Preparation and Characterization of Alginate Hydrogels with High Water-Retaining Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Alginate Hydrogel by Ionic Gelation
2.3. Determination of Water-Retaining Capacity
2.4. FTIR Analysis
2.5. Determination of Gelation Time
2.6. Determination of Hydrogel Homogeneity
2.7. Determination of Water Content in Alginate Hydrogel
2.8. Determination of the Swelling Ratio of Alginate Hydrogel
2.9. Statistical Analysis
3. Results and Discussion
3.1. Modeling of Alginate Hydrogel Preparation Procedure
3.2. Optimization of the Alginate Hydrogel Composition
3.3. FTIR Analysis for Structural Characterization of Alginate Hydrogel
3.4. Gelation Time, Homogeneity, and Water Content of Alginate Hydrogel
3.5. Swelling Study
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Chen, Y.Y.; Zha, X.Q.; Li, Q.M.; Pan, L.H.; Luo, J.P. Research progress on polysaccharide/protein hydrogels: Preparation method, functional property and application as delivery systems for bioactive ingredients. Food Res. Int. 2021, 147, 110542. [Google Scholar] [CrossRef]
- Li, D.; Wei, Z.; Xue, C. Alginate-based delivery systems for food bioactive ingredients: An overview of recent advances and future trends. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5345–5369. [Google Scholar] [CrossRef]
- Rashedy, S.H.; Abd El Hafez, M.S.; Dar, M.A.; Cotas, J.; Pereira, L. Evaluation and characterization of alginate extracted from brown seaweed collected in the Red Sea. Appl. Sci. 2021, 11, 6290. [Google Scholar] [CrossRef]
- Ramdhan, T.; Ching, S.H.; Prakash, S.; Bhandari, B. Time dependent gelling properties of cuboid alginate gels made by external gelation method: Effects of alginate-CaCl2 solution ratios and pH. Food Hydrocoll. 2019, 90, 232–240. [Google Scholar] [CrossRef]
- Abasalizadeh, F.; Moghaddam, S.V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S.M.B.; Torbati, M.; Akbarzadeh, A. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J. Biol. Eng. 2020, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Gorroñogoitia, I.; Urtaza, U.; Zubiarrain-Laserna, A.; Alonso-Varona, A.; Zaldua, A.M. A study of the printability of alginate-based bioinks by 3D bioprinting for articular cartilage tissue engineering. Polymers 2022, 14, 354. [Google Scholar] [CrossRef]
- Yang, J.; Steck, J.; Suo, Z. Gelation kinetics of alginate chains through covalent bonds. Extrem. Mech. Lett. 2020, 40, 100898. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Y.; Qin, Y.; Shen, P.; Peng, Q. Structures, properties and application of alginic acid: A review. Int. J. Biol. Macromol. 2020, 162, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.C.; Tham, E.; Liu, X.; Yehl, K.; Rovner, A.J.; Yuk, H.; de la Fuente-Nunez, C.; Isaacs, F.J.; Zhao, X.; Lu, T.K. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nat. Chem. Biol. 2021, 17, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Rathod, L.; Bhowmick, S.; Patel, P.; Sawant, K. Calendula flower extract loaded PVA hydrogel sheet for wound management: Optimization, characterization and in-vivo study. J. Drug Deliv. Sci. Technol. 2022, 68, 103035. [Google Scholar] [CrossRef]
- Rapalli, V.K.; Tomar, Y.; Sharma, S.; Roy, A.; Singhvi, G. Apremilast loaded lyotropic liquid crystalline nanoparticles embedded hydrogel for improved permeation and skin retention: An effective approach for psoriasis treatment. Biomed. Pharmacother. 2023, 162, 114634. [Google Scholar] [CrossRef] [PubMed]
