Mechanical Properties of Weld Lines in Injection-Molded Carbon Fiber-Reinforced Nylon (PA-CF) Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Injection Molding
2.3. Specimens
2.4. Mechanical Properties Testing
2.5. Microscopic Observation
2.6. DSC Measurement
2.7. Injection Molding Simulation
3. Results and Discussion
3.1. Effect of Injection Temperature on Mechanical Properties
3.2. Effect of Injection Pressure on Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fisa, B.; Dufour, J.; Vu-Khanh, T. Weld line integrity of reinforced plastics: Effect of filler shape. Polym. Compos. 1987, 8, 408–418. [Google Scholar] [CrossRef]
- Kovács, J.G.; Sikló, B. Experimental validation of simulated weld line formation in injection moulded parts. Polym. Test. 2010, 29, 910–914. [Google Scholar] [CrossRef]
- Hashemi, S. Strength of single- and double-gated injection moulded short glass fibre reinforced polycarbonate. J. Thermoplast. Compos. Mater. 2011, 26, 276–295. [Google Scholar] [CrossRef]
- Khamsehnezhad, A.; Hashemi, S. Mechanical properties of single- and double-gated injection moulded short glass fibre reinforced PBT/PC composites. J. Mater. Sci. 2008, 43, 6344–6352. [Google Scholar] [CrossRef]
- Li, H.; Guo, Z.; Li, D. Reducing the effects of weld lines on appearance of plastic products by Taguchi experimental method. Int. J. Adv. Manuf. Technol. 2007, 32, 927–931. [Google Scholar] [CrossRef]
- Gim, J.; Turng, L.-S. A review of current advancements in high surface quality injection molding: Measurement, influencing factors, prediction, and control. Polym. Test. 2022, 115, 107718. [Google Scholar] [CrossRef]
- Baradi, M.B.; Cruz, C.; Riedel, T.; Régnier, G. Frontal weld lines in injection-molded short fiber-reinforced PBT: Extensive microstructure characterization for mechanical performance evaluation. Polym. Compos. 2019, 40, 4547–4558. [Google Scholar] [CrossRef]
- Baradi, M.B.; Cruz, C.; Riedel, T.; Régnier, G. Mechanical and microstructural characterization of flowing weld lines in injection-molded short fiber-reinforced PBT. Polym. Test. 2019, 74, 152–162. [Google Scholar] [CrossRef]
- Lim, J.K.; Shoji, T. Fiber orientation of polymer injection weld and its strength evaluation. KSME J. 1993, 7, 173–181. [Google Scholar] [CrossRef]
- Chen, C.-S.; Chen, T.-J.; Chien, R.-D.; Chen, S.-C. Investigation on the weld line strength of thin-wall injection molded ABS parts. Int. Commun. Heat Mass Transf. 2007, 34, 448–455. [Google Scholar] [CrossRef]
- Daiyan, H.; Andreassen, E.; Grytten, F.; Lyngstad, O.V.; Luksepp, T.; Osnes, H. Low-velocity impact response of injection-moulded polypropylene plates—Part 2: Effects of moulding conditions, striker geometry, clamping, surface texture, weld line and paint. Polym. Test. 2010, 29, 894–901. [Google Scholar] [CrossRef]
- Dzulkipli, A.A.; Azuddin, M. Study of the Effects of Injection Molding Parameter on Weld Line Formation. Procedia Eng. 2017, 184, 663–672. [Google Scholar] [CrossRef]
- Kagitci, Y.C.; Tarakcioglu, N. The effect of weld line on tensile strength in a polymer composite part. Int. J. Adv. Manuf. Technol. 2016, 85, 1125–1135. [Google Scholar] [CrossRef]
