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Abstract: Polyvinylidene fluoride (PVDF)-based dielectric energy storage materials have the advan-
tages of environmental friendliness, high power density, high operating voltage, flexibility, and being
light weight, and have enormous research value in the energy, aerospace, environmental protection,
and medical fields. To investigate the magnetic field and the effect of high-entropy spinel ferrite
(Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 nanofibers (NFs) on the structural, dielectric, and energy storage
properties of PVDF-based polymers, (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs were prepared via the
use of electrostatic spinning methods, and (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4/PVDF composite films
were prepared via the use of the coating method. The effects of a 0.8 T parallel magnetic field, induced
for 3 min, and the content of high-entropy spinel ferrite on the relevant electrical properties of the
composite films are discussed. The experimental results show that, structurally, the magnetic field
treatment causes the originally agglomerated nanofibers in the PVDF polymer matrix to form a
linear fiber chain with different fiber chains parallel to each other along the magnetic field direction.
Electrically, the introduction of the magnetic field enhanced the interfacial polarization, and the
(Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4/PVDF composite film with a doping concentration of 10 vol%
had a maximum dielectric constant of 13.9, as well as a low energy loss of 0.068. The high-entropy
spinel ferrite (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs and the magnetic field influenced the phase
composition of the PVDF-based polymer. The α-phase and γ-phase of the cohybrid-phase B1 vol%
composite films had a maximum discharge energy density of 4.85 J/cm3 and a charge/discharge
efficiency of 43%.

Keywords: high-entropy spinel ferrite; polymer; dielectric; ferroelectric; energy density

1. Introduction

The dielectric material is the main component of a dielectric capacitor. Its bound
charge can be shifted in a microscopic range under an external electric field and then
polarized, allowing electrostatic energy to be stored in the displaced dipole, corresponding
to the charging process of a dielectric capacitor; when the polarized capacitor is connected
to an external conductive path, the polarized dipole is depolarized, corresponding to
the discharge process of a dielectric capacitor [1,2]. A typical dielectric capacitor is a
simple sandwich structure in which only metal electrodes are plated on both sides of the
surface of the dielectric material. Compared with common energy storage devices, such as
lithium-ion batteries, supercapacitors, and electrochemical storage, dielectric capacitors
have the advantages of a high power density, light mass, easy preparation, low price, and
high operating voltage. They are widely used in new energy vehicles, flexible wearable
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electronic devices, power inverters, aerospace, pulsed military weapons, electronic medical
devices, and other fields [3–6].

An important parameter for measuring the performance of a dielectric capacitor is the
discharge energy density, which can be calculated via Equation (1):

Udischarge =
∫ Dmax

Dmin
EdD (1)

where Udischarge, E, and D represent discharge the energy density, electric field, and electric
displacement, respectively. D and polarization (P) are related to D = ε0εrE = ε0E + P; the
value of εr is the relative dielectric constant pertaining to the material’s own properties,
and ε0 is the vacuum dielectric constant. For linear dielectrics, the discharge energy density
can also be expressed as Equation (2):

Udischarge =
1
2

ε0εrE2
b (2)

High discharge energy density often requires large Eb and εr; Eb and εr are mainly
related to the a dielectric material’s own performance, so the performance of a dielectric
material determines the energy storage of a dielectric capacitor.

Common dielectric materials include ceramics and polymer materials. Ceramic ma-
terials include CaCu3Ti4O12 [7,8], BaTiO3 [9–11], TiO2 [12–14], SrTiO3 [15–17], and other
ABO3 perovskites [18].

Polymer materials can be divided into linear dielectric materials and nonlinear dielec-
tric materials, according to whether the dielectric constant varies linearly or nonlinearly
with frequency. Linear dielectric materials include PMMA, PI, PET, etc. [19,20]. Nonlinear
dielectric materials include PVDF and copolymers. Among the polymer materials, PVDF
has a relatively large dielectric constant and energy density [21,22], much greater than the
dielectric K (~2.2) and discharge energy density (~4 J/cm3) of commercial BOPP [23,24],
which is an ideal candidate for the innovative design and miniaturization of future power
as well as electronic equipment [25].

