Design and Synthesis of N-Doped Porous Carbons for the Selective Carbon Dioxide Capture under Humid Flue Gas Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polymers Synthesis
2.1.1. POP101
2.1.2. POP102
2.1.3. POP103
2.1.4. POP104
2.2. N-Doped Carbon Synthesis
3. Results and Discussion
3.1. Structural Characterization & Permanent Porosity
3.2. Thermodynamic Uptake Capacity
3.3. Thermodynamic Analysis of the Adsorption Process
3.4. Dynamic CO2 Separation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, Z.; Eden, M.R.; Gani, R. Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes. Ind. Eng. Chem. Res. 2016, 55, 3383–3419. [Google Scholar] [CrossRef]
- Bilgen, S. Structure and Environmental Impact of Global Energy Consumption. Renew. Sustain. Energy Rev. 2014, 38, 890–902. [Google Scholar] [CrossRef]
- Jackson, R.B.; Canadell, J.G.; Quéré, C.L.; Andrew, R.M.; Korsbakken, J.I.; Peters, G.P.; Nakicenovic, N. Reaching Peak Emissions. Nat. Clim. Chang. 2016, 6, 7–10. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, X.; Hu, G.; Bai, R.; Dai, W.; Fan, M.; Luo, M. Enhancement of CO2 Adsorption and Amine Efficiency of Titania Modified by Moderate Loading of Diethylenetriamine. J. Mater. Chem. A 2013, 1, 6208–6215. [Google Scholar] [CrossRef]
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO2 Capture by Solid Adsorbents and Their Applications: Current Status and New Trends. Energy Environ. Sci. 2011, 4, 42–55. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Yang, R.; Zhang, Z.; Wu, J.; Gao, Y.; Wang, Q.; O’Hare, D.; Zhong, Z. Recent Advances in Solid Sorbents for CO2 Capture and New Development Trends. Energy Environ. Sci. 2014, 7, 3478–3518. [Google Scholar] [CrossRef]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon Dioxide Capture: Prospects for New Materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef]
- Lee, S.C.; Lin, C.T.; Tsai, M.S. The Pricing of Deposit Insurance in the Presence of Systematic Risk. J. Bank. Financ. 2015, 51, 1–11. [Google Scholar] [CrossRef]
- Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.H.; Long, J.R. Carbon Dioxide Capture in Metal-Organic Frameworks. Chem. Rev. 2012, 112, 724–781. [Google Scholar] [CrossRef]
- Trickett, C.A.; Helal, A.; Al-Maythalony, B.A.; Yamani, Z.H.; Cordova, K.E.; Yaghi, O.M. The Chemistry of Metal-Organic Frameworks for CO2 Capture, Regeneration and Conversion. Nat. Rev. Mater. 2017, 2, 17045. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Shah, B.B.; Zhao, D. CO2 Capture in Metal–Organic Framework Adsorbents: An Engineering Perspective. Adv. Sustain. Syst. 2019, 3, 1800080. [Google Scholar] [CrossRef]
- Jia, J.; Chen, Z.; Jiang, H.; Belmabkhout, Y.; Mouchaham, G.; Aggarwal, H.; Adil, K.; Abou-Hamad, E.; Czaban-Jóźwiak, J.; Tchalala, M.R.; et al. Extremely Hydrophobic POPs to Access Highly Porous Storage Media and Capturing Agent for Organic Vapors. Chem 2019, 5, 180–191. [Google Scholar] [CrossRef]
