Overview of Solar Steam Devices from Materials and Structures
Abstract
:1. Background and Significance
2. Solar Steam Device
2.1. Working Principles of Solar Steam Technology
2.2. Types of Heating Systems and Solar Steam Generators
3. Photothermal Materials
3.1. Carbon-Based Material
3.2. Plasma Metal
3.3. Conjugated Polymer
3.4. Inorganic Semiconductor
4. Design of Device Structure
4.1. Double-Layer Structure
4.2. Three-Dimensional Structure
4.3. Biomimetic Structure
4.4. Other Structures
5. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, H.; Geng, X.M.; Li, S.M.; Tu, H.Y.; Wang, J.L.; Bao, L.X.; Peng, Y.; Wan, Y.F. Multi-3D hierarchical biomass-based carbon particles absorber for solar desalination and thermoelectric power generator. J. Mater. Sci. Technol. 2020, 59, 180–188. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, T.T.; Liu, Z.; Gao, L.L.; He, Y.S.; Jin, B.W.; Meng, X.; Qi, Y.P.; Ye, C. Engineered Wood with Hierarchically Tunable Microchannels toward Efficient Solar Vapor Generation. Langmuir 2022, 38, 12773–12784. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.H.; Chen, T.; Xu, J.L.; Yao, G.S.; Xie, J.; Cheng, Y.P.; Miao, Z.; Wang, K. Salt-rejecting solar interfacial evaporation. Cell Rep. Phys. Sci. 2021, 2, 100310. [Google Scholar] [CrossRef]
- Li, Y.C.; Xu, L.Q.; Cai, J.Y.; Liu, J.H.; Lv, B.Z.; Chao, J.B.; Zhang, Q.H.; Zhao, Y.Q. A Stable Bilayer Polypyrrole-Sorghum Straw Evaporator for Efficient Solar Steam Generation and Desalination. Adv. Sustain. Syst. 2022, 6, 2100342. [Google Scholar] [CrossRef]
- Li, W.Z.; Li, F.; Zhang, D.; Bian, F.G.; Sun, Z.Z. Porous wood-carbonized solar steam evaporator. Wood Sci. Technol. 2021, 55, 625–637. [Google Scholar] [CrossRef]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Functional materials in desalination: A review. Desalination 2019, 468, 114077. [Google Scholar] [CrossRef]
- Onggowarsito, C.; Feng, A.; Mao, S.; Nguyen, L.N.; Xu, J.Y.; Fu, Q. Water Harvesting Strategies through Solar Steam Generator Systems. ChemSusChem 2022, 15, e202201543. [Google Scholar] [CrossRef]
- Beh, E.S.; Benedict, M.A.; Desai, D.; Rivest, J.B. A redox-shuttled electrochemical method for energy-efficient separation of salt from water. ACS Sustain. Chem. Eng. 2019, 7, 13411–13417. [Google Scholar] [CrossRef]
- Gude, V.G.; Nirmalakhandan, N.; Deng, S.G. Renewable and sustainable approaches for desalination. Renew. Sustain. Energy Rev. 2010, 14, 2641–2654. [Google Scholar] [CrossRef]
- Jiang, S.X.; Li, Y.N.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.H.; Gong, L.; Zhang, T.; Sun, S.Y. Study of the Seawater Desalination Performance by Electrodialysis. Membranes 2022, 12, 767. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.Y.; Zhang, M.; Yang, Y.; Deng, H.; Fu, Q. Thermoelectric PEDOT: PSS Sheet/SWCNTs composites films with layered structure. Compos. Commun. 2021, 27, 100869. [Google Scholar] [CrossRef]
- Chen, C.L.; Zhao, X.W.; Ye, L. Polyoxymethylene/Carbon Nanotube Self-Assembly Networks with Improved Electrical Conductivity for Engineering Functional Structural Materials. ACS Appl. Nano Mater. 2021, 4, 9606–9615. [Google Scholar] [CrossRef]
- Chen, C.L.; Wang, M.; Chen, X.; Chen, X.C.; Fu, Q.; Deng, H. Recent progress in solar photothermal steam technology for water purification and energy utilization. Chem. Eng. J. 2022, 448, 137603. [Google Scholar] [CrossRef]
- Fan, Y.K.; Tian, Z.Y.; Wang, F.; He, J.X.; Ye, X.Y.; Zhu, Z.Q.; Sun, H.X.; Li, A. Enhanced solar-to-heat efficiency of photothermal materials containing an additional light-reflection layer for solar-driven interfacial water evaporation. ACS Appl. Energy Mater. 2021, 4, 2932–2943. [Google Scholar] [CrossRef]
