Multi-Component Biodegradable Materials Based on Water Kefir Grains and Yeast Biomasses: Effect of the Mixing Ratio on the Properties of the Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples
2.2.1. Water Kefir Grains Culture Conditions
2.2.2. Saccharomyces Cerevisiae Yeast Cells Conditioning
2.2.3. Preparation of Water Kefir Grains Dispersion
2.2.4. Preparation of Yeast Dispersion
2.2.5. Preparation of Film-Forming Dispersions from Blends of Water Kefir Grains and Yeast Dispersions
2.3. Rotational Rheology Measurements of Film-Forming Dispersions
2.4. Characterisation of Films
2.4.1. Thickness Measurement and Quality Evaluation
2.4.2. Colour Determination (CIELab Coordinates)
2.4.3. Microstructural Characterisation by Scanning Electron Microscopy (SEM)
2.4.4. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Analyses
2.4.5. Thermogravimetric Analyses (TGA)
2.4.6. Modulated-Temperature Differential Scanning Calorimetry (MDSC)
2.4.7. Mechanical Uniaxial Tensile Tests
2.4.8. Water Sorption Isotherms
2.4.9. Experimental Water Vapour Permeability Measurements
2.5. Statistical Analyses
3. Results and Discussion
3.1. Rotational Rheology of Film-Forming Dispersions
3.2. Quality Evaluation, Visual Appearance and Microstructure of Films
3.3. Fourier Transform Infrared (ATR-FTIR) Spectroscopy of Films
3.4. Thermogravimetric Analysis of Films
3.5. Differential Scanning Calorimetry and Glass Transition Temperature of Films
3.6. Mechanical Properties of Films
3.7. Hydration and Water Vapour Permeability of the Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- Vieira, M.G.A.; Altenhofen Silva, M.; Oliveira dos Santos, L.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Sanjay, M.R.; Srisuk, R.; Parameswaranpillai, J.; Suchart Siengchin, S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int. J. Biol. Macromol. 2020, 154, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Cottet, C.; Ramirez-Tapias, Y.A.; Delgado, J.F.; de la Osa, O.; Salvay, A.G.; Peltzer, M.A. Biobased materials from microbial biomass and its derivatives. Materials 2020, 13, 1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jost, V.; Stramm, C. Influence of plasticizers on the mechanical and barrier properties of cast biopolymer films. J. Appl. Polym. Sci. 2016, 133, 42513. [Google Scholar] [CrossRef]
- Ramírez Tapias, Y.A.; Peltzer, M.A.; Delgado, J.F.; Salvay, A.G. Kombucha Tea by-product as source of novel materials: Formulation and characterization of Films. Food Bioproc. Technol. 2020, 13, 1166–1180. [Google Scholar] [CrossRef]
- Özeren, H.D.; Wei, X.-F.; Nilsson, F.; Olsson, R.T.; Hedenqvist, M.S. Role of hydrogen bonding in wheat gluten protein systems plasticized with glycerol and water. Polymer 2021, 232, 124149. [Google Scholar] [CrossRef]
- Bourtoom, T. Edible films and coating: Characteristics and properties. Int. Food Res. J. 2008, 15, 237–248. [Google Scholar]
- García, M.A.; Pinotti, A.; Martino, M.; Zaritzky, N. Electrically treated composite FILMS based on chitosan and methylcellulose blends. Food Hydrocoll. 2009, 23, 722–728. [Google Scholar] [CrossRef]
- Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog. Polym. Sci. 2011, 36, 1254–1276. [Google Scholar] [CrossRef]
- Khan, M.R.; Di Giuseppe, F.A.; Torrieri, E.; Sadiq, M.B. Recent advances in biopolymeric antioxidant films and coatings for preservation of nutritional quality of minimally processed fruits and vegetables. Food Packag. Shelf Life 2021, 30, 100752. [Google Scholar] [CrossRef]
- Sam, S.T.; Nuradibah, M.A.; Chin, K.M.; Hani, N. Current application and challenges on packaging industry based on natural polymer blending. In Natural Polymers: Industry Techniques and Applications; Olatunji, O., Ed.; Springer Link: Cham, Switzerland, 2016; pp. 163–184. [Google Scholar]
- Jamróz, E.; Kopel, P. Polysaccharide and protein films with antimicrobial/antioxidant activity in the food industry: A review. Polymers 2020, 12, 1289. [Google Scholar] [CrossRef] [PubMed]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Biodegradable compatibilized polymer blends for packaging applications: A literature review. J. Appl. Polym. Sci. 2018, 135, 45726. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.X.; Kim, K.M.; Hanna, M.A.; Nag, D. Chitosan-starch composite film: Preparation and characterization. Ind. Crops Prod. 2005, 21, 185–192. [Google Scholar] [CrossRef]