PVDF is a semicrystalline polymer, generally consisting of 59.4% fluorine and 3%
hydrogen [26]. PVDF is more chemically stable than polymers composed of H-C bonds
due to the greater negative charge of the F atom and the high dissociation energy of the
C-F bond. Commercial PVDF is polymerized in suspensions or emulsions via the use of
free radical initiators to form -CH2-CF2 repeating units. -CH2-CF2 is arranged in different
spatial arrangements along the polymer chain to produce different phases. The different
phase contents are influenced by the polymerization step and method, molecular weight
and distribution, thermal history, and cooling rate, which can affect the properties of
PVDF [27]. PVDF contains at least four crystalline phases: the α-phase is a TGTG trans
conformational structure with H and F atoms alternately dispersed on both sides of the
polymer chain [28]; the β-phase is a TTTT fully planar sawtooth structure; the γ-phase
is a TTTG triple trans structure with the dipole orientation towards the chain axis; and
the δ-phase is a polar version of the α-phase. Of these, the polarity of the α-phase is the
most stable and is less easily polarized, to the detriment of ferroelectric properties. The
polar β-phase produces a net dipole moment almost perpendicular to the polymer chains,
pointing from electronegative fluorine to positively charged hydrogen, and these chains can
crystallize into a quasi-hexagonal, tightly packed β-phase structure in which the dipoles
of all chains are aligned, with better piezoelectric effects, pyroelectric effects, and higher
initial polarization, but with a large residual polarization affecting energy storage [29,30].
Many studies have shown that the polar γ-phase can be seen as an intermediate between
the α-phase and β-phase, with ferroelectric effects favoring energy storage [31–34].

Various studies have shown that polymeric materials are flexible, lightweight, and
have a high breakdown voltage but low dielectric constant. Ceramic materials have higher
dielectric constants but tend to have lower breakdown strengths, complementing the
electrical properties of polymer materials [35]. To improve the electrical properties of
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polymers, ceramic materials with high dielectric constants are added to polymer matrices
to form ceramic/polymer composites [36–42].

The large number of means of preparing composite nanomaterials demonstrate the
desire for the cocktail effect, with abundant attempts to enhance the energy storage prop-
erties of polymeric dielectric materials; however, recent experiments in many fields have
shown that high-entropy materials, with their inherent advantages of the cocktail effect,
phase stability, lattice distortion of atomic disorder, and slow diffusion kinetics have come
under the spotlight in recent years for the development of new materials [43–45]. Some
high-entropy materials have been shown to have excellent dielectric properties [46,47].
Therefore, the use of high-entropy materials to enhance the electrical properties of PVDF is
an important experimental program.

The definition of entropy, in thermodynamics, and the phase stability of high-
entropy carbides (HECs) are determined by Gibbs free energy, which can be defined by
Equation (3) [48]:

∆Gmix = ∆Hmix − T∆Smix (3)

where Hmix is the enthalpy of mixing and Smix is the entropy of mixing, which can be
expressed as Equation (4):

∆Scon f = −R∑
xi

(xi∑
n

cj ln cj) (4)

where R, xi, n, and cj are the gas constant, fraction of the sublattice, i, number of components,
and atomic fraction of components, j, respectively. Larger entropy favors lower Gibbs free
energy and, hence, phase stability.

Great progress has been made in the field of dielectric capacitors. The main means of
improving the dielectric and energy storage properties of polymers are multilayered, but
the preparation process is complex and not suitable for commercialization. Single-layer
films doped with conductive substances, such as metal ions and carbon nanotubes [49,50],
have been studied for insulating materials such as doped ceramics [36–42], but there is less
literature on semiconductor high-entropy materials as a filler phase with which to modify
PVDF-based semicrystalline polymers. Some literature has shown that spinel ferrite can
improve dielectric and breakdown properties [51,52].

The aim of this study is to use semiconducting high-entropy spinel ferrite
(Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs as a filler phase with which to modify semicrys-
talline polymer PVDF. A noteworthy problem, however, is that the agglomeration of
high-entropy spinel ferrite in the PVDF base was detrimental to interfacial compatibility
and breakdown. The corresponding solution is to apply a magnetic field to the surface
of the parallel film and use the magnetic field force to deagglomerate the agglomerated
high-entropy spinel ferrite; some evidence suggests that the interaction of the magnetic field
with the magnetic particles produces a magnetoelectric effect that optimizes the dielectric
properties. In summary, the effect of the applied magnetic field on the crystal structure,
dielectric, and energy storage properties of (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4/PVDF has
been investigated.

