Flax–Glass Fiber Reinforced Hybrid Composites Exposed to a Salt-Fog/Dry Cycle: A Simplified Approach to Predict Their Performance Recovery
Abstract
:1. Introduction
2. Materials and Methods
Aging Conditions and Mechanical Characterization
3. Results and Discussion
3.1. Water Adsorption and Desorption
3.2. Flexural Performance Evolution
- Reversible aging region. This refers to the fraction of performance lost during the initial humid phase, which then can be recovered by removing the adverse environmental conditions. The region is therefore associated with those degradative phenomena that can weaken the composite but in a reversible way. For instance, a possible reversible phenomenon consists in the adsorption of water in the bulk of the composite constituents (that exhibit an elastoplastic mechanical behavior in the composite laminate [18]). This absorbed water can be removed thanks to its natural evaporation during the dry phase [42];
- Irreversible aging region. All the degradative phenomena whose effects persist once composites are removed from the aggressive environment (i.e., salt-fog exposure in this work) even after long dry times are identified as irreversible ones. Delamination, debonding, or matrix microcracks can be considered defects due to this kind of degradative phenomena. In other words, at the end of the aging cycle (i.e., salt-fog exposure followed by drying in controlled conditions), composites still maintain these defects, which physically induce a structural discontinuity in the material, thus irreversibly reducing their mechanical response.
3.3. Performance Recovery Modeling
4. Conclusions
- The water adsorption and desorption properties as well as the evolution of the mechanical performance shown by the composites during the aging cycle are greatly influenced by their stacking sequence. All the investigated composites exhibited an initial reduction and a subsequent recovery of their mechanical performance due to salt-fog exposure and storage in a climate-controlled room, respectively. Both the above effects are more marked with glass fiber content in the stacking sequence;
- The hybrid stacking sequence allowed achieving an intermediate behavior between the other batches, closer to that of the full glass composite. Indeed, the hybridization of inner flax reinforced layers with outer glass ones hindered the composites’ degradation due to the humid phase, also promoting their performance recovery during the dry phase;
- The hybrid stacking sequence is suitable to enhance the durability of composites exposed to aggressive environments thanks to the shielding role played by the external layers. This represents a proper compromise between flexural properties, weight, cost, sustainability, and aging resistance;
- The proposed forecasting model showed a good agreement with the experimental data during the entire aging cycle; i.e., the average coefficient of determination R² was about 0.95, regardless of the stacking sequence. This demonstrated the good reliability of the proposed pseudo-second-order model in terms of fitting accuracy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alsubari, S.; Zuhri, M.Y.M.; Sapuan, S.M.; Ishak, M.R.; Ilyas, R.A.; Asyraf, M.R.M. Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers 2021, 13, 423. [Google Scholar] [CrossRef] [PubMed]