- Bourtoom, T. Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan. Songklanakarin J. Sci. Technol. 2008, 30, 149–165. [Google Scholar]
- Mathew, S.; Brahmakumar, M.; Abraham, T.E. Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch–chitosan blend films. Biopolymers 2006, 82, 176–187. [Google Scholar] [CrossRef]
- Mathew, S.; Abraham, T.E. Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocoll. 2008, 22, 826–835. [Google Scholar] [CrossRef]
- Chillo, S.; Flores, S.; Mastromatteo, S.; Conte, A.; Gerschenson, L.; Del Nobile, M.A. Influence of glycerol and chitosan on tapioca starch-based edible film properties. J. Food Eng. 2008, 88, 159–168. [Google Scholar] [CrossRef]
- Silva-Weiss, A.; Bifani, V.; Ihl, M.; Sobral, P.J.A.; Gómez-Guillén, M.C. Structural properties of films and rheology of film-forming solutions based on chitosan and chitosan-starch blend enriched with murta leaf extract. Food Hydrocoll. 2013, 31, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Ashori, A.; Bahrami, R. Modification of Physico-Mechanical Properties of Chitosan-Tapioca Starch Blend Films Using Nano Graphene. Polym. Plast. Technol. Eng. 2014, 53, 312–318. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch–whey protein blend edible films. J. Sci. Food Agric. 2017, 97, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, C.; Abugoch, L.; Tapia, C. Quinoa protein–chitosan–sunflower oil edible film: Mechanical, barrier and structural properties. LWT-Food Sci. Technol. 2013, 50, 531–537. [Google Scholar] [CrossRef]
- Motedayen, A.A.; Khodaiyan, F.; Salehi, E.A. Development and characterisation of composite films made of kefiran and starch. Food Chem. 2013, 136, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Sabaghi, M.; Maghsoudlou, Y.; Habibi, P. Enhancing structural properties and antioxidant activity of kefiran films by chitosan addition. Food Struct. 2015, 5, 66–71. [Google Scholar] [CrossRef]
- Marinho, C.O.; Vianna, T.C.; Cecci, R.R.R.; Marangoni Júnior, L.; Alves, R.M.V.; Vieira, R.P. Effect of Water Kefir Grain Biomass on Chitosan Film Properties. Mater. Today Commun. 2022, 32, 103902. [Google Scholar] [CrossRef]
- Delgado, J.F.; Peltzer, M.A.; Salvay, A.G.; de la Osa, O.; Wagner, J.R. Characterization of thermal, mechanical and hydration properties of novel films based on Saccharomyces cerevisiae biomass. Innov. Food Sci. Emerg. Technol. 2018, 48, 240–247. [Google Scholar] [CrossRef]
- Coma, M.E.; Peltzer, M.A.; Delgado, J.F.; Salvay, A.G. Water kefir Grains as an innovative source of materials: Study of plasticiser content on film properties. Eur. Polym. J. 2019, 120, 109234. [Google Scholar] [CrossRef]
- Delgado, J.F.; Sceni, P.; Peltzer, M.A.; Salvay, A.G.; de la Osa, O.; Wagner, J.R. Development of innovative biodegradable films based on biomass of Saccharomyces cerevisiae. Innov. Food Sci. Emerg. Technol. 2016, 36, 83–91. [Google Scholar] [CrossRef]
- Delgado, J.F.; Peltzer, M.A.; Salvay, A.G. Water vapour transport in biopolymeric materials: Effects of thickness and water vapour pressure gradient on yeast biomass-based films. J. Polym. Environ. 2022, 30, 2976–2989. [Google Scholar] [CrossRef]
- Lago, A. Biodegradable Materials Made from Water Kefir Grain and Yeast Biomass: Formulation and Characterization of films. Bachelor’s Thesis, National University of Quilmes, Bernal, Argentina, 2020. [Google Scholar]
- Machová, E.; Bystrický, S. Antioxidant capacities of mannans and glucans are related to their susceptibility of free radical degradation. Int. J. Biol. Macromol. 2013, 61, 308–311. [Google Scholar] [CrossRef]
- Laureys, D.; De Vuyst, L. Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation. Appl. Environ. Microbiol. 2014, 80, 2564–2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fels, L.; Jakob, F.; Vogel, R.F.; Wefers, D. Structural characterization of the exopolysaccharides from water kefir. Carbohydr. Polym. 2018, 189, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Moraes, J.O.; Scheibe, A.S.; Sereno, A.; Laurindo, J.B. Scale-up of the production of cassava starch based films using tape-casting. J. Food Eng. 2013, 119, 800–808. [Google Scholar] [CrossRef] [Green Version]
- ASTM D882 1997; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 1997.