- Malguarnera, S.C.; Manisali, A. The effects of processing parameters on the tensile properties of weld lines in injection molded thermoplastics. Polym. Eng. Sci. 1981, 21, 586–593. [Google Scholar] [CrossRef]
- Chrysostomou, A.; Hashemi, S. Mechanical properties of injection moulded styrene maleic anhydride (SMA) Part II Influence of short glass fibres and weld lines. J. Mater. Sci. 1998, 33, 4491–4501. [Google Scholar] [CrossRef]
- Fisa, B.; Rahmani, M. Weld line strength in injection molded glass fiber-reinforced polypropylene. Polym. Eng. Sci. 1991, 31, 1330–1336. [Google Scholar] [CrossRef]
- Hashemi, S. Thermal effects on weld and unweld tensile properties of injection moulded short glass fibre reinforced ABS composites. Express Polym. Lett. 2007, 1, 688–697. [Google Scholar] [CrossRef]
- Scantamburlo, A.; Zanini, F.; Lucchetta, G.; Sorgato, M. Improving the weld lines mechanical properties by combining alternate dynamic packing and rapid heat cycle moulding. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107239. [Google Scholar] [CrossRef]
- Ozcelik, B.; Kuram, E.; Topal, M.M. Investigation the effects of obstacle geometries and injection molding parameters on weld line strength using experimental and finite element methods in plastic injection molding. Int. Commun. Heat Mass Transf. 2012, 39, 275–281. [Google Scholar] [CrossRef]
- Oh, G.-H.; Jeong, J.-H.; Park, S.-H.; Kim, H.-S. Terahertz time-domain spectroscopy of weld line defects formed during an injection moulding process. Compos. Sci. Technol. 2018, 157, 67–77. [Google Scholar] [CrossRef]
- Martulli, L.M.; Kerschbaum, M.; Lomov, S.V.; Swolfs, Y. Weld lines in tow-based sheet moulding compounds tensile properties: Morphological detrimental factors. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106109. [Google Scholar] [CrossRef]
- Seldén, R. Effect of processing on weld line strength in five thermoplastics. Polym. Eng. Sci. 1997, 37, 205–218. [Google Scholar] [CrossRef]
- Choudhari, D.S.; Kakhandki, V.J. Comprehensive study and analysis of mechanical properties of chopped carbon fibre reinforced nylon 66 composite materials. Mater. Today Proc. 2021, 44, 4596–4601. [Google Scholar] [CrossRef]
- Guo, A.; Liu, C.; Li, S.; Zhou, X.; Wang, J.; Wang, S.; Qu, P.; Hu, Y. Water absorption rates and mechanical properties of material extrusion-printed continuous carbon fiber-reinforced nylon composites. J. Mater. Res. Technol. 2022, 21, 3098–3112. [Google Scholar] [CrossRef]
- Ma, Y.; Jin, S.; Yokozeki, T.; Ueda, M.; Yang, Y.; Elbadry, E.A.; Hamada, H.; Sugahara, T. Effect of hot water on the mechanical performance of unidirectional carbon fiber-reinforced nylon 6 composites. Compos. Sci. Technol. 2020, 200, 108426. [Google Scholar] [CrossRef]
- Quintana, M.C.; Frontini, P. Weld line strength factors in a reinforced injection molded part: Relationship with predicted fiber orientation. J. Reinf. Plast. Compos. 2020, 39, 219–230. [Google Scholar] [CrossRef]
- Cao, W.; Shen, Y.; Wang, P.; Yang, H.; Zhao, S.; Shen, C. Viscoelastic modeling and simulation for polymer melt flow in injection/compression molding. J. Non-Newton. Fluid Mech. 2019, 274, 104186. [Google Scholar] [CrossRef]