- Wang, Q.M.; Qin, Y.; Jia, F.F.; Li, Y.M.; Song, S.X. Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation. Renew. Energy 2021, 163, 146–153. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Fujishima, A.P.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Xia, D.D.; Gong, F.; Pei, X.D.; Wang, W.B.; Li, H.; Zeng, W.; Wu, M.Q.; Papavassiliou, D.V. Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: A Review. Chem. Eng. J. 2018, 348, 908–928. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Grätzel, M. Molecular photovoltaics. Acc. Chem. Res. 2000, 33, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R.H.; MacKenzie, J.D. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293, 1119–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sai, H.; Yugami, H.; Kanamori, Y.; Hane, K. Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion. Sol. Energy Mater. Sol. Cells 2003, 79, 35–49. [Google Scholar] [CrossRef]
- Wang, P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environ. Sci. Nano 2018, 5, 1078–1089. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.F.; Mu, X.J.; Wang, P.F.; Wang, X.Y.; Liu, J.; Shi, J.Q.; Wei, A.Y.; Tian, Y.Z.; Zhu, G.S.; Xu, H.R.; et al. Integrated photothermal aerogels with ultrahigh-performance solar steam generation. Nano Energy 2020, 74, 104857. [Google Scholar] [CrossRef]
- Min, X.Z.; Zhu, B.; Li, B.; Li, J.L.; Zhu, J. Interfacial solar vapor generation: Materials and structural design. ACC Mater. Res. 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Li, X.Q.; Xie, W.R.; Zhu, J. Interfacial solar steam/vapor generation for heating and cooling. Adv. Sci. 2022, 9, 2104181. [Google Scholar] [CrossRef]
- Bermel, P.; Yazawa, K.; Gray, J.L.; Xu, X.; Shakouri, A. Hybrid strategies and technologies for full spectrum solar conversion. Energy Environ. Sci. 2016, 9, 2776–2788. [Google Scholar] [CrossRef]
- Tregambi, C.; Chirone, R.; Montagnaro, F.; Salatino, P.; Solimene, R. Heat transfer in directly irradiated fluidized beds. Sol. Energy 2016, 129, 85–100. [Google Scholar] [CrossRef]
- Gong, F.; Wang, W.B.; Li, H.; Xia, D.D.; Dai, Q.W.; Wu, X.L.; Wang, M.Z.; Li, J.; Papavassiliou, D.V.; Xiao, R. Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification. Appl. Energy 2020, 261, 114410. [Google Scholar] [CrossRef]
- Guo, Y.; Sui, Y.J.; Zhang, J.J.; Cai, Z.S.; Xu, B. An all-day solar-driven vapor generator via photothermal and Joule-heating effects. J. Mater. Chem. A 2020, 8, 25178–25186. [Google Scholar] [CrossRef]
- Han, H.T.; Huang, K.L.; Meng, X.C. Review on solar-driven evaporator: Development and applications. J. Ind. Eng. Chem. 2022, 119, 77–89. [Google Scholar] [CrossRef]
- Tao, P.; Ni, G.; Song, C.Y.; Shang, W.; Wu, J.B.; Zhu, J.; Chen, G.; Deng, T. Solar driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041. [Google Scholar] [CrossRef]
- Guo, A.K.; Fu, Y.; Wang, G.; Wang, X.B. Diameter effect of gold nanoparticles on photothermal conversion for solar steam generation. RSC Adv. 2017, 7, 4815–4824. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, J.; Zhang, S.Y.; Li, D.Y.; Zhang, X.J.; Zhao, Q.; Xing, B.S. Advances and challenges of broadband solar absorbers for efficient solar steam generation. Environ. Sci. Nano 2022, 9, 2264–2296. [Google Scholar] [CrossRef]
- Li, Y.J.; Gao, T.T.; Yang, Z.; Chen, C.J.; Luo, W.; Song, J.W.; Hitz, E.; Jia, C.; Zhou, Y.B.; Yang, B.; et al. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv. Mater. 2017, 29, 1700981. [Google Scholar] [CrossRef]