- Li, L.; Cai, K.; Wang, P.; Ren, H.; Zhu, G. Construction of Sole Benzene Ring Porous Aromatic Frameworks and Their High Adsorption Properties. ACS Appl. Mater. Interfaces 2015, 7, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kong, R.; Wang, X.; Xu, Y.; Wang, F.; Ren, W.; Wang, Y.; Su, F.; Jiang, J.X. Porous Carbons Derived from Hypercrosslinked Porous Polymers for Gas Adsorption and Energy Storage. Carbon 2017, 114, 608–618. [Google Scholar] [CrossRef]
- Shen, Z.; Song, Y.; Yin, C.; Luo, X.; Wang, Y.; Li, X. Construction of Hierarchically Porous 3D Graphene-like Carbon Material by B, N Co-Doping for Enhanced CO2 Capture. Microporous Mesoporous Mater. 2021, 322, 111158. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, C.; Yin, C.; Kang, S.; Liu, Y.; Ge, Z.; Xia, Q.; Wang, Y.; Li, X. Facile Large-Scale Synthesis of Macroscopic 3D Porous Graphene-like Carbon Nanosheets Architecture for Efficient CO2 Adsorption. Carbon 2019, 145, 751–756. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, H.; Sun, H.; Suvorova, A.; Saunders, M.; Tade, M.; Wang, S. Heteroatom (N or N-S)-Doping Induced Layered and Honeycomb Microstructures of Porous Carbons for CO2 Capture and Energy Applications. Adv. Funct. Mater. 2016, 26, 8651–8661. [Google Scholar] [CrossRef]
- Ren, X.; Li, H.; Chen, J.; Wei, L.; Modak, A.; Yang, H.; Yang, Q. N-Doped Porous Carbons with Exceptionally High CO2 Selectivity for CO2 Capture. Carbon 2017, 114, 473–481. [Google Scholar] [CrossRef]
- Sevilla, M.; Parra, J.B.; Fuertes, A.B. Assessment of the Role of Micropore Size and N-Doping in CO2 Capture by Porous Carbons. ACS Appl. Mater. Interfaces 2013, 5, 6360–6368. [Google Scholar] [CrossRef]
- Basha, D.B.; Ahmed, S.; Ahmed, A.; Gondal, M.A. Recent Advances on Nitrogen Doped Porous Carbon Micro-Supercapacitors: New Directions for Wearable Electronics. J. Energy Storage 2023, 60, 106581. [Google Scholar] [CrossRef]
- Li, M.; Xu, F.; Li, H.; Wang, Y. Nitrogen-Doped Porous Carbon Materials: Promising Catalysts or Catalyst Supports for Heterogeneous Hydrogenation and Oxidation. Catal. Sci. Technol. 2016, 6, 3670–3693. [Google Scholar] [CrossRef]
- Abdelnaby, M.M.; Cordova, K.E.; Abdulazeez, I.; Alloush, A.M.; Al-Maythalony, B.A.; Mankour, Y.; Alhooshani, K.; Saleh, T.A.; Hamouz, O.C.S. Al Novel Porous Organic Polymer for the Concurrent and Selective Removal of Hydrogen Sulfide and Carbon Dioxide from Natural Gas Streams. ACS Appl. Mater. Interfaces 2020, 12, 47984–47992. [Google Scholar] [CrossRef] [PubMed]
- Sethia, G.; Sayari, A. Comprehensive Study of Ultra-Microporous Nitrogen-Doped Activated Carbon for CO2 Capture. Carbon 2015, 93, 68–80. [Google Scholar] [CrossRef]
- Jawaid, S.; Talpur, F.N.; Afridi, H.I.; Nizamani, S.M.; Khaskheli, A.A.; Naz, S. Quick Determination of Melamine in Infant Powder and Liquid Milk by Fourier Transform Infrared Spectroscopy. Anal. Methods 2014, 6, 5269–5273. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Balzer, C.; Braxmeier, S.; Neimark, A.V.; Reichenauer, G. Deformation of Microporous Carbon during Adsorption of Nitrogen, Argon, Carbon Dioxide, and Water Studied by in Situ Dilatometry. Langmuir 2015, 31, 12512–12519. [Google Scholar] [CrossRef]
