Synthesis of Ultrahigh Molecular Weight Poly(methyl Methacrylate) via the Polymerization of MMA Initiated by the Combination of Palladium Carboxylates with Thiols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PMMA Using Organosulfur Compounds Combined with Transition Metal Carboxylates as an Initiator
2.3. Characterization
3. Results and Discussion
3.1. Synthesis of Ultrahigh Molecular Weight PMMA Using the Combination of Organosulfur Compounds with Transition Metal Carboxylates as an Initiator
3.2. Kinetics of the Polymerization Initiated by the Combination of 1-Octanethiol with Pd(CF3COO)2
3.3. Preliminary Investigation of the Mechanism of MMA Polymerization Initiated by the Combination of 1-Octanethiol with Pd(CF3COO)2
3.3.1. TEM Images and XPS Analysis of the Nanoparticles In Situ Formed at the Early Stage of the Polymerization
3.3.2. EPR Analysis for the Polymerization Initiated by the Combination of 1-Octanethiol with Pd(CF3COO)2
3.3.3. End-Group Analysis of the Prepared PMMA Macromolecular Chains
3.4. Postulated Mechanism for the Polymerization of MMA Initiated by the Combination of 1-Octanethiol with Pd(CF3COO)2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A Review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Harper, C.A. Modern Plastics Handbook; McGraw-Hill Companies Inc.: New York, NY, USA, 2000. [Google Scholar]
- Kaur, H.; Thakur, A. Applications of poly(methyl methacrylate) polymer in dentistry: A review. Mater. Today Proc. 2022, 50, 1619–1625. [Google Scholar] [CrossRef]
- Alanís-Navarro, J.A.; Reyes-Betanzo, C.; Moreira, J.; Sebastian, P.J. Fabrication and characterization of a micro-fuel cell made of metallized PMMA. J. Power Sources 2013, 242, 1–6. [Google Scholar] [CrossRef]
- Isha, A.; Yusof, N.A.; Ahmad, M.; Suhendra, D.; Yunus, W.M.Z.W.; Zainal, Z. A chemical sensor for trace V(V) ion determination based on fatty hydroxamic acid immobilized in polymethyl methacrylate. Sensor Actuat. B Chem. 2005, 114, 344–349. [Google Scholar] [CrossRef]
- Shi, M.; Kretlow, J.D.; Spicer, P.P.; Tabata, Y.; Demian, N.; Wong, M.E.; Kasper, F.K.; Mikos, A.G. Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. J. Control. Release 2011, 152, 196–205. [Google Scholar] [CrossRef]
- Robinson, R.P.; Wright, T.M.; Burstein, A.H. Mechanical properties of poly(methyl methacrylate) bone cements. J. Biomed. Mater. Res. 1981, 15, 203–208. [Google Scholar] [CrossRef]
- Shah, J.J.; Geist, J.; Locascio, L.E.; Gaitan, M.; Rao, M.V.; Vreeland, W.N. Surface modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis. Electrophoresis 2006, 27, 3788–3796. [Google Scholar] [CrossRef]
- Kusya, R.P.; Greenberg, A.R. Influence of molecular weight on the dynamic mechanical properties of poly(methyl methacrylate). J. Therm. Anal. Calorim. 1980, 18, 117–126. [Google Scholar] [CrossRef]
- Simonov-Emel’yanov, I.D.; Lomovskoi, V.A.; Polyvanaya, E.N.; Trofimov, A.N.; Shembel, N.L. Influence of the molecular weight of polymethyl methacrylate on the molecular mobility and physicomechanical properties. Int. Polym. Sci. Technol. 2009, 36, 59–65. [Google Scholar] [CrossRef]
- Simonov-Emel’yanov, I.D.; Shirshin, K.V.; Motsinov, P.V.; Vlasov, S.V. The influence of molecular weight on the orientation and properties of polymethyl methacrylate sheets. Int. Polym. Sci. Technol. 2018, 45, 47–51. [Google Scholar] [CrossRef]