- Gu, X.B.; Dong, K.J.; Peng, L.H.; Bian, L.; Sun, Q.; Luo, W.M.; Zhang, B.B. Round-the-clock interfacial solar vapor generator enabled by form-stable phase change materials with enhanced photothermal conversion capacity. Energy Convers. Manag. 2023, 277, 116634. [Google Scholar] [CrossRef]
- Liu, G.H.; Chen, T.; Xu, J.L.; Li, G.; Wang, K.Y. Solar evaporation for simultaneous steam and power generation. J. Mater. Chem. A 2020, 8, 513–531. [Google Scholar] [CrossRef]
- Zhang, S.D.; Ma, H.X.; Guo, D.; Guo, P.; Wang, J.J.; Liu, M.Q.; Wu, S.; Bao, C.L. Multiscale Preparation of Graphene Oxide/Carbon Nanotube-Based Membrane Evaporators by a Spray Method for Efficient Solar Steam Generation. ACS Appl. Nano Mater. 2022, 5, 7198–7207. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, T.Y.; Liao, W.L.; Chen, D.Z.; Deng, Z.W.; Liu, X.; Shang, B. A water supply tunable bilayer evaporator for high-quality solar vapor generation. Nanoscale 2022, 14, 7913–7918. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Li, Y.R.; Li, W.; Zheng, Y.D.; Fan, Z.H.; Han, X.; Wang, W.Y.; Lin, T.; Zhu, Z.T. Nanomaterial design for efficient solar-driven steam generation. ACS Appl. Energy Mater. 2019, 2, 6112–6126. [Google Scholar] [CrossRef]
- Guan, W.X.; Guo, Y.H.; Yu, G.H. Carbon materials for solar water evaporation and desalination. Small 2021, 17, 2007176. [Google Scholar] [CrossRef] [PubMed]
- He, J.X.; Zhang, Z.; Xiao, C.H.; Liu, F.; Sun, H.X.; Zhu, Z.Q.; Liang, W.D.; Li, A. High-performance salt-rejecting and cost-effective superhydrophilic porous monolithic polymer foam for solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 16308–16318. [Google Scholar] [CrossRef]
- Yin, Q.; Zhang, J.F.; Tao, Y.B.; Kong, F.G.; Li, P. The emerging development of solar evaporators in materials and structures. Chemosphere 2022, 289, 133210. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.H.; Lai, Y.J.; Zhao, B.Y.; Bradley, R.; Wu, W.P. Photothermal materials for efficient solar powered steam generation. Front. Chem. Sci. Eng. 2019, 13, 636–653. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.T.; Wang, M.L.; Wang, X.X.; Hao, Z.K.; Han, S.B.; Wang, T.; Zhang, H.Y. Photothermal-based nanomaterials and photothermal-sensing: An overview. Biosens. Bioelectron. 2022, 220, 114883. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Yu, B.; Yin, K.B.; Zhang, Z.H. Hierarchically structured black gold film with ultrahigh porosity for solar steam generation. Adv. Mater. 2022, 34, 2200108. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, S.L.; Wu, C.; Yang, Z.H.; Zhang, X.H. Janus carbon nanotube sponges for highly efficient solar-driven vapor generation. Chem. Eng. J. 2023, 454, 140501. [Google Scholar] [CrossRef]
- Wang, W.M.; Wu, Y.M.; Yi, J.; Yang, Y.H.; Shen, M.L.; Yang, Z.H.; Peng, S.; Min, X.; Yang, X.X.; Xiong, J.; et al. Full cattail leaf-based solar evaporator with square water transport channels for cost-effective solar vapor production. Cellulose 2023, 30, 1103–1115. [Google Scholar] [CrossRef]
- Kospa, D.A.; Ahmed, A.I.; Samra, S.E.; Ibrahim, A.A. High efficiency solar desalination and dye retention of plasmonic/reduced graphene oxide based copper oxide nanocomposites. RSC Adv. 2021, 11, 15184–15194. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.H.; Zhao, B.Y.; Wu, W.P.; Yang, H.Y.; Ning, Y.S.; Lai, Y.J.; Bradley, R. Steam Generation: Low Cost, Robust, Environmentally Friendly Geopolymer–Mesoporous Carbon Composites for Efficient Solar Powered Steam Generation. Adv. Funct. Mater 2018, 21, 1870332. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.Q.; Chen, D.H.; Wang, Q.; Ying, Y.B.; Gao, W.L.; Xie, L.J. Recent advances in applications of carbon nanotubes for desalination: A review. Nanomaterials 2020, 10, 1203. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Huang, X.H.; Wu, W. Graphene-based stand-alone networks for efficient solar steam generation. Ind. Eng. Chem. Res. 2020, 59, 1135–1141. [Google Scholar] [CrossRef]