2. Materials and Methods
2.1. Materials

Polyvinylidene fluoride (PVDF) was purchased from Shanghai Sanfu New Mate-
rials Co., Ltd., China. Polyvinyl pyrrolidone and iron nitrate (Fe(NO3)2•9H2O) were
purchased from Shanghai MACKLIN Biochemical Technology Co. Anhydrous ethanol
(C2H6O), copper nitrate (Cu(NO3)2•3H2O), calcium nitrate (Ca(NO3)2•4H2O), nickel
nitrate (Ni(NO3)2•6H2O), and N,N-dimethylformamide (DMF) were purchased from
Shanghai Sinopharm Group Chemical Reagent Co. Zirconium nitrate (Zr(NO3)4•5H2O),
manganese nitrate (Mn(NO3)2•4H2O), and polyvinyl pyrrolidone were purchased from
Shanghai Aladdin Biochemical Technology Co. (Shanghai, China). Citric acid was pur-
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chased from Shanghai Sinopharm Chemical Reagent Co., Ltd., China. Deionized water
was self-made, and all of the chemicals as well as reagents were analytically pure and
not further processed.

2.2. Synthesis of High-Entropy Spinel Ferrite (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs

High-entropy spinel ferrite (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs were prepared
via the sol–gel method and electrostatic spinning method. The main preparation steps
are shown in Figure 1. Firstly, 0.2 mol of Fe(NO3)2•9H2O was weighed; hydrated
nitric acid composed of 0.02 mol of Cu(NO3)2•3H2O, Ca(NO3)2•4H2O, Ni(NO3)2•6H2O,
Zr(NO3)4•5H2O, and Mn(NO3)2•4H2O, 2.5 g of citric acid C6H8O7, and 2 g of polyvinyl
pyrrolidone were then dissolved in 6 mL of deionized water and 20 mL of anhydrous
ethanol. The mixture was stirred vigorously to obtain solution A. After the complete
reaction, the solution was stirred for 6 h to obtain solution B. Solution B was then spun
using an electrostatic spinning machine, as shown in Figure 1a. The distance between
the needle and the receiver was adjusted to 15 cm, and the working voltage was set to
20 kV. After half an hour, the amorphous mixed fibers obtained from the roller receiver
were calcined in a muffle furnace at 600 ◦C under air conditions for 3 h, as shown in
Figure 1b. High-entropy spinel ferrite was obtained. SEM images are shown in Figure 1c.

Polymers 2023, 15, x FOR PEER REVIEW 4 of 16 
 

 

Aladdin Biochemical Technology Co. (Shanghai, China). Citric acid was purchased from 
Shanghai Sinopharm Chemical Reagent Co., Ltd., China. Deionized water was self-made, 
and all of the chemicals as well as reagents were analytically pure and not further pro-
cessed. 

2.2. Synthesis of High-Entropy Spinel Ferrite (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs 
High-entropy spinel ferrite (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs were prepared via the 

sol–gel method and electrostatic spinning method. The main preparation steps are shown 
in Figure 1. Firstly, 0.2 mol of Fe(NO3)2•9H2O was weighed; hydrated nitric acid com-
posed of 0.02 mol of Cu(NO3)2•3H2O, Ca(NO3)2•4H2O, Ni(NO3)2•6H2O, Zr(NO3)4•5H2O, 
and Mn(NO3)2•4H2O, 2.5 g of citric acid C6H8O7, and 2 g of polyvinyl pyrrolidone were 
then dissolved in 6 mL of deionized water and 20 mL of anhydrous ethanol. The mixture 
was stirred vigorously to obtain solution A. After the complete reaction, the solution was 
stirred for 6 h to obtain solution B. Solution B was then spun using an electrostatic spin-
ning machine, as shown in Figure 1a. The distance between the needle and the receiver 
was adjusted to 15 cm, and the working voltage was set to 20 kV. After half an hour, the 
amorphous mixed fibers obtained from the roller receiver were calcined in a muffle fur-
nace at 600 °C under air conditions for 3 h, as shown in Figure 1b. High-entropy spinel 
ferrite was obtained. SEM images are shown in Figure 1c. 