- Paswan, M.; Prajapati, V.; Dholakiya, B.Z. Optimization of biodegradable cross-linked guar-gum-PLA superabsorbent hydrogel formation employing response surface methodology. Int. J. Biol. Macromol. 2022, 223, 652–662. [Google Scholar] [CrossRef]
- Esmaeildoost, F.; Shahrousvand, M.; Goudarzi, A.; Bagherieh-Najjar, M.B. Optimization of xanthan gum/poly (acrylic acid)/cloisite 15A semi-IPN hydrogels for heavy metals removal. J. Polym. Environ. 2022, 30, 4271–4286. [Google Scholar] [CrossRef]
- Yang, H.M.; Yoon, H.Y.; Kim, C.H.; Goo, Y.T.; Choi, I.J.; Park, S.G.; Chang, I.H.; Choi, Y.W. Poloxamer 407-based floating hydrogels for intravesical instillation: Statistical optimization using central composite design, gel erosion, and drug release. Bull. Korean Chem. Soc. 2021, 42, 72–79. [Google Scholar] [CrossRef]
- Sonawane, R.O.; Patil, S.D. Gelatin—κ-carrageenan polyelectrolyte complex hydrogel compositions for the design and development of extended-release pellets. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 812–823. [Google Scholar] [CrossRef]
- Mishra, R.; Jain, N.; Kaul, S.; Nagaich, U. Central composite design–based optimization, fabrication, and pharmacodynamic assessment of sulfasalazine-loaded lipoidal nanoparticle-based hydrogel for the management of rheumatoid arthritis. Drug Deliv. Transl. Res. 2023, 13, 994–1011. [Google Scholar] [CrossRef]
- Bajpai, M.; Shukla, P.; Bajpai, S.K. Enhancement in the stability of alginate gels prepared with mixed solution of divalent ions using a diffusion through dialysis tube (DTDT) approach. J. Macromol. Sci. A 2017, 54, 301–310. [Google Scholar] [CrossRef]
- Straccia, M.C.; Gomez d’Ayala, G.; Romano, I.; Oliva, A.; Laurienzo, P. Alginate hydrogels coated with chitosan for wound dressing. Mar. Drugs 2015, 13, 2890–2908. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.; Mohanty, B.; Bhargava, R. Supercritical extraction of sunflower oil: A central composite design for extraction variables. Food Chem. 2016, 192, 647–659. [Google Scholar] [CrossRef]
- Maran, J.P.; Priya, B.; Nivetha, C.V. Optimization of ultrasound-assisted extraction of natural pigments from Bougainvillea glabra flowers. Ind. Crops Prod. 2015, 63, 182–189. [Google Scholar] [CrossRef]
- Benkerrou, F.; Amrane, M.; Louaileche, H. Ultrasonic-assisted extraction of total phenolic contents from Phoenix dactylifera and evaluation of antioxidant activity: Statistical optimization of extraction process parameters. J. Food Meas. Charact. 2018, 12, 1910–1916. [Google Scholar] [CrossRef]
- Defa, K.; Sekarathil, A.J.; Shiferaw, G.; Feleke, S.; Gurmesa, E. Ruta chalepensis crude oil. Int. J. Chem. Biomed. Sci. 2018, 4, 11–15. [Google Scholar]
- Mutoti, M.; Gumbo, J.; Jideani, A.I.O. Occurrence of cyanobacteria in water used for food production: A review. Phys. Chem. Earth Parts A/B/C 2022, 125, 103101. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; He, J.; Huang, Y. A new insight to the effect of calcium concentration on gelation process and physical properties of alginate films. J. Mater. Sci. 2016, 51, 5791–5801. [Google Scholar] [CrossRef]
- Draget, K.I.; Østgaard, K.; Smidsrød, O. Alginate-based solid media for plant tissue culture. Appl. Microbiol. Biotechnol. 1989, 31, 79–83. [Google Scholar] [CrossRef]
- Alexander, B.R.; Murphy, K.E.; Gallagher, J.; Farrell, G.F.; Taggart, G. Gelation time, homogeneity, and rupture testing of alginate-calcium carbonate-hydrogen peroxide gels for use as wound dressings. J. Biomed. Mater. Res. 2012, 100, 425–431. [Google Scholar] [CrossRef]
- Ohm, Y.; Pan, C.; Ford, M.J.; Huang, X.; Liao, J.; Majidi, C. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 2021, 4, 185–192. [Google Scholar] [CrossRef]