- Guggenheim, E.A. Applications of Statistical Mechanics; Oxford University Press: London, UK, 1966. [Google Scholar]
- ASTM-E96 2016; Standard Test Methods for Water Vapor Transmission of Materials. ASTM International: West Conshohocken, PA, USA, 2016.
- McHugh, T.H.; Avena-Bustillo, R.; Krochta, J.M. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 1993, 58, 899–903. [Google Scholar] [CrossRef]
- Irgens, F. Rheology and Non-Newtonian Fluids, 1st ed.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Ramírez Tapias, Y.A.; Di Monte, M.V.; Peltzer, M.A.; Salvay, A.G. Kombucha fermentation in yerba mate: Cellulose production, films formulation and its characterisation. Carbohydr. Polym. Technol. Appl. 2023, 5, 100310. [Google Scholar]
- Pop, C.; Apostu, S.; Rotar, A.M.; Semeniuc, C.A.; Sindic, M.; Mabon, N. FTIR spectroscopic characterization of a new biofilm obtained from kefiran. J. Agroaliment. Process. Technol. 2013, 19, 157–159. [Google Scholar]
- Arrieta, M.P.; Peltzer, M.A.; Del Carmen Garrigós, M.; Jiménez, A. Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. J. Food Eng. 2013, 114, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Novák, M.; Synytsya, A.; Gedeon, O.; Slepička, P.; Procházka, V.; Synytsya, A.; Čopíková, J. Yeast β (1-3),(1-6)-d-glucan films: Preparation and characterization of some structural and physical properties. Carbohydr. Polym. 2012, 87, 2496–2504. [Google Scholar] [CrossRef]
- Wu, C.; Chu, B.; Kuang, L.; Meng, B.; Wang, X.; Tang, S. Synthesis of β-1,3-glucan esters showing nanosphere formation. Carbohydr. Polym. 2013, 98, 807–812. [Google Scholar] [CrossRef]
- Jara, F.L.; Pilosof, A.M. Glass transition temperature of protein/polysaccharide co-dried mixtures as affected by the extent and morphology of phase separation. Thermochim. Acta 2009, 487, 65–73. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A.; Saeid Yarmand, M. Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem. 2011, 127, 1496–1502. [Google Scholar] [CrossRef]
- Angellier-Coussy, H.; Gastaldi, E.; Gontard, N.; Guillard, V. Influence of processing temperature on the water vapour transport properties of wheat gluten based agromaterials. Ind. Crops. Prod. 2011, 33, 457–461. [Google Scholar] [CrossRef]
- Bertuzzi, M.A.; Castro Vidaurre, E.F.; Armada, M.; Gottifredi, J.C. Water vapor permeability of edible starch based films. J. Food Eng. 2007, 80, 972–978. [Google Scholar] [CrossRef]
- Roy, S.; Gennadios, A.; Weller, C.L.; Testin, R.F. Water vapor transport parameters of a cast wheat gluten film. Ind. Crops. Prod. 2000, 11, 43–50. [Google Scholar] [CrossRef] [Green Version]