- Hart, K.E.; Springmeier, J.M.; McKeown, N.B.; Colina, C.M. Simulated Swelling during Low-Temperature N2 Adsorption in Polymers of Intrinsic Microporosity. Phys. Chem. Chem. Phys. 2013, 15, 20161–20169. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Neimark, A.V. Density Functional Theory Model of Adsorption on Amorphous and Microporous Silica Materials. Langmuir 2006, 22, 11171–11179. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Vishnyakov, A.; Russo, R.; Neimark, A.V. Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms†. Langmuir 2000, 16, 2311–2320. [Google Scholar] [CrossRef]
- Blazsó, M. Polyaromatization in Common Synthetic Polymers at Elevated Temperatures. J. Anal. Appl. Pyrolysis 1993, 25, 25–35. [Google Scholar] [CrossRef]
- Sarwar, A.; Ali, M.; Khoja, A.H.; Nawar, A.; Waqas, A.; Liaquat, R.; Naqvi, S.R.; Asjid, M. Synthesis and Characterization of Biomass-Derived Surface-Modified Activated Carbon for Enhanced CO2adsorption. J. CO2 Util. 2021, 46, 101476. [Google Scholar] [CrossRef]
- Rashidi, N.A.; Yusup, S.; Borhan, A. Isotherm and Thermodynamic Analysis of Carbon Dioxide on Activated Carbon. Procedia Eng. 2016, 148, 630–637. [Google Scholar] [CrossRef]
- Gautam; Sahoo, S. Experimental Investigation on Different Activated Carbons as Adsorbents for CO2 Capture. Therm. Sci. Eng. Prog. 2022, 33, 101339. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, D.; Xie, H.; Won, S.W.; Cui, L.; Wu, G. Adsorption of Ag(I) from Aqueous Solution by Waste Yeast: Kinetic, Equilibrium and Mechanism Studies. Bioprocess Biosyst. Eng. 2015, 38, 69–77. [Google Scholar] [CrossRef]
- Liang, S.; Guo, X.; Feng, N.; Tian, Q. Isotherms, Kinetics and Thermodynamic Studies of Adsorption of Cu2+ from Aqueous Solutions by Mg2+/K+ Type Orange Peel Adsorbents. J. Hazard. Mater. 2010, 174, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Hauchhum, L.; Mahanta, P. Carbon Dioxide Adsorption on Zeolites and Activated Carbon by Pressure Swing Adsorption in a Fixed Bed. Int. J. Energy Environ. Eng. 2014, 5, 349–356. [Google Scholar] [CrossRef]
- Serafin, J.; Narkiewicz, U.; Morawski, A.W.; Wróbel, R.J.; Michalkiewicz, B. Highly Microporous Activated Carbons from Biomass for CO2 Capture and Effective Micropores at Different Conditions. J. CO2 Util. 2017, 18, 73–79. [Google Scholar] [CrossRef]
- Sreńscek-Nazzal, J.; Kiełbasa, K. Advances in Modification of Commercial Activated Carbon for Enhancement of CO2 Capture. Appl. Surf. Sci. 2019, 494, 137–151. [Google Scholar] [CrossRef]
- Singh, G.; Ismail, I.S.; Bilen, C.; Shanbhag, D.; Sathish, C.I.; Ramadass, K.; Vinu, A. A Facile Synthesis of Activated Porous Carbon Spheres from D-Glucose Using a Non-Corrosive Activating Agent for Efficient Carbon Dioxide Capture. Appl. Energy 2019, 255, 113831. [Google Scholar] [CrossRef]
- Nuhnen, A.; Janiak, C. A Practical Guide to Calculate the Isosteric Heat/Enthalpy of Adsorption: Via Adsorption Isotherms in Metal-Organic Frameworks, MOFs. Dalton Trans. 2020, 49, 10295–10307. [Google Scholar] [CrossRef] [PubMed]