 
Figure 1. (a) Preparation of high-entropy spinel ferrite (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs via elec-
trostatic spinning, (b) calcined (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs, and (c) fiber morphology after 
calcination (d–g). 

2.3. Fabrication of (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4/PVDF Nanocomposite Film 
As shown in Figure 1d, five 50 mL beakers were filled with 30 mL of DMF, PVDF 

powder, and (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs doped at 1 vol%, 3 vol%, 5 vol%, 7 vol%, 
and 10 vol%, respectively; the mixture in each beaker was stirred for 12 h to obtain solu-
tions A, B, C, D, and E, respectively. As shown in Figure 1e, each solution was slowly 
poured onto 2 clean glass plates and scraped uniformly through the use of a coating ma-
chine to form a uniform composite film. A scraped film was placed in a drying oven at 180 
°C for 10 min and then removed as well as quenched in a mixture of deionized water and 
ice water, cooled down, and then placed in a drying oven at 80 °C for 6 h. The other com-
posite film was placed in a uniform parallel magnetic field at 0.8 T for 3 min immediately 
after scraping, as shown in Figure 1f, and then placed in a drying oven at 180°; the proce-
dure was repeated for the first glass plate. Figure 1g shows a model of the distribution of 

Figure 1. (a) Preparation of high-entropy spinel ferrite (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs via
electrostatic spinning, (b) calcined (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs, and (c) fiber morphology
after calcination (d–g).

2.3. Fabrication of (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4/PVDF Nanocomposite Film

As shown in Figure 1d, five 50 mL beakers were filled with 30 mL of DMF, PVDF
powder, and (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs doped at 1 vol%, 3 vol%, 5 vol%, 7 vol%,
and 10 vol%, respectively; the mixture in each beaker was stirred for 12 h to obtain solutions
A, B, C, D, and E, respectively. As shown in Figure 1e, each solution was slowly poured
onto 2 clean glass plates and scraped uniformly through the use of a coating machine to
form a uniform composite film. A scraped film was placed in a drying oven at 180 ◦C for
10 min and then removed as well as quenched in a mixture of deionized water and ice water,
cooled down, and then placed in a drying oven at 80 ◦C for 6 h. The other composite film
was placed in a uniform parallel magnetic field at 0.8 T for 3 min immediately after scraping,
as shown in Figure 1f, and then placed in a drying oven at 180◦; the procedure was repeated
for the first glass plate. Figure 1g shows a model of the distribution of high-entropy spinel
ferrite within the composite film before and after magnetic field treatment.
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2.4. Characterization

The crystal structure information of high-entropy spinel ferrite
(Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 with composite (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4/PVDF
films was observed through was carried out via X-ray diffraction (Bruker D8 Advance)
with an angle range of 10–90◦. Elemental analysis was carried out with an X-ray fluores-
cence spectrometer (XRF), a ZSX Primus model, Rigaku, Japan. A field emission SEM
(ZEISS Merlin Compact, Jena, Germany) was used to collect the surface micromorpho-
logical information of the composite films, and the micromorphological information of
the semiconductor high-entropy spinel ferrite nanofibers was observed via the use of a
Japanese S4800 Nikon scanning electron microscope. For a clear view of the fiber surface
morphology and to prevent the agglomeration of the powder, it was placed in an ultra-
sound machine at 100 w power for 3 min before nanofiber SEM testing. The functional
groups of the composite film materials were characterized via Fourier-transform infrared
spectroscopy (FTIR). The TG and DSC were tested with a synchronous thermal analysis
tester (NETZSCH STA 449F3) produced by NETZSCH Company in Selb, Germany. The
test temperatures were 100–600 ◦C and 60–200 ◦C, and the heating rate was 10.0 K/min.

Prior to the electrical performance tests, the composite films were coated with Ag
metal electrodes on both sides in order to form a typical sandwich-structured dielectric
capacitor. The dielectric properties of the composite films were measured via the use of
a model Alpha-A broadband dielectric spectrometer from Novocontrol, Germany, in the
frequency range of 1 Hz to 107 Hz. The ferroelectric properties were measured via the use
of a Radiant Premier II ferroelectric test system at a frequency of 10 Hz. The discharge
energy density and charge/discharge efficiency were calculated from the hysteresis lines.