- Martin, J.R.; Johnson, J.F.; Cooper, A.R. Mechanical properties of polymers: The influence of molecular weight and molecular weight distribution. J. Macromol. Sci. Rev. Macromol. Chem. 1972, C8, 57–199. [Google Scholar] [CrossRef]
- Laius, L.A.; Kuvshinskii, E.V. Effect of molecular weight on strength and deformation characteristics of oriented amorphous polymers. Mekh. Polim. 1967, 3, 579–585. [Google Scholar] [CrossRef]
- Cheng, C.; Wu, Z. Photoluminescence spectra of CdSe/ZnS quantum dot-doped polymethyl methacrylate materials. J. Opt. 2013, 33, 37–41. [Google Scholar]
- Zhai, T.; Chen, D.; Chen, L.; Wang, J.; Wang, L.; Liu, D.; Li, S.; Liu, H.; Zhang, X. Plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate. Nanoscale 2014, 7, 2235–3340. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Zhou, J.; Chen, H. Research progress of PMMA-based polymers in the field of gel electrolytes for lithium-ion batteries. J. Tianjin Univ. Technol. 2016, 35, 46–52. [Google Scholar]
- Zhu, A.; Zhong, H. Suspension polymerization of polymethyl methacrylate of different molecular weight classes. Appl. Chem. 2001, 30, 21–23. [Google Scholar]
- Wei, Z.; Bao, Y.; Weng, Z.; Huang, Z. Suspension emulsion polymerization. Polym. Bull. 2002, 15, 56–60. [Google Scholar]
- Patra, B.N.; Bhattacharjee, M. Early transition metal catalyzed aqueous emulsion copolymerization: Copolymerization of styrene and methyl methacrylate by Cp2TiCl2 in aqueous medium. J. Polym. Sci. Polym. Chem. Ed. 2005, 43, 3707–3710. [Google Scholar] [CrossRef]
- Johnson, D.R.; Osada, Y.; Bell, A.T.; Shen, M. Studies of the mechanism and kinetics of plasma-initiated polymerization of methyl methacrylate. Macromolecules 1981, 14, 118–124. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, J.; Cheng, Z.; Zhu, X. Plasma-initiated polymerization of long-chain methacrylic acid esters. Petrochemicals 2001, 30, 26–28. [Google Scholar]
- Yang, M.; Ma, Y.; Zheng, Y.; Shen, J. Kinetics of plasma volatile product initiated polymerization of methyl methacrylate. Chin. Sci. Ser. B 1989, 7, 673–678. [Google Scholar]
- Osada, Y.; Bell, A.T.; Shen, M. Plasma-initiated polymerization of methyl methacrylate. J. Polym. Sci. Polym. Lett. Ed. 1978, 16, 309–311. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, H.; Hou, X. Plasma-initiated polymerization. Chem. Bull. 1999, 66, 27–32. [Google Scholar]
- Li, B.; Sun, Q.; Li, G.; Hou, X. Plasma Initiated Emulsion Polymerization of MMA. Plasma Sci. Technol. 1999, 1, 67–71. [Google Scholar]
- Yasuda, H.; Hsu, T. Some aspects of plasma polymerization investigated by Pulsed R.F. Discharge. J. Polym. Sci. Polym. Chem. Ed. 1977, 15, 81–97. [Google Scholar] [CrossRef]
- Yasuda, H.; Bumgarner, M.O.; Marsh, H.C.; Morosoff, N. Plasma polymerization of some organic compounds and properties of the polymers. J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 195–224. [Google Scholar] [CrossRef]
- Bai, Y.; He, J.; Zhang, Y. Ultra-high-molecular-weight polymers produced by the immortal phosphine-based catalyst system. Angew. Chem. 2018, 130, 17476–17480. [Google Scholar] [CrossRef]
- Zhu, Y.; Egap, E. PET-RAFT polymerization catalyzed by cadmium selenide quantum dots (QDs): Grafting-from QDs photocatalysts to make polymer nanocomposites. Polym. Chem. 2020, 11, 1018–1024. [Google Scholar] [CrossRef]
- Wan, W.; Pan, C. One-pot synthesis of polymeric nanomaterials via RAFT dispersion polymerization induced self-assembly and re-organization. Polym. Chem. 2010, 1, 1475–1484. [Google Scholar] [CrossRef]