- Trotta, G.; Stampone, B.; Fassi, I.; Tricarico, L. Study of rheological behaviour of polymer melt in micro injection moulding with a miniaturized parallel plate rheometer. Polym. Test. 2021, 96, 107068. [Google Scholar] [CrossRef]
- Xu, X.; Tian, L.; Peng, S.; Yu, P. Development of SPH for simulation of non-isothermal viscoelastic free surface flows with application to injection molding. Appl. Math. Model. 2022, 104, 782–805. [Google Scholar] [CrossRef]
- Thakre, P.; Chauhan, A.S.; Satyanarayana, A.; Raj Kumar, E.; Pradyumna, R. Estimation of Shrinkage & Distortion in Wax Injection using Moldex3D Simulation. Mater. Today Proc. 2018, 5, 19410–19417. [Google Scholar] [CrossRef]
- Gao, P. Three dimensional finite element computation of the non-isothermal polymer filling process by the phase field model. Adv. Eng. Softw. 2022, 172, 103207. [Google Scholar] [CrossRef]
- Kuo, H.-C.; Jeng, M.-C. Effects of part geometry and injection molding conditions on the tensile properties of ultra-high molecular weight polyethylene polymer. Mater. Des. 2010, 31, 884–893. [Google Scholar] [CrossRef]
- Hashemi, S.; Lepessova, Y. Temperature and weldline effects on tensile properties of injection moulded short glass fibre PC/ABS polymer composite. J. Mater. Sci. 2007, 42, 2652–2661. [Google Scholar] [CrossRef]
- Vaxman, A.; Narkis, M.; Siegmann, A.; Kenig, S. Weld-line characteristics in short fiber reinforced thermoplastics. Polym. Compos. 1991, 12, 161–168. [Google Scholar] [CrossRef]
- Solymossy, B.; Kovacs, J. The Examination of Weld Line Properties in Injection Molded PP Composites. Mater. Sci. Forum 2008, 589, 263–267. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, B.; Mo, F.; Li, B.; Jiang, B. In-line steady shear flow characteristics of polymer melt in rectangular slit cavities during thin-wall/micro injection molding. Mater. Des. 2022, 223, 111266. [Google Scholar] [CrossRef]
- Wittemann, F.; Kärger, L.; Henning, F. Theoretical approximation of hydrodynamic and fiber-fiber interaction forces for macroscopic simulations of polymer flow process with fiber orientation tensors. Compos. Part C Open Access 2021, 5, 100152. [Google Scholar] [CrossRef]
- Sasayama, T.; Sato, N.; Katagiri, Y.; Murayama, Y. Particle-level simulation for the prediction of short fiber orientation in injection molding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106115. [Google Scholar] [CrossRef]
Properties | Test Standards | Value | Unit |
---|---|---|---|
Density | ASTM D792 | 1.50 | g/cm3 |
Tensile strength | ASTM D638 | 228 | MPa |
Young’s modulus | ASTM D638 | 26,960 | MPa |
Flexural strength | ASTM D790 | 351 | MPa |
Flexural modulus | ASTM D790 | 18,590 | MPa |
Injection Parameters | Value | Unit |
---|---|---|
Injection temperature | 295, 305, 315 | °C |
Injection pressure | 7.5, 8.5, 9.5 | MPa |
Mold temperature | 25 | °C |
Packing pressure | 8 | MPa |
Injection velocity | 70 | mm/s |
Parameters | PA-10CF | PA-20CF | PA-30CF |
---|---|---|---|
(−) | 0.449 | 0.474 | 0.536 |
(Pa) | 4.83 × 104 | 1.56 × 104 | 1.35 × 104 |
(Pa·S) | 8.58 × 1016 | 1.68 × 1018 | 1.18 × 1021 |
(K) | 333.15 | 343.15 | 373.15 |