3. Results and Discussion

Figure 1c shows an SEM of the powder, with large-aspect-ratio nanofibers with end
diameters of approximately 200–400 nm and lengths of 1–2 µm. A small number of particles
were present in the prepared fibers, possibly due to shredding from fiber breakage caused by
excessive ultrasonic power or time during the SEM pretreatment process. Alternatively, the
needle was too fine during the electrostatic spinning process, the spinning fluid was viscous,
and the needle was subjected to high thrust, resulting in the occasional agglomeration of
large Taylor cone jets during the spinning process, resulting in agglomeration.

Figure 2 shows the X-ray diffraction pattern of (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs
and the simplified characteristic peaks of a standard PDF card of spinel ferrite containing
the elements. The (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs have five characteristic peaks:
30.1◦, corresponding to the (220) crystal plane of NiFe2O4 and CuFe2O4; 35.5◦, the main
peak corresponding to the (311) crystal plane of CaFe2O4, NiFe2O4, and CuFe2O4; 43◦,
corresponding to the (311) crystal plane of CuFe2O4 and CaFe2O4; 57◦, corresponding to
the (511) crystal plane of NiFe2O4 and ZrFe2O4; and 63◦, corresponding to the (440) crystal
plane of CuFe2O4. It was demonstrated that the high-entropy spinel ferrite contains several
elements of Fe, Mn, Zr, Cu, Ca, and Ni.

The quantitative composition of (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs was tested via
XRF, as shown in Table 1. The contents of Mn, Zr, Cu, Ca, Ni, and Fe in the corresponding
oxides were 4.64%, 8.4%, 5.16%, 3.43%, 4.53%, and 45.51%, respectively. Each mol of
(Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 contains Mn, Zr, Cu, Ca, Ni, and Fe in a ratio of about
0.2:0.2:0.2:0.2:0.2:2. Combining XRD, SEM, EDS, and XRF, high-entropy spinel ferrite
(Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs were prepared.

Figure 3a shows the fiber EDS energy spectrum, which shows the composition of the
target elements, and Figure 3b shows the microscopic morphology of a single fiber, which
can be seen in Figure 3c–h as mapping high-entropy spinel ferrite containing the elements
Fe, Ni, Mn, Ca, Cu, and Zr, respectively. It can be seen that the elements are uniformly
distributed on the fiber’s surface.
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The melting peak temperature of pure PVDF shown in Figure 4a is 165 ◦C, which
is reduced by doping (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs. The melting temperature of
magnetic-field-treated composite films is generally higher than that of non-magnetic-field-
treated composite films. The crystallinity of the magnetic-field-treated composite film is
also higher, with B3 vol% having the highest crystallinity.
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Figure 4b shows the thermal weight loss curve of PVDF-based composite films.
Pure PVDF decomposes at 420 ◦C, and the decomposition temperature is greatly in-
creased through doping (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs. When the doping con-
centration is 3 vol% the maximum decomposition temperature is 476 ◦C, indicating that
(Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs improve the thermal stability of the composite films.
The external magnetic field slightly reduced the decomposition temperature, but still
exceeded the thermal decomposition temperature of pure PVDF.

The diffraction peaks of the composite films were observed through XRD diffraction
patterns, as shown in Figure 5a. The 1 vol% diffraction peaks of the film without magnetic
field treatment were 18.45◦ and 20.02◦, corresponding to the (020) and (110) crystallographic
planes, respectively, of the γ-phase of PVDF. The 3 vol% diffraction peaks were 17.71◦,
18.38◦, and 19.90◦, corresponding to the (100), (020), and (110) crystallographic planes,
respectively, of the α-phase of PVDF. The 5 vol% diffraction peaks were 17.94◦, 18.32◦, and
20.06◦, corresponding to the (110), (020), and (110) crystallographic planes, respectively, of
the α-phase of PVDF. The 7 vol% diffraction peaks were 20.01◦ for the (110) crystal faces of
the γ-phase of PVDF. The 10 vol% diffraction peaks were 18.57◦ and 19.96◦ for the (020)
and (110) crystal faces, respectively, of the α-phase of PVDF [53].