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Fiore, V.; Sanfilippo, C.; Calabrese, L. Dynamic mechanical behavior analysis of flax/jute fiber-reinforced composites under salt-fog spray environment. Polymers 2020, 12, 716. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, L.; Fiore, V. A simplified predictive approach to assess the mechanical behavior of pinned hybrid composites aged in salt-fog environment. Compos. Struct. 2020, 249, 112589. [Google Scholar] [CrossRef]
- Huang, S.; Yan, L.; Kasal, B. Flexural behaviour of wood beams strengthened by flax-glass hybrid FRP subjected to hygrothermal and weathering exposures. Constr. Build. Mater. 2023, 365, 130076. [Google Scholar] [CrossRef]
- Thomason, J.; Xypolias, G. Hydrothermal Ageing of Glass Fibre Reinforced Vinyl Ester Composites: A Review. Polymers 2023, 15, 835. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Yang, L.; Du, J. Research on mechanical properties and durability of flax/glass fiber bio-hybrid FRP composites laminates. Compos. Struct. 2022, 290, 115566. [Google Scholar] [CrossRef]
- Almansour, F.A.; Dhakal, H.N.; Zhang, Z.Y. Effect of water absorption on Mode I interlaminar fracture toughness of flax/basalt reinforced vinyl ester hybrid composites. Compos. Struct. 2017, 168, 813–825. [Google Scholar] [CrossRef]
- Petrucci, R.; Santulli, C.; Puglia, D.; Nisini, E.; Sarasini, F.; Tirillò, J.; Torre, L.; Minak, G.; Kenny, J.M. Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Compos. Part B Eng. 2015, 69, 507–515. [Google Scholar] [CrossRef]
- Wang, A.; Liu, X.; Yue, Q.; Xian, G. Hydrothermal durability of unidirectional flax/carbon fiber hybrid composite plates. J. Mater. Res. Technol. 2023, 22, 2043–2061. [Google Scholar] [CrossRef]
- Cheour, K.; Assarar, M.; Scida, D.; Ayad, R.; Gong, X.L. Long-term Immersion in Water of Flax-glass Fibre Hybrid Composites: Effect of Stacking Sequence on the Mechanical and Damping Properties. Fibers Polym. 2020, 21, 162–169. [Google Scholar] [CrossRef]
- Paturel, A.; Dhakal, H.N. Influence of water absorption on the low velocity falling weight impact damage behaviour of flax/glass reinforced vinyl ester hybrid composites. Molecules 2020, 25, 278. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh-Barvarz, M.; Duchesne, C.; Rodrigue, D. Mechanical, water absorption, and aging properties of polypropylene/flax/glass fiber hybrid composites. J. Compos. Mater. 2015, 49, 3781–3798. [Google Scholar] [CrossRef]
- Fiore, V.; Calabrese, L.; Miranda, R.; Badagliacco, D.; Sanfilippo, C.; Palamara, D.; Valenza, A.; Proverbio, E. On the response of flax fiber reinforced composites under salt-fog/dry conditions: Reversible and irreversible performances degradation. Compos. Part B Eng. 2022, 230, 109535. [Google Scholar] [CrossRef]
- Calabrese, L.; Fiore, V.; Piperopoulos, E.; Badagliacco, D.; Palamara, D.; Valenza, A.; Proverbio, E. In situ monitoring of moisture uptake of flax fiber reinforced composites under humid/dry conditions. J. Appl. Polym. Sci. 2021, 139, 51969. [Google Scholar] [CrossRef]