- Vorokhta, M.; Morávková, J.; Dopita, M.; Zhigunov, A.; Šlouf, M.; Pilař, R.; Sazama, P. Effect of Micropores on CO2 Capture in Ordered Mesoporous CMK-3 Carbon at Atmospheric Pressure. Adsorption 2021, 27, 1221–1236. [Google Scholar] [CrossRef]
- Burri, H.; Anjum, R.; Gurram, R.B.; Mitta, H.; Mutyala, S.; Jonnalagadda, M. Mesoporous Carbon Supported MgO for CO2 Capture and Separation of CO2/N2. Korean J. Chem. Eng. 2019, 36, 1482–1488. [Google Scholar] [CrossRef]
- Tao, D.J.; Mao, F.F.; Luo, J.J.; Zhou, Y.; Li, Z.M.; Zhang, L. Mesoporous N-Doped Carbon Derived from Tea Waste for High-Performance CO2 Capture and Conversion. Mater. Today Commun. 2020, 22, 100849. [Google Scholar] [CrossRef]
- Singh, M.G.; Lakhi, K.S.; Park, D.H.; Srivastava, P.; Naidu, R.; Vinu, A. Facile One-Pot Synthesis of Activated Porous Biocarbons with a High Nitrogen Content for CO2 Capture. ChemNanoMat 2018, 4, 281–290. [Google Scholar] [CrossRef]
- Abdelnaby, M.M.; Qasem, N.A.A.; Al-Maythalony, B.A.; Cordova, K.E.; Al Hamouz, O.C.S. A Microporous Organic Copolymer for Selective CO2 Capture under Humid Conditions. ACS Sustain. Chem. Eng. 2019, 7, 13941–13948. [Google Scholar] [CrossRef]
- Xu, C.; Ruan, C.Q.; Li, Y.; Lindh, J.; Strømme, M. High-Performance Activated Carbons Synthesized from Nanocellulose for CO2 Capture and Extremely Selective Removal of Volatile Organic Compounds. Adv. Sustain. Syst. 2018, 2, 1700147. [Google Scholar] [CrossRef]
- Lu, T.; Ma, C.; Demir, M.; Yu, Q.; Aghamohammadi, P.; Wang, L.; Hu, X. One-Pot Synthesis of Potassium Benzoate-Derived Porous Carbon for CO2 Capture and Supercapacitor Application. Sep. Purif. Technol. 2022, 301, 122053. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Wang, Z.; Wang, S.; Fu, J. Tunable-Quaternary (N, S, O, P)-Doped Porous Carbon Microspheres with Ultramicropores for CO2 Capture. Appl. Surf. Sci. 2020, 507, 145130. [Google Scholar] [CrossRef]
- Prasankumar, T.; Salpekar, D.; Bhattacharyya, S.; Manoharan, K.; Yadav, R.M.; Campos Mata, M.A.; Miller, K.A.; Vajtai, R.; Jose, S.; Roy, S.; et al. Biomass Derived Hierarchical Porous Carbon for Supercapacitor Application and Dilute Stream CO2 Capture. Carbon 2022, 199, 249–257. [Google Scholar] [CrossRef]
- Du, J.; Li, W.C.; Ren, Z.X.; Guo, L.P.; Lu, A.H. Synthesis of Mechanically Robust Porous Carbon Monoliths for CO2 Adsorption and Separation. J. Energy Chem. 2020, 42, 56–61. [Google Scholar] [CrossRef]
Entry | Material | Precursors | Method | Temperature |
---|---|---|---|---|
1 | POP101 | Melamine/Pyrrole Molar ratio: 1:1 | Solvothermal (DMF) | 90 °C |
2 | POP102 | Melamine/Pyrrole Molar ratio: 1:2 | Solvothermal (DMF) | 90 °C |
3 | POP103 | Melamine/Pyrrole Molar ratio: 1:3 | Solvothermal (DMF) | 90 °C |
4 | POP104 | Melamine/Pyrrole Molar ratio: 1:4 | Solvothermal (DMF) | 90 °C |
5 | NPC101-700 | POP101 | Pyrolysis | 700 °C |
6 | NPC102-700 | POP102 | Pyrolysis | 700 °C |
7 | NPC103-700 | POP103 | Pyrolysis | 700 °C |
8 | NPC104-700 | POP104 | Pyrolysis | 700 °C |
9 | NPC101-900 | POP101 | Pyrolysis | 900 °C |
10 | NPC102-900 | POP102 | Pyrolysis | 900 °C |
Material | BET Area (m2 g−1) | Langmuir Area (m2 g−1) | Pore Volume 1 (cm3 g−1) | Micropore Volume 2 (cm3 g−1) | DFT Pore Radius (nm) |