- Wang, J.S.; Matyjaszewski, K. Controlled “living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614–5615. [Google Scholar] [CrossRef]
- Kamigaito, M.; Ando, M.; Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 2001, 101, 3689–3745. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef] [PubMed]
- Grimaud, T.; Matyjaszewski, K. Controlled/“living” radical polymerization of methyl methacrylate by atom transfer radical polymerization. Macromolecules 1997, 30, 2216–2218. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Wei, M.; Xia, J.; McDermott, N.E. Controlled/“living” radical polymerization of styrene and methyl methacrylate catalyzed by Iron complexes. Macromolecules 1997, 30, 8161–8164. [Google Scholar] [CrossRef]
- Moineau, G.; Minet, M.; Dubois, P.; Teyssie, P.; Senninger, T.; Jerome, R. Controlled radical polymerization of (meth)acrylates by ATRP with NiBr2(PPh3)2 as catalyst. Macromolecules 1999, 32, 27–35. [Google Scholar] [CrossRef]
- Deng, Z.; Guo, J.; Qiu, L.; Zhou, Y.; Xia, L.; Yan, F. Basic ionic liquids: A new type of ligand and catalyst for the AGET ATRP of methyl methacrylate. Polym. Chem. 2012, 3, 2436–2443. [Google Scholar] [CrossRef]
- Hawker, C.J.; Bosman, A.W.T.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101, 3661–3688. [Google Scholar] [CrossRef]
- Georges, M.K.; Veregin, R.P.N.; Kazmaier, P.M.; Hamer, G.K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987–2988. [Google Scholar] [CrossRef]
- Rzayev, J.; Penelle, J. HP-RAFT: A free-radical polymerization technique for obtaining living polymers of ultrahigh molecular weights. Angew. Chem. Int. Edit. 2004, 43, 1691–1694. [Google Scholar] [CrossRef]
- Arita, T.; Kayama, Y.; Ohno, K.; Tsujii, Y.; Fukuda, T. High-pressure atom transfer radical polymerization of methyl methacrylate for well-defined ultrahigh molecular-weight polymers. Polymer 2008, 49, 2426–2429. [Google Scholar] [CrossRef]
- Yuan, M.; Xu, L.; Cui, X.; Lv, J.; Zhang, P.; Tang, H. Facile synthesis of ultrahigh molecular weight poly(methyl methacrylate) by organic halides in the presence of palladium nanoparticles. Polymers 2020, 12, 2747. [Google Scholar] [CrossRef]
- Dai, S.; Wu, X.; Zhang, J.; Fu, Y.; Li, W. Coenzyme a-regulated Pd nanocatalysts for formic acid-mediated reduction of hexavalent chromium. Chem. Eng. J. 2018, 351, 959–966. [Google Scholar] [CrossRef]
- Wenisch, R.; Montagner, D.; Helm, M. Pt(II) and Pd(II) pyrrolidine-dithiocarbamates investigated by XPS. Surf. Sci. Spectra 2011, 18, 82–95. [Google Scholar] [CrossRef]
- Janzen, E.G.; Blackburn, B.J. Detection and identification of short-lived free radicals by electron spin resonance trapping techniques (spin trapping). Photolysis of organolead, -tin, and -mercury compounds. J. Am. Chem. Soc. 1969, 91, 4481–4490. [Google Scholar] [CrossRef]
- Kamachi, M.; Kuwae, Y.; Nozakura, S. Spin trapping study on addition reaction of organic radicals to methyl methacrylate and methyl tiglate. Polym. Bull. 1981, 6, 143–146. [Google Scholar] [CrossRef]
- Lalevée, J.; Blanchard, N.; Chany, A.C.; El-Roz, M.; Souane, R.; Graff, B.; Allonas, X.; Fouassier, J.P. Silyl radical chemistry and conventional photoinitiators: A route for the design of efficient systems. Macromolecules 2009, 42, 6031–6037. [Google Scholar] [CrossRef]