The diffraction peaks of the magnetic-field-treated films’ B1 vol% were 17.89◦, 18.57◦,
and 20.08◦, corresponding to the (100) as well as (020) crystal planes of the α-phase and the
(110) crystal plane of the γ-phase, respectively. The diffraction peaks of B3 vol% were 17.79◦,
18.38◦, 19.96◦, and 20.2◦, corresponding to the (100), (020), and (110) crystal planes of the
α-phase in addition to the (110) crystal plane of the γ-phase, respectively. The diffraction
peaks of B5 vol% were 18.51◦ and 20.1◦, corresponding to the (020) crystal plane of the
α-phase and the (110) crystal plane of the γ-phase, respectively. The diffraction peaks
of B7 vol% were 17.84◦, 18.47◦, 20.02◦, and 20.3◦, corresponding to the (100), (020), and
(110) crystal faces, respectively, of the γ-phase. The diffraction peaks of B10 vol% were
17.89◦, 18.47◦, 20.02◦, and 20.3◦, corresponding to the (100), (020), and (110) crystal faces,
respectively, of the γ-phase. The characteristic peaks of high-entropy spinel ferrite at low
doping concentrations are not obvious in the above films. At doping concentrations greater
than or equal to 3 vol%, the diffraction peaks of 35.5◦ high-entropy spinel ferrite start to
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appear. The characteristic peaks are particularly pronounced at doping concentrations
greater than or equal to 7 vol%. The doping of the magnetic field and high-entropy spinel
ferrite induces the development of the γ-phase, and in some of the composite films this
coexists with the most stable α-phase.
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In Figure 5b, the FTIR spectrum shows that the effect of the magnetic field is
less than the effect of the filler on the phases. As the doping concentration of
(Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs increases, the γ-phase peaks at 512 cm−1 and
840 cm−1 wavelengths are evident, and the nonpolar γ-phase in the composite films
can be observed near 440 cm−1 and 431 cm−1 at a doping concentration of 10 vol%;
the nonpolar α-phase can be retrieved near 532 cm−1, 614 cm−1, 760 cm−1, 796 cm−1,
and 976 cm−1 [54]. The two main conformations of the ferroelectric polymer in the
all-organic composite media are the α-phase and γ-phase, which are consistent with the
characterization results of the XRD pattern.

Figure 6 shows the distribution state of high-entropy spinel ferrite on the surface
of the composite film, where Figure 6a–e corresponds to the SEM of 1 vol%, 3 vol%,
5 vol%, 7 vol%, and 10 vol%, respectively. Figure 6b–j corresponds to the SEM of B1 vol%,
B3 vol%, B5 vol%, B7 vol%, and B10 vol%, respectively. The surface of the composite
films (Figure 6a–e) without magnetic field treatment shows that the fibers are uniformly
dispersed on the surface of the composite films, with the fiber ends randomly oriented in
different directions, and shows that the fiber density gradually increases with increasing
doping concentration. The magnetic-field-treated composite films (Figure 6f–j) show a
change in the orientation of the fibers under the action of the magnetic field force, with the
originally disordered fibers aligned in the direction of the magnetic field, forming parallel
lines between them, which gradually increase as the doping concentration increases, with
similar parallel lines joining end-to-end to form longer chains up to tens of microns long.
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It is very important to study the effect of doping concentration and applied parallel
magnetic field on the dielectric properties of composite materials. In Figure 7a, the dielectric
constant curve shows that, whether or not it is treated with a magnetic field, the dielectric
constant increases at lower frequencies as the doping concentration increases. The dielec-
tric constant of low-concentration-doped composite films does not change much before
and after magnetic field treatment, due to the low doping concentration, the increased
distance between fibers, and because the fibers do not interact with each other. The applied
magnetic field only changes the orientation of the fibers and does not affect the interfacial
compatibility of fibers with the PVDF base. Until the doping concentration reached 10 vol%,
the dielectric constant of magnetic-field-treated composite films at 1 kHz was significantly
greater than that of composite films without the effect of a magnetic field, at 13.9 and 12.6,
respectively. The magnetic field had an optimizing effect on the dielectric constant for the
high concentration of doping. Pure PVDF has the smallest dielectric constant, 11, at 1 kHz.
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Figure 7b shows the loss values for the 10 composite films, all of which were less
than 0.1 at 1 kHz. At low frequencies (<104 Hz) the curve rises, indicating that, as the
doping concentration increases, it is equivalent to the introduction of a large number of
impurities in the polymer, which together with the pores within the composite leads to an
increase in DC conductivity loss, at which point the dipole polarization loss is negligible; the
higher the doping concentration, the greater the loss. As the frequency increases (>104 Hz),
dipole polarization gradually dominates and the dipole flip rate is less than the increase in
frequency, causing internal friction between the electric dipoles, which in turn increases the
dielectric loss. The composite films with low-concentration doping of 1 vol% demonstrated
the smallest loss, which increased slightly with an increase in the doping concentration.
The losses for the same doping concentration in the ten samples almost overlapped two by
two, indicating that the magnetic field has little effect on the loss. B10 vol% had the largest
dielectric constant, 13.9 at 1 kHz, and B1 vol% had a dielectric loss of 0.025. On balance, the
sample with the best dielectric properties was B10 vol%, with a dielectric constant and loss
of 13.9 and 0.068, respectively.