---|---|---|---|---|---|
POP101 | 205 | 324 | 0.59 | 0.000 | 0.25 |
POP102 | 263 | 441 | 0.62 | 0.000 | 0.62 |
POP103 | 333 | 532 | 0.50 | 0.000 | 0.59 |
POP104 | 436 | 695 | 0.55 | 0.010 | 0.63 |
NPC101-700 | 570 | 792 | 0.60 | 0.201 | 0.39 |
NPC102-700 | 369 | 552 | 0.42 | 0.094 | 0.39 |
NPC103-700 | 387 | 542 | 0.34 | 0.080 | 0.54 |
NPC104-700 | 348 | 495 | 0.30 | 0.065 | 0.54 |
NPC101-900 | 537 | 807 | 0.78 | 0.141 | 0.39 |
NPC102-900 | 659 | 1067 | 0.83 | 0.120 | 0.50 |
Samples | CO2 Uptake (cm3 g−1) | CO2 Uptake (cm3 g−1) |
---|---|---|
273 K | 298 K | |
POP101 | 30.8 | 20.7 |
POP102 | 29.3 | 19.2 |
POP103 | 28.9 | 19.3 |
POP104 | 30.8 | 19.6 |
NPC101-900 | 59.4 | 44.1 |
NPC102-900 | 57.5 | 46.5 |
Material | ΔS° (kJ/mol K) | ΔH° (kJ/mol) | ΔG° (kJ/mol) | |
---|---|---|---|---|
273 K | 298 K | |||
NPC101-900 | −0.074 | −23.620 | −3.35 | −1.50 |
NPC102-900 | −0.044 | −14.827 | −2.73 | −1.62 |
Material | SABET (m2 g−1) | CO2 Uptake (mmol g−1) | Temp. (K) | CO2/N2 Selectivity | Ref. |
---|---|---|---|---|---|
POP-derived NPCs | 570–659 | 1.9–2.1 | 298 | 50–53 | This work |
CMK-3 carbon | 624 | 1.7 | 293 | 35–38 | [42] |
Mesoporous carbon-MgO | 0.9 | 298 | — | [43] | |
Mesoporous N-doped carbon tea waste (TW-900) | 354 | 1.7 | 298 | 79 | [44] |
Activated porous biocarbons (NEPB-3UK) | 982 | 2.2 | 298 | — | [45] |
BPL Carbon | 1210 | 2.1 | 298 | — | [46] |
Cellulose-based carbons -AC-N2 | 500 | 2.6 | — | [47] | |
benzoate-derived porous carbon | 777 | 3.6 | 298 | — | [48] |
(N, S, O, P)-doped porous carbon microspheres (PCMS—750) | 342 | 1.8 | 298 | 10.6 | [49] |
PCMSs—800 | 481 | 2.8 | 12.7 | [49] | |
Hierarchical porous carbon | 4.5 | 273 | — | [50] | |
Carbon monoliths | 595–621 | 2.3–3.0 | 298 | — | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelnaby, M.M.; Aliyu, M.; Nemitallah, M.A.; Alloush, A.M.; Mahmoud, E.-H.M.; Ossoss, K.M.; Zeama, M.; Dowaidar, M. Design and Synthesis of N-Doped Porous Carbons for the Selective Carbon Dioxide Capture under Humid Flue Gas Conditions. Polymers 2023, 15, 2475. https://doi.org/10.3390/polym15112475
Abdelnaby MM, Aliyu M, Nemitallah MA, Alloush AM, Mahmoud E-HM, Ossoss KM, Zeama M, Dowaidar M. Design and Synthesis of N-Doped Porous Carbons for the Selective Carbon Dioxide Capture under Humid Flue Gas Conditions. Polymers. 2023; 15(11):2475. https://doi.org/10.3390/polym15112475
Chicago/Turabian StyleAbdelnaby, Mahmoud M., Mansur Aliyu, Medhat A. Nemitallah, Ahmed M. Alloush, El-Hassan M. Mahmoud, Khaled M. Ossoss, Mostafa Zeama, and Moataz Dowaidar. 2023. "Design and Synthesis of N-Doped Porous Carbons for the Selective Carbon Dioxide Capture under Humid Flue Gas Conditions" Polymers 15, no. 11: 2475. https://doi.org/10.3390/polym15112475
APA StyleAbdelnaby, M. M., Aliyu, M., Nemitallah, M. A., Alloush, A. M., Mahmoud, E. -H. M., Ossoss, K. M., Zeama, M., & Dowaidar, M. (2023). Design and Synthesis of N-Doped Porous Carbons for the Selective Carbon Dioxide Capture under Humid Flue Gas Conditions. Polymers, 15(11), 2475. https://doi.org/10.3390/polym15112475