- Fiore, V.; Calabrese, L.; Miranda, R.; Badagliacco, D.; Sanfilippo, C.; Palamara, D.; Valenza, A.; Proverbio, E. An experimental investigation on performances recovery of glass fiber reinforced composites exposed to a salt-fog/dry cycle. Compos. Part B Eng. 2023, 257, 110693. [Google Scholar] [CrossRef]
- Fiore, V.; Calabrese, L.; Miranda, R.; Badagliacco, D.; Sanfilippo, C.; Palamara, D.; Valenza, A.; Proverbio, E. Assessment of performance degradation of hybrid flax-glass fiber reinforced epoxy composites during a salt spray fog/dry aging cycle. Compos. Part B Eng. 2022, 238, 109897. [Google Scholar] [CrossRef]
- Assarar, M.; Scida, D.; El Mahi, A.; Poilâne, C.; Ayad, R. Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax-fibres and glass-fibres. Mater. Des. 2011, 32, 788–795. [Google Scholar] [CrossRef]
- Fiore, V.; Calabrese, L.; Di Bella, G.; Scalici, T.; Galtieri, G.; Valenza, A.; Proverbio, E. Effects of aging in salt spray conditions on flax and flax/basalt reinforced composites: Wettability and dynamic mechanical properties. Compos. Part B Eng. 2016, 93, 35–42. [Google Scholar] [CrossRef]
- Pandian, A.; Vairavan, M.; Jebbas Thangaiah, W.J.; Uthayakumar, M. Effect of Moisture Absorption Behavior on Mechanical Properties of Basalt Fibre Reinforced Polymer Matrix Composites. J. Compos. 2014, 2014, 587980. [Google Scholar] [CrossRef]
- Thuault, A.; Eve, S.; Blond, D.; Bréard, J.; Gomina, M. Effects of the hygrothermal environment on the mechanical properties of flax fibres. J. Compos. Mater. 2014, 48, 1699–1707. [Google Scholar] [CrossRef]
- Thwe, M.M.; Liao, K. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos. Sci. Technol. 2003, 63, 375–387. [Google Scholar] [CrossRef]
- Moudood, A.; Rahman, A.; Öchsner, A.; Islam, M.; Francucci, G. Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. J. Reinf. Plast. Compos. 2019, 38, 323–339. [Google Scholar] [CrossRef]
- Le Duigou, A.; Bourmaud, A.; Davies, P.; Baley, C. Long term immersion in natural seawater of Flax/PLA biocomposite. Ocean Eng. 2014, 90, 140–148. [Google Scholar] [CrossRef]
- Castro López, C.; Lefebvre, X.; Brusselle-Dupend, N.; Klopffer, M.-H.; Cangémi, L.; Castagnet, S.; Grandidier, J.-C. Effect of porosity and hydrostatic pressure on water absorption in a semicrystalline fluoropolymer. J. Mater. Sci. 2016, 51, 3750–3761. [Google Scholar] [CrossRef]
- Saw, S.K.; Akhtar, K.; Yadav, N.; Singh, A.K. Hybrid Composites Made from Jute/Coir Fibers: Water Absorption, Thickness Swelling, Density, Morphology, and Mechanical Properties. J. Nat. Fibers 2014, 11, 39–53. [Google Scholar] [CrossRef]
- Moudood, A.; Rahman, A.; Khanlou, H.M.; Hall, W.; Öchsner, A.; Francucci, G. Environmental effects on the durability and the mechanical performance of flax fiber/bio-epoxy composites. Compos. Part B Eng. 2019, 171, 284–293. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Calabrese, L.; Valenza, A.; Proverbio, E. Effect of external basalt layers on durability behaviour of flax reinforced composites. Compos. Part B Eng. 2016, 84, 258–265. [Google Scholar] [CrossRef]
- Cattani-Lorente, M.A.; Dupuis, V.; Moya, F.; Payan, J.; Meyer, J.-M. Comparative study of the physical properties of a polyacid-modified composite resin and a resin-modified glass ionomer cement. Dent. Mater. 1999, 15, 21–32. [Google Scholar] [CrossRef]