- Han, G.S.; Hu, M.F.; Liu, Y.Y.; Gao, J.; Han, L.; Lu, S.Y.; Cao, H.Q.; Wu, X.L.; Li, B.J. Efficient Carbon-Based Catalyst Derived from Natural Cattail Fiber for Hydrogen Evolution Reaction. J. Solid State Chem. 2019, 274, 207–214. [Google Scholar] [CrossRef]
- Xu, Y.; Yin, J.C.; Wang, J.; Wang, X.B. Design and optimization of solar steam generation system for water purification and energy utilization: A review. Rev. Adv. Mater. Sci. 2019, 58, 226–247. [Google Scholar] [CrossRef]
- Dao, V.D.; Choi, H.S. Carbon-based sunlight absorbers in solar-driven steam generation devices. Glob. Chall. 2018, 2, 1700094. [Google Scholar] [CrossRef] [Green Version]
- Vélez-Cordero, J.R.; Hernandez-Cordero, J. Heat generation and conduction in PDMS-carbon nanoparticle membranes irradiated with optical fibers. Int. J. Therm. Sci. 2015, 96, 12–22. [Google Scholar] [CrossRef]
- Wang, T.Y.; Huang, H.B.; Li, H.L.; Sun, Y.K.; Xue, Y.H.; Xiao, S.N.; Yang, J.H. Carbon materials for solar-powered seawater desalination. New Carbon Mater. 2021, 36, 683–701. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, H.M.; Jian, M.Q.; Li, Y.S.; Xia, K.L.; Zhang, M.C.; Wang, C.Y.; Wang, Q.; Ma, M.; Zheng, Q.S.; et al. Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS Appl. Mater. Interfaces 2017, 9, 28596–28603. [Google Scholar] [CrossRef]
- Liao, Q.H.; Zhang, P.P.; Yao, H.Z.; Cheng, H.H.; Li, C.; Qu, L.T. Reduced graphene oxide–based spectrally selective absorber with an extremely low thermal emittance and high solar absorptance. Adv. Sci. 2020, 7, 1903125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Zhang, S.Q.; Wei, N.; Xu, R.Q.; Li, X.Y.; Gong, L.; Cui, H.Z. Porous Ni/CNTs composite membrane as solar absorber for highly efficient solar steam generation. Sol. Energy Mater. Sol. Cells 2022, 243, 111815. [Google Scholar] [CrossRef]
- Zhu, M.M.; Yu, J.L.; Ma, C.L.; Zhang, C.Y.; Wu, D.X.; Zhu, H.T. Carbonized daikon for high efficient solar steam generation. Sol. Energy Mater. Sol. Cells 2019, 191, 83–90. [Google Scholar] [CrossRef]
- Zhou, X.; Li, J.Y.; Liu, C.; Wang, F.; Chen, H.; Zhao, C.X.; Sun, H.X.; Zhu, Z. Carbonized tofu as photothermal material for highly efficient solar steam generation. Int. J. Energy Res. 2020, 44, 9213–9221. [Google Scholar] [CrossRef]
- Mao, H.N.; Wang, X.G. Use of in-situ polymerization in the preparation of graphene/polymer nanocomposites. New Carbon Mater. 2020, 35, 336–343. [Google Scholar] [CrossRef]
- Mu, P.; Zhang, Z.; Bai, W.; He, J.X.; Sun, H.X.; Zhu, Z.Q.; Liang, W.D.; Li, A. Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Adv. Energy Mater. 2019, 9, 1802158. [Google Scholar] [CrossRef] [Green Version]
- Dahanayaka, M.; Liu, B.; Srikanth, N.; Zhou, K. Ionised graphene oxide membranes for seawater desalination. Desalination 2020, 496, 114637. [Google Scholar] [CrossRef]
- Zhang, P.P.; Li, J.; Lv, L.X.; Zhao, Y.; Qu, L.T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087–5093. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, H.; Li, Y.J.; Kuang, Y.D.; Xu, X.; Chen, C.J.; Huang, H.; Jia, C.; Zhao, X.P.; Hitz, E.; et al. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 2018, 10, 1104–1112. [Google Scholar] [CrossRef]