- Sato, T.; Kita, S.; Otsu, T. A study on initiation of vinyl polymerization with diacyl peroxide-tertiary amine systems by spin trapping technique. Die Makromol. Chem. 1975, 176, 561–571. [Google Scholar] [CrossRef]
- Borman, C.D.; Jackson, A.T.; Bunn, A.; Cutter, A.L.; Irvine, D.J. Evidence for the low thermal stability of poly(methyl methacrylate) polymer produced by atom transfer radical polymerization. Polymer 2000, 41, 6015–6020. [Google Scholar] [CrossRef]
- Campbell, D.; Pethrick, R.A.; White, J.R. Polymer Characterization: Physical Techniques, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Cramer, N.B.; Bowman, C.N. Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared. J. Polym. Sci. Polym. Chem. Ed. 2001, 39, 3311–3319. [Google Scholar] [CrossRef]
Entry | Transition Metal Carboxylate | Organosulfur Compound | [MMA]: [M]:[S] 2 | Time (h) | Conv. (%) | Mn (Da) | Mw (Da) | Đ |
---|---|---|---|---|---|---|---|---|
1 | Pd(CF3COO)2 | - | 94,300:4:0 | 12 | - | - | - | - |
2 | - | 1-octanethiol | 94,300:0:28 | 12 | - | - | - | - |
3 | - | dibutyl disulfide | 94,300:0:28 | 12 | - | - | - | - |
4 | Pd(CF3COO)2 | dibutyl disulfide | 94,300:4:28 | 12 | - | - | - | - |
5 | cobalt isocaprylate | dibutyl disulfide | 94,300:4:28 | 12 | - | - | - | - |
6 | copper acetate | dibutyl disulfide | 94,300:4:28 | 12 | - | - | - | - |
7 | silver trifluoroacetate | 4,4′-dinitrodiphenyl disulfide | 94,300:4:28 | 12 | 10.26 | 9.78 × 104 | 3.41 × 105 | 3.49 |
8 | Pd(CF3COO)2 | 4,4′-dinitrodiphenyl disulfide | 94,300:4:28 | 12 | 23.26 | 1.58 × 105 | 4.42 × 105 | 2.80 |
9 | copper acetate | 1-octanethiol | 94,300:4:28 | 12 | 8.59 | 8.59 × 104 | 3.66 × 105 | 4.26 |
10 | iron stearate | 1-octanethiol | 94,300:4:28 | 12 | 7.43 | 9.57 × 104 | 3.43 × 105 | 3.58 |
11 | silver trifluoroacetate | 1-octanethiol | 94,300:4:28 | 12 | 2.55 | 2.96 × 105 | 9.75 × 105 | 3.29 |
12 | Pd(CF3COO)2 | 1-butanethiol | 94,300:4:28 | 12 | 42.33 | 7.44 × 105 | 2.71 ×106 | 3.64 |
13 | Pd(CF3COO)2 | 1-octanethiol | 94,300:4:28 | 12 | 62.54 | 1.12 × 106 | 4.07 × 106 | 3.64 |
14 | Pd(CF3COO)2 | 1-octanethiol | 94,300:8:23 | 36 | 76.52 | 1.35 × 106 | 4.81 × 106 | 3.56 |
15 | Pd(CF3COO)2 | 1-octanethiol | 94,300:8:23 | 48 | 92.60 | 1.68 × 106 | 5.38 × 106 | 3.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Xu, Q.; Mao, W.; Lv, J.; Tang, H.; Tang, H. Synthesis of Ultrahigh Molecular Weight Poly(methyl Methacrylate) via the Polymerization of MMA Initiated by the Combination of Palladium Carboxylates with Thiols. Polymers 2023, 15, 2501. https://doi.org/10.3390/polym15112501
Zhang P, Xu Q, Mao W, Lv J, Tang H, Tang H. Synthesis of Ultrahigh Molecular Weight Poly(methyl Methacrylate) via the Polymerization of MMA Initiated by the Combination of Palladium Carboxylates with Thiols. Polymers. 2023; 15(11):2501. https://doi.org/10.3390/polym15112501
Chicago/Turabian StyleZhang, Panpan, Qiongqiong Xu, Wenyu Mao, Jiaxing Lv, Haodong Tang, and Huadong Tang. 2023. "Synthesis of Ultrahigh Molecular Weight Poly(methyl Methacrylate) via the Polymerization of MMA Initiated by the Combination of Palladium Carboxylates with Thiols" Polymers 15, no. 11: 2501. https://doi.org/10.3390/polym15112501
APA StyleZhang, P., Xu, Q., Mao, W., Lv, J., Tang, H., & Tang, H. (2023). Synthesis of Ultrahigh Molecular Weight Poly(methyl Methacrylate) via the Polymerization of MMA Initiated by the Combination of Palladium Carboxylates with Thiols. Polymers, 15(11), 2501. https://doi.org/10.3390/polym15112501