- Ramirez, F.A.; Carlsson, L.A.; Acha, B.A. Evaluation of water degradation of vinylester and epoxy matrix composites by single fiber and composite tests. J. Mater. Sci. 2008, 43, 5230–5242. [Google Scholar] [CrossRef]
- Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef]
- Gu, H. Behaviours of glass fibre/unsaturated polyester composites under seawater environment. Mater. Des. 2009, 30, 1337–1340. [Google Scholar] [CrossRef]
- Calabrese, L.; Fiore, V.; Scalici, T.; Valenza, A. Experimental assessment of the improved properties during aging of flax/glass hybrid composite laminates for marine applications. J. Appl. Polym. Sci. 2019, 136, 47203. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N. Effect of water, seawater and alkaline solution ageing on mechanical properties of flax fabric/epoxy composites used for civil engineering applications. Constr. Build. Mater. 2015, 99, 118–127. [Google Scholar] [CrossRef]
- Abd El-baky, M.A.; Attia, M.A.; Abdelhaleem, M.M.; Hassan, M.A. Mechanical characterization of hybrid composites based on flax, basalt and glass fibers. J. Compos. Mater. 2020, 54, 4185–4205. [Google Scholar] [CrossRef]
- Saidane, E.H.; Scida, D.; Assarar, M.; Ayad, R. Damage mechanisms assessment of hybrid flax-glass fibre composites using acoustic emission. Compos. Struct. 2017, 174, 1–11. [Google Scholar] [CrossRef]
- Van Schoors, L.; Cadu, T.; Moscardelli, S.; Divet, L.; Fontaine, S.; Sicot, O. Why cyclic hygrothermal ageing modifies the transverse mechanical properties of a unidirectional epoxy-flax fibres composite? Ind. Crops Prod. 2021, 164, 113341. [Google Scholar] [CrossRef]
- Lu, M.M.; Fuentes, C.A.; Van Vuure, A.W. Moisture sorption and swelling of flax fibre and flax fibre composites. Compos. Part B Eng. 2022, 231, 109538. [Google Scholar] [CrossRef]
- Newman, R.H. Auto-accelerative water damage in an epoxy composite reinforced with plain-weave flax fabric. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1615–1620. [Google Scholar] [CrossRef]
- le Duigou, A.; Merotte, J.; Bourmaud, A.; Davies, P.; Belhouli, K.; Baley, C. Hygroscopic expansion: A key point to describe natural fibre/polymer matrix interface bond strength. Compos. Sci. Technol. 2017, 151, 228–233. [Google Scholar] [CrossRef]
- Calabrese, L.; Fiore, V.; Miranda, R.; Badagliacco, D.; Sanfilippo, C.; Palamara, D.; Valenza, A.; Proverbio, E. Performances recovery of flax fiber reinforced composites after salt-fog aging test. J. Compos. Sci. 2022, 6, 264. [Google Scholar] [CrossRef]
- Rocha, I.B.C.M.; van der Meer, F.P.; Raijmaekers, S.; Lahuerta, F.; Nijssen, R.P.L.; Sluys, L.J. Numerical/experimental study of the monotonic and cyclic viscoelastic/viscoplastic/fracture behavior of an epoxy resin. Int. J. Solids Struct. 2019, 168, 153–165. [Google Scholar] [CrossRef]
- Naya, F.; González, C.; Lopes, C.S.; Van der Veen, S.; Pons, F. Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects. Compos. Part A Appl. Sci. Manuf. 2017, 92, 146–157. [Google Scholar] [CrossRef]
- Mekhamer, W.K. Energy storage through adsorption and desorption of water vapour in raw Saudi bentonite. Arab. J. Chem. 2016, 9, S264–S268. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, D.; Li, K. Kinetics and Equilibrium Isotherms of Water Vapor Adsorption/Desorption in Cement-Based Porous Materials. Transp. Porous Media 2015, 109, 469–493. [Google Scholar] [CrossRef]