- Guo, M.X.; Wu, J.B.; Li, F.H.; Guo, Q.Q.; Fan, H.L.; Zhao, H.M. A low-cost lotus leaf-based carbon film for solar-driven steam generation. New Carbon Mater. 2020, 35, 436–443. [Google Scholar] [CrossRef]
- Liu, G.H.; Xu, J.L.; Wang, K.Y. Solar water evaporation by black photothermal sheets. Nano Energy 2017, 41, 269–284. [Google Scholar] [CrossRef]
- Ma, X.; Fang, W.Z.; Ying, W.; Chen, D.K.; Li, Z.Y.; Deng, Z.; Gao, C.; Peng, X.S. A robust asymmetric porous SWCNT/Gelatin thin membrane with salt-resistant for efficient solar vapor generation. Appl. Mater. Today 2020, 18, 100459. [Google Scholar] [CrossRef]
- Wang, J.J.; Liu, Z.H.; Dong, X.L.; Hsiung, C.E.; Zhu, Y.H.; Liu, L.M.; Han, Y. Microporous cokes formed in zeolite catalysts enable efficient solar evaporation. J. Mater. Chem. A 2017, 5, 6860–6865. [Google Scholar] [CrossRef] [Green Version]
- Margeson, M.J.; Dasog, M. Plasmonic metal nitrides for solar-driven water evaporation. Environ. Sci.-Water Res. 2020, 6, 3169–3177. [Google Scholar] [CrossRef]
- Huang, Z.M.; Li, S.L.; Cui, X.; Wan, Y.P.; Xiao, Y.F.; Tian, S.; Wang, H.; Li, Z.X.; Zhao, Q.; Lee, C.S. A broadband aggregation-independent plasmonic absorber for highly efficient solar steam generation. J. Mater. Chem. A 2020, 8, 10742–10746. [Google Scholar] [CrossRef]
- Ekanayake, U.M.; Barclay, M.; Seo, D.H.; Park, M.J.; MacLeod, J.; O’Mullane, A.P.; Motta, N.; Shon, K.H.; Ostrikov, K.K. Utilization of plasma in water desalination and purification. Desalination 2021, 500, 114903. [Google Scholar] [CrossRef]
- Liang, J.; Liu, H.Z.; Yu, J.Y.; Zhou, L.; Zhu, J. Plasmon-enhanced solar vapor generation. Nanophotonics 2019, 8, 771–786. [Google Scholar] [CrossRef]
- Wang, H.L.; Miao, L.; Tanemura, S. Morphology control of Ag polyhedron nanoparticles for cost-effective and fast solar steam generation. Sol. RRL 2017, 1, 1600023. [Google Scholar] [CrossRef]
- Fang, J.; Liu, Q.L.; Zhang, W.; Gu, J.J.; Su, Y.S.; Su, H.L.; Guo, C.P.; Zhang, D. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. J. Mater. Chem. A 2017, 5, 17817–17821. [Google Scholar] [CrossRef]
- Fan, X.F.; Mu, H.C.; Xu, Y.L.; Song, C.W.; Liu, Y.M. Silver nanoparticles-polydopamine-wax gourd: An antimicrobial solar evaporator with enhanced steam generation. Int. J. Energy Res. 2022, 46, 8949–8961. [Google Scholar] [CrossRef]
- Zhao, X.; He, Z.F.; Ou, W.T.; Lin, P.C.; Chen, Y.Y.; Chen, Y. Narrow-bandgap light-absorbing conjugated polybenzobisthiazole: Massive interfacial synthesis, robust solar-thermal evaporation and thermoelectric power generation. Sci. China Mater. 2022, 65, 2491–2501. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Y.H.; Zhou, X.Y.; Shi, W.; Yu, G.H. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2022, 5, 388–401. [Google Scholar] [CrossRef]
- Wang, F.; Su, Y.N.; Wei, D.Y.; Sun, H.X.; Zhu, Z.Q.; Liang, W.D.; Li, A. Salt-Resistant Photothermal Materials Based on Monolithic Porous Ionic Polymers for Efficient Solar Steam Generation. ACS Appl. Energy Mater. 2020, 3, 8746–8754. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Shen, L.; Zhang, C.X.; Gao, H.; Chen, J.; Jin, L.; Lin, P.; Zhang, H.X.; Xia, Y.Y. Polyacid doping-enabled efficient solar evaporation of polypyrrole hydrogel. Desalination 2021, 505, 114766. [Google Scholar] [CrossRef]
- Mu, P.; Bai, W.; Zhang, Z.; He, J.X.; Sun, H.X.; Zhu, Z.Q.; Liang, W.D.; Li, A. Robust aerogels based on conjugated microporous polymer nanotubes with exceptional mechanical strength for efficient solar steam generation. J. Mater. Chem. A 2018, 6, 18183–18190. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Mu, P.; Fan, Y.K.; Bai, W.; Zhang, Z.; Sun, H.X.; Liang, W.D.; Li, A. Highly efficient solar steam generation of bilayered ultralight aerogels based on N-rich conjugated microporous polymers nanotubes. Eur. Polym. J. 2020, 126, 109560. [Google Scholar] [CrossRef]