Sample | τ0 (10−3 Pa) | K (10−3 Pa.s) | n | R2 |
---|---|---|---|---|
100K/0Y | 1.7 ± 0.3 | 14 ± 1 | 0.98 ± 0.01 | 0.999 |
75K/25Y | 16 ± 2 | 22 ± 1 | 0.85 ± 0.01 | 0.999 |
50K/50Y | 31 ± 2 | 32 ± 2 | 0.71 ± 0.01 | 0.998 |
25K/75Y | 34 ± 2 | 54 ± 2 | 0.56 ± 0.01 | 0.997 |
0K/100Y | 2 ± 1 | 67 ± 2 | 0.52 ± 0.01 | 0.999 |
Sample | Y [MPa] | TSmax [MPa] | e% (%) |
---|---|---|---|
100K/0Y | 34 ± 5 e | 3.8 ± 0.5 c | 180 ± 20 a |
75K/25Y | 75 ± 7 b | 7.0 ± 0.4 a | 82 ± 9 b |
50K/50Y | 56 ± 5 c | 6.2 ± 0.3 b | 57 ± 4 c |
25K/75Y | 118 ± 11 a | 6.6 ± 0.3 ab | 22 ± 2 c |
0K/100Y | 44 ± 4 d | 2.6 ± 0.2 d | 20 ± 2 c |
Samples | h90% r.h. (g/g) | GAB Parameters | Pwexp | |||
---|---|---|---|---|---|---|
N (g/g) | c | k | R2 | |||
100K/0Y | 0.68 ± 0.02 b | 0.089 ± 0.008 | 1.52 ± 0.35 | 0.973 ± 0.008 | 0.999 | 5.2 ± 0.1 a |
75K/25Y | 0.67 ± 0.02 b | 0.089 ± 0.008 | 1.46 ± 0.35 | 0.974 ± 0.009 | 0.999 | 6.0 ± 0.1 c |
50K/50Y | 0.76 ± 0.02 a | 0.085 ± 0.007 | 1.33 ± 0.31 | 0.996 ± 0.007 | 0.999 | 5.3 ± 0.1 ab |
25K/75Y | 0.75 ± 0.02 a | 0.090 ± 0.008 | 1.30 ± 0.30 | 0.992 ± 0.008 | 0.999 | 5.5 ± 0.1 b |
0K/100Y | 0.74 ± 0.02 a | 0.091 ± 0.007 | 1.44 ± 0.33 | 0.990 ± 0.008 | 0.999 | 6.2 ± 0.1 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lago, A.; Delgado, J.F.; Rezzani, G.D.; Cottet, C.; Ramírez Tapias, Y.A.; Peltzer, M.A.; Salvay, A.G. Multi-Component Biodegradable Materials Based on Water Kefir Grains and Yeast Biomasses: Effect of the Mixing Ratio on the Properties of the Films. Polymers 2023, 15, 2594. https://doi.org/10.3390/polym15122594
Lago A, Delgado JF, Rezzani GD, Cottet C, Ramírez Tapias YA, Peltzer MA, Salvay AG. Multi-Component Biodegradable Materials Based on Water Kefir Grains and Yeast Biomasses: Effect of the Mixing Ratio on the Properties of the Films. Polymers. 2023; 15(12):2594. https://doi.org/10.3390/polym15122594
Chicago/Turabian StyleLago, Agustina, Juan F. Delgado, Guillermo D. Rezzani, Celeste Cottet, Yuly A. Ramírez Tapias, Mercedes A. Peltzer, and Andrés G. Salvay. 2023. "Multi-Component Biodegradable Materials Based on Water Kefir Grains and Yeast Biomasses: Effect of the Mixing Ratio on the Properties of the Films" Polymers 15, no. 12: 2594. https://doi.org/10.3390/polym15122594
APA StyleLago, A., Delgado, J. F., Rezzani, G. D., Cottet, C., Ramírez Tapias, Y. A., Peltzer, M. A., & Salvay, A. G. (2023). Multi-Component Biodegradable Materials Based on Water Kefir Grains and Yeast Biomasses: Effect of the Mixing Ratio on the Properties of the Films. Polymers, 15(12), 2594. https://doi.org/10.3390/polym15122594