Breakdown is related to the inherent band gap width of the material itself in addition to
external factors, such as mechanical deformation and thermal breakdown. The breakdown
strength is calculated via the use of the two-parameter Weibull distribution of Equation (5):

P(E) = 1 − exp (
E
Eb

)
β

(5)
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where P(E) represents the cumulative probability of electrical failure, E is the experi-
mental electric field strength at the time of electrical breakdown, Eb is the characteristic
breakdown strength at a cumulative failure probability of 63.7%, and β is the shape
parameter used to evaluate the degree of breakdown strength dispersion, with larger
values indicating higher accuracy.

Figure 8a shows that a PVDF-based composite film with an increasing doping concen-
tration corresponds to a decrease in the characteristic breakdown field strength, Eb, value
of the Weibull distribution due to the magnetic semiconductor high-entropy spinel ferrite
(Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs’ filled phase, which is much more conductive than
the PVDF-based polymer and, inevitably, forms conductive pathways, causing leakage
currents to break through the film. It is also possible that as the doping concentration
increases the crystalline region of PVDF changes, causing the PVDF molecular structure
to change and introducing some defects detrimental to the breakdown strength of the
composite media. The maximum breakdown strength of 1 vol% was 166 kV/mm, with a β

of 10.26. B1 vol% had a maximum β-value of 13.47; additional data can be found in Table 2.
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Figure 8. (a,b) Breakdown voltage and D–E hysteresis line of the composite film.

Table 2. Eb and β of nanocomposite films.

Sample Eb (kV/mm) β

0 vol% 226 12.49
1 vol%/B1 vol% 166/144 10.26/13.47
3 vol%/B3 vol% 145/108 9.58/11.87
5 vol%/B5 vol% 113/112 12.27/3.57
7 vol%/B7 vol% 113/126 16.54/7.67

10 vol%/B10 vol% 104/119 9.90/8.04

The capacitive energy storage properties of PVDF-based composite films have been
investigated via the use of monopolar electric fields. Figure 8b shows the D–E hysteresis
lines for PVDF-based composite films with (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NF contents of
1 vol%, 3 vol%, 5 vol%, 7 vol%, and 10 vol%, without magnetic field treatment. As shown
in Table 3, the maximum potential shifts under electric fields of 160 kV/mm, 200 kV/mm,
120 kV/mm, 180 kV/mm, and 160 kV/mm were 3.46 µC/cm2, 5.30 µC/cm2, 2.75 µC/cm2,
5.04 µC/cm2, and 6.32 µC/cm2, respectively. (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs favored
polarization, but the high residual polarization value, approximately 4.99 µC/cm2, combined
with the large aggregation of the SEM nanofiber filler in the PVDF substrate, as shown
in Figure 6e, and the α-phase of the XRD sample, shown in Figure 4, all contributed to
(Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 having a large residual polarization.
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Table 3. Data of the D–E hysteresis loop of PVDF-based nanocomposite films.