- Shi, Y.; Meng, N.; Wang, Y.; Cheng, Z.H.; Zhang, W.Y.; Liao, Y.Z. Scalable fabrication of conjugated microporous polymer sponges for efficient solar steam generation. ACS Appl. Mater. Interfaces 2022, 14, 4522–4531. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.; Seo, D.H.; McDonagh, A.M.; Shon, H.K.; Tijing, L. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 2021, 500, 114853. [Google Scholar] [CrossRef]
- Hessel, C.M.; Pattani, V.P.; Rasch, M.; Panthani, M.G.; Koo, B.; Tunnell, J.W.; Korgel, B.A. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011, 11, 2560–2566. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J.; Kuang, Y.D.; Hu, L.B. Challenges and opportunities for solar evaporation. Joule 2019, 3, 683–718. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.L.; Wu, S.L.; Wang, H.L.; Wu, Q.Y.; Yang, H.C. Photothermal devices for sustainable uses beyond desalination. Adv. Energy Sustain. Res. 2021, 2, 2000056. [Google Scholar] [CrossRef]
- Liu, P.; Hu, Y.B.; Li, X.Y.; Xu, L.X.; Chen, C.; Yuan, B.L.; Fu, M.L. Enhanced Solar Evaporation Using a Scalable MoS2-Based Hydrogel for Highly Efficient Solar Desalination. Angew. Chem. Int. Edit. 2022, 134, e202208587. [Google Scholar]
- Irshad, M.S.; Wang, X.B.; Abbasi, M.S.; Arshad, N.; Chen, Z.H.; Guo, Z.Z.; Yu, L.; Qian, J.W.; You, J.; Mei, T. Semiconductive, flexible MnO2 NWs/chitosan hydrogels for efficient solar steam generation. ACS Sustain. Chem. Eng. 2021, 9, 3887–3900. [Google Scholar] [CrossRef]
- Wani, T.A.; Garg, P.; Bera, S.; Bhattacharya, S.; Dutta, S.; Kumar, H.; Bera, A. Narrow-Bandgap LaMO3 (M = Ni, Co) nanomaterials for efficient interfacial solar steam generation. J. Colloid Interface Sci. 2022, 612, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Jiang, Q.S.; Wu, X.; Ghim, D.; Derami, H.G.; Chou, P.I.; Jun, Y.S.; Singamaneni, S. Advances in solar evaporator materials for freshwater generation. J. Mater. Chem. A 2019, 7, 24092–24123. [Google Scholar] [CrossRef]
- Jiang, Q.S.; Singamaneni, S. Water from wood: Pouring through pores. Joule 2017, 1, 429–430. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Chen, Y.; Jia, X.H.; Li, Y.; Wang, S.Z.; Song, H.J. Wood-based solar interface evaporation device with self-desalting and high antibacterial activity for efficient solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 47029–47037. [Google Scholar] [CrossRef]
- Wei, G.S.; Huang, P.R.; Xu, C.; Chen, L.; Ju, X.; Du, X.Z. Experimental study on the radiative properties of open-cell porous ceramics. Sol. Energy 2017, 149, 13–19. [Google Scholar] [CrossRef]
- Zhao, F.; Zhou, X.Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X.P.; Mendez, S.; Yang, R.G.; Qu, L.T.; Yu, G.H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495. [Google Scholar] [CrossRef]
- Luo, X.; Huang, C.L.; Liu, S.; Zhong, J.X. High performance of carbon-particle/bulk-wood bi-layer system for solar steam generation. Int. J. Energy Res. 2018, 42, 4830–4839. [Google Scholar] [CrossRef]
- Wang, Q.M.; Jia, F.F.; Huang, A.H.; Qin, Y.; Song, S.X.; Li, Y.M.; Arroyo, M.A.C. MoS2@ sponge with double layer structure for high-efficiency solar desalination. Desalination 2020, 481, 114359. [Google Scholar] [CrossRef]