Factor/Level (α) | −1.414 | −1 | 0 | +1 | +1.414 |
---|---|---|---|---|---|
A: Alginate concentration (%, m/v) | 0.1 | 0.5 | 1.5 | 2.5 | 2.9 |
B: CaCl2 concentration (%, m/v) | 0.4 | 1.0 | 2.5 | 4.0 | 4.6 |
Std. | No. | A: Alginate Concentration (%, m/v) | B: CaCl2 Concentration (%, m/v) | WRC of Alginate Hydrogel (%) | |
---|---|---|---|---|---|
Exp. | Pred. | ||||
9 | 1 * | 1.5 | 2.5 | 44.5 | 49.4 |
12 | 2 * | 1.5 | 2.5 | 52.8 | 49.4 |
4 | 3 | 2.5 | 4.0 | 59.8 | 59.7 |
7 | 4 | 1.5 | 0.4 | 54.7 | 54.3 |
8 | 5 | 1.5 | 4.6 | 61.2 | 61.6 |
6 | 6 | 2.9 | 2.5 | 64.0 | 63.8 |
13 | 7 * | 1.5 | 2.5 | 43.7 | 49.4 |
5 | 8 | 0.1 | 2.5 | 18.7 | 19.0 |
1 | 9 | 0.5 | 1.0 | 22.4 | 22.5 |
2 | 10 | 2.5 | 1.0 | 71.2 | 71.6 |
11 | 11 * | 1.5 | 2.5 | 51.8 | 49.4 |
10 | 12 * | 1.5 | 2.5 | 54.0 | 49.4 |
3 | 13 | 0.5 | 4.0 | 45.3 | 44.8 |
Equation | Sequential p-Value | Lack of Fit p-Value | Adjusted R2 | Predicted R2 | |
---|---|---|---|---|---|
Linear | 0.0008 | 0.0992 | 0.7088 | 0.4998 | |
2FI | 0.025 | 0.2163 | 0.8203 | 0.7392 | |
Square | 0.0087 | 0.9977 | 0.9404 | 0.9439 | Suggested |
Cubic | 0.9766 | 0.9933 | 0.9173 | 0.9462 | Aliased |
Std. Dev. | 3.7 | R2 | 0.965 |
Mean value | 49.5 | Adjusted R2 | 0.940 |
C.V. % | 7.5 | Predicted R2 | 0.944 |
Adequate precision | 20.99 |
Sum of Squares | df | Mean Squares | F-Value | p-Value | |
---|---|---|---|---|---|
Model | 2661.91 | 5 | 532.38 | 38.87 | <0.0001 * |
A—Alginate concentration | 2033.93 | 1 | 2033.93 | 148.50 | <0.0001 * |
B—CaCl2 concentration | 54.63 | 1 | 54.63 | 3.99 | 0.0860 |
AB | 297.56 | 1 | 297.56 | 21.72 | 0.0023 * |
A2 | 113.32 | 1 | 113.32 | 8.27 | 0.0238 * |
B2 | 129.35 | 1 | 129.35 | 9.44 | 0.0180 * |
Residual | 95.88 | 7 | 13.70 | ||
Lack of fit | 0.9056 | 3 | 0.3019 | 0.0127 | 0.9977 |
Pure error | 94.97 | 4 | 23.74 | ||
Corrected total | 2757.79 | 12 |
Hydrogel Formulation (FH) | Gelation Time (min) | Homogeneity (ms/mv) | Water Content (%) | |||
---|---|---|---|---|---|---|
a | b | c | d | |||
FH1 | 18 ± 1 abcd | 0.62 | 0.62 | 0.63 | 0.62 | 95.06 ± 1.48 ab |
FH3 | 12 ± 1 a | 0.54 | 0.54 | 0.54 | 0.55 | 92.69 ± 0.76 a |
FH4 | 22 ± 4 cd | 0.68 | 0.67 | 0.68 | 0.68 | 95.46 ± 1.09 abc |
FH5 | 14 ± 1 ab | 0.52 | 0.51 | 0.51 | 0.53 | 99.77 ± 0.96 d |
FH6 | 15 ± 2 abc | 0.67 | 0.66 | 0.67 | 0.68 | 99.62 ± 0.61 d |
FH8 | 15 ± 1 abc | 0.61 | 0.60 | 0.60 | 0.60 | 96.38 ± 1.02 bc |
FH9 | 21 ± 3 cd | 0.62 | 0.62 | 0.62 | 0.63 | 98.05 ± 0.78 cd |
FH10 | 17 ± 2 abcd | 0.69 | 0.68 | 0.69 | 0.69 | 93.59 ± 1.32 ab |
FH13 | 19 ± 3 bcd | 0.54 | 0.53 | 0.54 | 0.53 | 95.01 ± 0.87 ab |
Optimal | 19 ± 1 bcd | 0.68 | 0.69 | 0.69 | 0.68 | 94.26 ± 0.97 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savić Gajić, I.M.; Savić, I.M.; Svirčev, Z. Preparation and Characterization of Alginate Hydrogels with High Water-Retaining Capacity. Polymers 2023, 15, 2592. https://doi.org/10.3390/polym15122592
Savić Gajić IM, Savić IM, Svirčev Z. Preparation and Characterization of Alginate Hydrogels with High Water-Retaining Capacity. Polymers. 2023; 15(12):2592. https://doi.org/10.3390/polym15122592
Chicago/Turabian StyleSavić Gajić, Ivana M., Ivan M. Savić, and Zorica Svirčev. 2023. "Preparation and Characterization of Alginate Hydrogels with High Water-Retaining Capacity" Polymers 15, no. 12: 2592. https://doi.org/10.3390/polym15122592
APA StyleSavić Gajić, I. M., Savić, I. M., & Svirčev, Z. (2023). Preparation and Characterization of Alginate Hydrogels with High Water-Retaining Capacity. Polymers, 15(12), 2592. https://doi.org/10.3390/polym15122592