Sample Electric Fields
(kV/mm)

Potential Shifts
(µC/cm2)

Residual Polarization
(µC/cm2)

0 vol% 260 6.38 2.15
1 vol%/B1 vol% 160/300 3.46/6.65 1.83/2.52
3 vol%/B3 vol% 200/300 5.30/6.47 2.86/2.62
5 vol%/B5 vol% 120/280 2.75/7.9 1.30/4.85
7 vol%/B7 vol% 180/180 5.04/7.11 3.01/4.07

10 vol%/B10 vol% 160/160 6.32/4.7 4.99/2.80

The maximum potential shifts in the composite films induced by the 1 vol%, 3 vol%,
5 vol%, 7 vol%, and 10 vol% magnetic fields at 300 kV/mm, 300 kV/mm, 280 kV/mm,
180 kV/mm, and 160 kV/mm electric fields were 6.65 µC/cm2, 6.47 µC/cm2, 7.9 µC/cm2,
7.11 µC/cm2, and 4.7 µC/cm2, respectively. They start with higher values for lower
contents (1 vol% and 3 vol% compared with B1 and B3), as concentration increases the
difference in Eb decreases (equal for the 5 vol%), and they end with higher values for
B7 and B10 compared to 7 vol% and 10 vol% samples. The dielectric polarization of the
magnetic-field-treated films was higher for doping concentrations less than or equal to
7 vol%, indicating that the magnetic field was favorable for dielectric polarization, with
the greatest polarization occurring at 5 vol% of (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs
induced by the magnetic field. The residual polarization was about 4.84 µC/cm2. The
magnetic-field-induced residual polarization of 1 vol% in the highly polarized samples
was smaller, at about 2.52 µC/cm2, which yields a higher discharge energy density and
charging/discharging efficiency.

Figure 9a,b shows the discharge energy density and charge/discharge efficiency of
the composite films. The top three composite films were magnetic-field-treated mate-
rials; in descending order of discharge energy density, they were 1 vol% (4.85 J/cm3),
7 vol% (4.41 J/cm3), and 3 vol% (4.33 J/cm3), all greater than pure PVDF (4.23 J/cm3).
The magnetic-field-treated B1 vol% and B3 vol% composite films comingled the γ- and
α-phases of PVDF, and the B5 vol% and B7 vol% composite films were γ-phase poly-
mers. In the films without magnetic field treatment, the fillers were agglomerated in the
PVDF substrate and prematurely saturated with polarization, resulting in a lower dis-
charge energy density and efficiency. The magnetic field causes the agglomerated fibers
to deconglomerate along the magnetic field direction and link into chains, which improve
the interfacial compatibility with PVDF and increase the discharge energy density of the
(Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4/PVDF nanocomposite film. A composite film with a high
discharge energy density also has a high charge/discharge efficiency. The B1 vol% of the
composite film has a charge/discharge efficiency of 43% at 300 kV/mm.
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4. Conclusions

In this paper, (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs were prepared via the sol–gel
and electrostatic spinning methods, and (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4/PVDF com-
posite films were prepared via the use of the coating method. The effects of the magnetic
field and high-entropy spinel ferrite (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NF filler on the
structural, dielectric, and energy storage properties of PVDF-based polymers were in-
vestigated. The experimental results show the strong influence of the magnetic field and
(Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 NFs on the phase of the polymer. The composite film
contains α- and γ-, comingling, and γ-phase polymers. Structurally, the magnetic field
treatment caused the originally agglomerated nanofibers in the PVDF polymer matrix to
be linked end-to-end along the magnetic field direction to form a linear fiber chain, with
different fiber chains running parallel to each other. Electrically, the application of the
magnetic field enhanced the interfacial polarization and the (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)
Fe2O4/PVDF nanocomposite film. A doping concentration of B10 vol% had a max-
imum dielectric constant of 13.9, greater than the pure PVDF dielectric constant of
11. The impact on loss was very low; e.g., the low energy loss was 0.068. When the
PVDF-based nanocomposite with (Mn0.2Zr0.2Cu0.2Ca0.2Ni0.2)Fe2O4 doping concentra-
tion was B1 vol%, the discharge energy density of the PVDF-based composite was
improved to 4.85 J/cm3, which was greater than that of pure PVDF, at 4.23 J/cm3, with a
charge/discharge efficiency of 43%.
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