- Lu, Y.; Fan, D.Q.; Wang, Y.D.; Xu, H.L.; Lu, C.H.; Yang, X.F. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 2021, 15, 10366–10376. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wu, D.X.; Huang, C.L.; Rao, Z.H. Skeleton double layer structure for high solar steam generation. Energy 2019, 183, 1032–1039. [Google Scholar] [CrossRef]
- Wang, C.B.; Li, W.; Li, Z.T.; Fang, B.Z. Solar thermal harvesting based on self-doped nanocermet: Structural merits, design strategies and applications. Renew. Sustain. Energy Rev. 2020, 134, 110277. [Google Scholar] [CrossRef]
- Wang, Y.D.; Wu, X.; Gao, T.; Lu, Y.; Yang, X.F.; Chen, G.Y.; Xu, H.L. Same materials, bigger output: A reversibly transformable 2D–3D photothermal evaporator for highly efficient solar steam generation. Nano Energy 2021, 79, 105477. [Google Scholar] [CrossRef]
- Zhou, J.H.; Gu, Y.F.; Liu, P.F.; Wang, P.F.; Miao, L.; Liu, J.; Wei, A.Y.; Mu, X.J.; Zhu, J. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions. Adv. Funct. Mater. 2019, 29, 1903255. [Google Scholar] [CrossRef]
- Gong, F.F.; Li, H.; Wang, W.B.; Huang, J.G.; Xia, D.D.; Liao, J.X.; Wu, M.Q.; Papavassiliou, D.V. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy 2019, 58, 322–330. [Google Scholar] [CrossRef]
- Darre, N.C.; Toor, G.S. Desalination of water: A review. Curr. Pollut. Rep. 2018, 4, 104–111. [Google Scholar] [CrossRef]
- Xie, Z.J.; Zhu, J.T.; Zhang, L.B. Three-dimensionally structured polypyrrole-coated setaria viridis spike composites for efficient solar steam generation. ACS Appl. Mater. Interfaces 2021, 13, 9027–9035. [Google Scholar] [CrossRef]
- Hong, S.; Shi, Y.; Li, R.Y.; Zhang, C.L.; Jin, Y.; Wang, P. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Appl. Mater. Interfaces 2018, 10, 28517–28524. [Google Scholar] [CrossRef]
- Kim, C.; Shin, D.; Baitha, M.N.; Ryu, Y.; Urbas, A.M.; Park, W.; Kim, K. High-efficiency solar vapor generation boosted by a solar-induced updraft with biomimetic 3D structures. ACS Appl. Mater. Interfaces 2021, 13, 29602–29611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Bai, B.; Hu, N.; Wang, H.L. Low-cost and facile fabrication of a candle soot/adsorbent cotton 3D-interfacial solar steam generation for effective water evaporation. Sol. Energy Mater. Sol. Cells 2021, 221, 110876. [Google Scholar] [CrossRef]
- Shang, Y.X.; Li, B.B.; Xu, C.L.; Zhang, R.H.; Wang, Y.F. Biomimetic Janus photothermal membrane for efficient interfacial solar evaporation and simultaneous water decontamination. Sep. Purif. Technol. 2022, 298, 121597. [Google Scholar] [CrossRef]
- Liu, C.K.; Peng, Y.; Zhao, X.Z. Flower-inspired bionic sodium alginate hydrogel evaporator enhancing solar desalination performance. Carbohydr. Polym. 2021, 273, 118536. [Google Scholar] [CrossRef]
- Zhang, H.T.; Li, L.; He, N.; Wang, H.N.; Wang, B.S.; Dong, T.Y.; Jiang, B.; Tang, D. Bioinspired hierarchical evaporator via cell wall engineering for highly efficient and sustainable solar desalination. Ecomat 2022, 4, e12216. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, Y.; Guan, W.; Wang, P.; Feng, J.G.; Song, N.; Dong, H.Z.; Yu, L.Y.; Sui, L.; Gan, Z.X.; et al. A self-floating and integrated bionic mushroom for highly efficient solar steam generation. J. Colloid Interface Sci. 2022, 612, 88–96. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, W.; Zada, I.; Zhang, Y.X.; Gu, J.J.; Liu, Q.L.; Su, H.L.; Pantelić, D.; Jelenković, B.; Zhang, D. 3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Hao, L.; Zhang, B.Y.; Niu, R.; Gong, J.; Tang, T. High-performance solar vapor generation by sustainable biomimetic snake-scale-like porous carbon. Sustain. Energy Fuels 2020, 4, 5522–5532. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.D.; Wu, P.; Zhao, J.Y.; Lu, Y.; Yang, X.F.; Xu, H.L. Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 2021, 30, 2102618. [Google Scholar] [CrossRef]
