.98 |
5 | 5.30 | 6.94 |
Delta | 2.64 | 0.54 |
Rank | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minh, P.S.; Uyen, T.M.T.; Do, T.T.; Nguyen, V.-T.; Nguyen, V.T.T. Enhancing the Fatigue Strength of the Weld Line in Advanced Polymer Injection Molding: Gas-Assisted Mold Temperature Control for Thermoplastic Polyurethane (TPU) Composites. Polymers 2023, 15, 2440. https://doi.org/10.3390/polym15112440
Minh PS, Uyen TMT, Do TT, Nguyen V-T, Nguyen VTT. Enhancing the Fatigue Strength of the Weld Line in Advanced Polymer Injection Molding: Gas-Assisted Mold Temperature Control for Thermoplastic Polyurethane (TPU) Composites. Polymers. 2023; 15(11):2440. https://doi.org/10.3390/polym15112440
Chicago/Turabian StyleMinh, Pham Son, Tran Minh The Uyen, Thanh Trung Do, Van-Thuc Nguyen, and Van Thanh Tien Nguyen. 2023. "Enhancing the Fatigue Strength of the Weld Line in Advanced Polymer Injection Molding: Gas-Assisted Mold Temperature Control for Thermoplastic Polyurethane (TPU) Composites" Polymers 15, no. 11: 2440. https://doi.org/10.3390/polym15112440
APA StyleMinh, P. S., Uyen, T. M. T., Do, T. T., Nguyen, V. -T., & Nguyen, V. T. T. (2023). Enhancing the Fatigue Strength of the Weld Line in Advanced Polymer Injection Molding: Gas-Assisted Mold Temperature Control for Thermoplastic Polyurethane (TPU) Composites. Polymers, 15(11), 2440. https://doi.org/10.3390/polym15112440