(K/Pa) | 0 | 0 | 0 |
(−) | 42.98 | 48.13 | 52.52 |
(K) | 51.6 | 51.6 | 51.6 |
Materials | Injection Temperature (°C) | Fkl of Tensile Strength (−) | Fkl of Young’s Modulus (−) | Fkl of Flexural Strength (−) | Fkl of Flexural Modulus (−) |
---|---|---|---|---|---|
PA | 295 | 0.95 ± 0.04 | 0.99 ± 0.02 | 1.00 ± 0.02 | 1.01 ± 0.02 |
305 | 0.98 ± 0.03 | 1.00 ± 0.01 | 1.01 ± 0.02 | 1.01 ± 0.02 | |
315 | 0.99 ± 0.03 | 1.00 ± 0.02 | 1.00 ± 0.02 | 1.01 ± 0.02 | |
PA-10CF | 295 | 0.65 ± 0.01 | 0.82 ± 0.03 | 0.60 ± 0.02 | 0.72 ± 0.03 |
305 | 0.71 ± 0.01 | 0.77 ± 0.02 | 0.76 ± 0.03 | 0.77 ± 0.04 | |
315 | 0.67 ± 0.02 | 0.88 ± 0.02 | 0.69 ± 0.04 | 0.76 ± 0.04 | |
PA-20CF | 295 | 0.38 ± 0.02 | 0.73 ± 0.01 | 0.53 ± 0.01 | 0.73 ± 0.01 |
305 | 0.33 ± 0.01 | 0.71 ± 0.01 | 0.47 ± 0.02 | 0.63 ± 0.02 | |
315 | 0.32 ± 0.02 | 0.68 ± 0.01 | 0.45 ± 0.03 | 0.61 ± 0.02 | |
PA-30CF | 295 | 0.27 ± 0.03 | 0.66 ± 0.02 | 0.34 ± 0.01 | 0.43 ± 0.01 |
305 | 0.24 ± 0.02 | 0.65 ± 0.06 | 0.35 ± 0.01 | 0.54 ± 0.01 | |
315 | 0.25 ± 0.03 | 0.62 ± 0.09 | 0.31 ± 0.01 | 0.50 ± 0.02 |
Materials | Injection Pressure (MPa) | Fkl of Tensile Strength (−) | Fkl of Young’s Modulus (−) | Fkl of Flexural Strength (−) | Fkl of Flexural Modulus (−) |
---|---|---|---|---|---|
PA | 7.5 | 0.97 ± 0.05 | 1.01 ± 0.01 | 1.00 ± 0.01 | 0.99 ± 0.02 |
8.5 | 0.98 ± 0.03 | 1.00 ± 0.01 | 1.01 ± 0.02 | 1.01 ± 0.02 | |
9.5 | 0.98 ± 0.03 | 0.98 ± 0.02 | 1.00 ± 0.01 | 1.04 ± 0.02 | |
PA-10CF | 7.5 | 0.64 ± 0.03 | 0.92 ± 0.03 | 0.74 ± 0.05 | 0.76 ± 0.02 |
8.5 | 0.71 ± 0.01 | 0.77 ± 0.02 | 0.76 ± 0.03 | 0.77 ± 0.04 | |
9.5 | 0.70 ± 0.02 | 0.85 ± 0.02 | 0.86 ± 0.03 | 0.77 ± 0.03 | |
PA-20CF | 7.5 | 0.38 ± 0.03 | 0.74 ± 0.02 | 0.47 ± 0.01 | 0.68 ± 0.01 |
8.5 | 0.33 ± 0.01 | 0.71 ± 0.01 | 0.47 ± 0.02 | 0.63 ± 0.02 | |
9.5 | 0.38 ± 0.03 | 0.65 ± 0.02 | 0.51 ± 0.01 | 0.67 ± 0.01 | |
PA-30CF | 7.5 | 0.28 ± 0.02 | 0.70 ± 0.06 | 0.33 ± 0.02 | 0.52 ± 0.03 |
8.5 | 0.24 ± 0.02 | 0.65 ± 0.06 | 0.35 ± 0.01 | 0.54 ± 0.01 | |
9.5 | 0.28 ± 0.01 | 0.60 ± 0.07 | 0.36 ± 0.02 | 0.51 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Bao, Z.; Gao, D.; Huang, S.; Huang, L.; Chen, Q.; Zhao, H.; Han, W.; Xu, Y. Mechanical Properties of Weld Lines in Injection-Molded Carbon Fiber-Reinforced Nylon (PA-CF) Composites. Polymers 2023, 15, 2476. https://doi.org/10.3390/polym15112476
Wang X, Bao Z, Gao D, Huang S, Huang L, Chen Q, Zhao H, Han W, Xu Y. Mechanical Properties of Weld Lines in Injection-Molded Carbon Fiber-Reinforced Nylon (PA-CF) Composites. Polymers. 2023; 15(11):2476. https://doi.org/10.3390/polym15112476
Chicago/Turabian StyleWang, Xianpeng, Zuguo Bao, Donglin Gao, Shiyao Huang, Li Huang, Qiuren Chen, Hailong Zhao, Weijian Han, and Yahong Xu. 2023. "Mechanical Properties of Weld Lines in Injection-Molded Carbon Fiber-Reinforced Nylon (PA-CF) Composites" Polymers 15, no. 11: 2476. https://doi.org/10.3390/polym15112476
APA StyleWang, X., Bao, Z., Gao, D., Huang, S., Huang, L., Chen, Q., Zhao, H., Han, W., & Xu, Y. (2023). Mechanical Properties of Weld Lines in Injection-Molded Carbon Fiber-Reinforced Nylon (PA-CF) Composites. Polymers, 15(11), 2476. https://doi.org/10.3390/polym15112476