- Xu, Y.F.; Zhang, J.L.; Wu, S.Y.; Di, Y.S.; Liu, C.H.; Dong, L.F.; Yu, L.Y.; Gan, Z.X. Solar-Driven Airflow-Enhanced All-Daytime Solar Steam Generation Based on Inverse-Bowl-Shaped Graphene Aerogels. Energy Technol. 2022, 10, 2100757. [Google Scholar] [CrossRef]
- Li, D.S.; Han, D.T.; Guo, C.W.; Huang, C.L. Facile preparation of MnO2-deposited wood for high-efficiency solar steam generation. ACS Appl. Mater. Interfaces 2021, 4, 1752–1762. [Google Scholar] [CrossRef]
- Li, C.W.; Jiang, D.G.; Huo, B.B.; Ding, M.C.; Huang, C.C.; Jia, D.D.; Li, H.X.; Liu, C.Y.; Liu, J.Q. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination. Nano Energy 2019, 60, 841–849. [Google Scholar] [CrossRef]
- Gu, X.B.; Fan, C.; Sun, Y.J. Multilevel design strategies of high-performance interfacial solar vapor generation: A state of the art review. Chem. Eng. J. 2023, 460, 141716. [Google Scholar] [CrossRef]
- He, S.M.; Chen, C.J.; Kuang, Y.D.; Mi, R.Y.; Liu, Y.; Pei, Y.; Kong, W.Q.; Gan, W.T.; Xie, H.; Hitz, E.; et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 2019, 12, 1558–1567. [Google Scholar] [CrossRef]
- Wen, C.Y.; Guo, H.S.; Zhu, Y.N.; Bai, H.Y.; Zhao, W.Q.; Wang, X.S.; Yang, J.; Cao, M.Y.; Zhang, L. Fully superhydrophilic, self-floatable, and multi-contamination-resistant solar steam generator inspired by seaweed. Engineering 2023, 20, 153–161. [Google Scholar] [CrossRef]
Materials | Evaporation Rate (kg·m−2·h−1) | Photothermal Conversion Efficiency | References | |
---|---|---|---|---|
Carbon-based material | rGO/sodium alginate | 1.60 | 83.00% | [59] |
CNTs/porous nickel mesh | 2.13 | 94.3% | [62] | |
Durable charred tofu | 1.65 | 87.26% | [64] | |
Plasma metal | Gold nanostructured plasmon | 2.70 | 79.30% | [75] |
Spherical silver nanoparticles | 1.01 | 82.45% | [78] | |
AgNPs/PDA | 1.70 | 83.21% | [80] | |
Conjugated polymer | Conjugated polyphenylene diazole microspheres | 2.96 | 90.30% | [81] |
Polypyrrole hydrogel | 1.90 | 89.00% | [84] | |
Novel porphyrin/aniline-based conjugated microporous polymer | 1.31 | 86.3% | [87] | |
Inorganic semiconductor | MoS2 | 3.29 | 93.40% | [92] |
MnO2/CS | 1.78 | 90.60% | [93] | |
LaNiO3 | 2.30 | 83.00% | [94] |
Structures | Evaporation Rate (kg·m−2·h−1) | Evaporation Efficiency | References | |
---|---|---|---|---|
Double-layer structure | Carbon particles/boxwood | 1.00 | 65.00% | [100] |
Carbon particles/cellulose sponge | 1.50 | 90.00% | [103] | |
Three-dimensional structure | A carbon-coated polyvinyl alcohol (PVA)/convection flower | 3.31 | 166.10% | [111] |
rGO/cellulose sponge | 4.35 | 178.80% | [105] | |
Biomimetic structure | Biomimetic mushroom | 1.67 | 104.8% | [116] |
Carbonized sunflower | 1.51 | 100.4% | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Yin, Z.; Hou, Y.; Yin, C.; Yin, Z. Overview of Solar Steam Devices from Materials and Structures. Polymers 2023, 15, 2742. https://doi.org/10.3390/polym15122742
Liu C, Yin Z, Hou Y, Yin C, Yin Z. Overview of Solar Steam Devices from Materials and Structures. Polymers. 2023; 15(12):2742. https://doi.org/10.3390/polym15122742
Chicago/Turabian StyleLiu, Chang, Zhenhao Yin, Yue Hou, Chengri Yin, and Zhenxing Yin. 2023. "Overview of Solar Steam Devices from Materials and Structures" Polymers 15, no. 12: 2742. https://doi.org/10.3390/polym15122742
APA StyleLiu, C., Yin, Z., Hou, Y., Yin, C., & Yin, Z. (2023). Overview of Solar Steam Devices from Materials and Structures. Polymers, 15(12), 2742. https://doi.org/10.3390/polym15122742