- Ho, Y.-S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef]
- Rocha, I.B.C.M.; van der Meer, F.P.; Raijmaekers, S.; Lahuerta, F.; Nijssen, R.P.L.; Mikkelsen, L.P.; Sluys, L.J. A combined experimental/numerical investigation on hygrothermal aging of fiber-reinforced composites. Eur. J. Mech. A/Solids 2019, 73, 407–419. [Google Scholar] [CrossRef]
- Vanhari, A.K.; Fagan, E.; Goggins, J. A novel estimation method for fitting fatigue data in the composite wearout model. Compos. Struct. 2022, 287, 115384. [Google Scholar] [CrossRef]
CODE | Stacking Sequence 1 | Thickness [mm] | Fiber Volume Content [%] | Void Volume Content [%] |
---|---|---|---|---|
HC | [G2/F2]s | 3.56 ± 0.04 | 36.1 ± 0.6 | 6.1 ± 0.2 |
GC | [G18] | 3.59 ± 0.08 | 40.0 ± 0.3 | 1.9 ± 0.1 |
FC | [F5] | 3.35 ± 0.02 | 38.9 ± 1.0 | 10.6 ± 0.6 |
Density [g/cm3] | Void Content [%] | |||||
---|---|---|---|---|---|---|
FC | HC | GC | FC | HC | GC | |
H0D0 | 1.080 ± 0.151 | 1.364 ± 0.008 | 1.585 ± 0.009 | 10.60 ± 0.50 | 6.09 ± 0.21 | 1.90 ± 0.11 |
H15D0 | 1.114 ± 0.018 | 1.417 ± 0.011 | 1.588 ± 0.011 | 11.57 ± 0.55 | 5.23 ± 0.27 | 1.67 ± 0.16 |
H30D0 | 1.120 ± 0.018 | 1.423 ± 0.014 | 1.588 ± 0.014 | 12.21 ± 0.44 | 5.34 ± 0.35 | 1.71 ± 0.20 |
H15D21 | 1.075 ± 0.015 | 1.373 ± 0.014 | 1.581 ± 0.016 | 12.00 ± 0.58 | 6.13 ± 0.34 | 2.11 ± 0.23 |
H30D21 | 1.060 ± 0.022 | 1.381 ± 0.014 | 1.580 ± 0.014 | 13.60 ± 0.48 | 6.32 ± 0.35 | 2.21 ± 0.20 |
Flexural Strength | Flexural Modulus | |||||||
---|---|---|---|---|---|---|---|---|
FC | HC | GC | FC | HC | GC | |||
H15 | Xe | MPa | 21.505 | 38.725 | 63.743 | 1.374 | 1.184 | 1.681 |
K2 | MPa−1·h−1 | 0.0013 | 0.0001 | 0.0003 | 0.0109 | 0.0247 | 0.0075 | |
h0,2 | MPa/h | 0.633 | 0.195 | 1.250 | 0.020 | 0.035 | 0.0213 | |
t1/2 | h | 0.981 | 0.667 | 0.981 | 0.969 | 0.986 | 0.883 | |
H30 | Xe | MPa | 22.857 | 23.907 | 75.857 | 1.236 | 1.250 | 1.681 |
K2 | MPa−1·h−1 | 0.0008 | 0.0009 | 0.0004 | 0.0085 | 0.0706 | 0.0390 | |
h0,2 | MPa/h | 0.420 | 0.489 | 2.368 | 0.013 | 0.110 | 0.110 | |
t1/2 | h | 54.455 | 48.865 | 32.036 | 94.680 | 11.326 | 15.263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calabrese, L.; Badagliacco, D.; Sanfilippo, C.; Fiore, V. Flax–Glass Fiber Reinforced Hybrid Composites Exposed to a Salt-Fog/Dry Cycle: A Simplified Approach to Predict Their Performance Recovery. Polymers 2023, 15, 2542. https://doi.org/10.3390/polym15112542
Calabrese L, Badagliacco D, Sanfilippo C, Fiore V. Flax–Glass Fiber Reinforced Hybrid Composites Exposed to a Salt-Fog/Dry Cycle: A Simplified Approach to Predict Their Performance Recovery. Polymers. 2023; 15(11):2542. https://doi.org/10.3390/polym15112542
Chicago/Turabian StyleCalabrese, Luigi, Dionisio Badagliacco, Carmelo Sanfilippo, and Vincenzo Fiore. 2023. "Flax–Glass Fiber Reinforced Hybrid Composites Exposed to a Salt-Fog/Dry Cycle: A Simplified Approach to Predict Their Performance Recovery" Polymers 15, no. 11: 2542. https://doi.org/10.3390/polym15112542
APA StyleCalabrese, L., Badagliacco, D., Sanfilippo, C., & Fiore, V. (2023). Flax–Glass Fiber Reinforced Hybrid Composites Exposed to a Salt-Fog/Dry Cycle: A Simplified Approach to Predict Their Performance Recovery. Polymers, 15(11), 2542. https://doi.org/10.3390/polym15112542