Influence of a Multiple Epoxy Chain Extender on the Rheological Behavior, Crystallization, and Mechanical Properties of Polyglycolic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Torque
2.4. Melt Mass Flow Rate (MFR)
2.5. Dynamic Rheological Analysis
2.6. Differential Scanning Calorimetry (DSC)
2.7. Wide-Angle X-ray Diffraction (WAXD) Analysis
2.8. Tensile and Flexural Testing
3. Results and Discussion
3.1. Rheological Investigation
3.2. DSC and WAXD Analyses
3.3. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taib, N.-A.A.B.; Rahman, M.R.; Huda, D.; Kuok, K.K.; Hamdan, S.; Bakri, M.K.B.; Julaihi, M.R.M.B.; Khan, A. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull. 2023, 80, 1179–1213. [Google Scholar] [CrossRef]
- Ranakoti, L.; Gangil, B.; Mishra, S.K.; Singh, T.; Sharma, S.; Ilyas, R.A.; El-Khatib, S. Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials 2022, 15, 4312. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, A.; Zhang, M.; Sharaf, F.; Li, C. Polymer pollution and its solutions with special emphasis on Poly (butylene adipate terephthalate (PBAT)). Polym. Bull. 2022, 79, 9303–9330. [Google Scholar] [CrossRef]
- Barletta, M.; Aversa, C.; Ayyoob, M.; Gisario, A.; Hamad, K.; Mehrpouya, M.; Vahabi, H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog. Polym. Sci. 2022, 132, 101579. [Google Scholar] [CrossRef]
- Naser, A.Z.; Deiab, I.; Defersha, F.; Yang, S. Expanding Poly(lactic acid) (PLA) and Polyhydroxyalkanoates (PHAs) Applications: A Review on Modifications and Effects. Polymers 2021, 13, 4271. [Google Scholar] [CrossRef] [PubMed]
- Naser, A.Z.; Deiab, I.; Darras, B.M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Adv. 2021, 11, 17151–17196. [Google Scholar] [CrossRef] [PubMed]
- Samantaray, P.K.; Little, A.; Haddleton, D.M.; Mcnally, T.; Tan, B.; Sun, Z.Y.; Huang, W.J.; Ji, Y.; Wan, C. Poly (glycolic acid) (PGA): A versatile building block expanding high performance and sustainable bioplastic applications. Green Chem. 2020, 22, 4055–4081. [Google Scholar] [CrossRef]
- Chujo, K.; Kobayashi, H.; Suzuki, J.; Tokuhara, S. Physical and chemical characteristics polyglycolide. Die Makromol. Chem. 1967, 100, 267–270. [Google Scholar] [CrossRef]
- McNeill, I.C.; Leiper, H.A. Degradation studies of some polyesters and polycarbonates: 3—Polyglycollide. Polym. Degrad. Stab. 1985, 12, 373–385. [Google Scholar] [CrossRef]
- Cooper, D.R.; Sutton, G.J.; Tighe, B.J. Poly α-ester degradation studies. V. Thermal degradation of polyglycolide. J. Polym. Sci. Polym. Chem. Ed. 1973, 11, 2045–2056. [Google Scholar] [CrossRef]
- Mohammadikhah, R.; Mohammadi-Rovshandeh, J. Thermal Degradation and Kinetic Analysis of Pure Polyglycolic Acid in Presence of Humid Air. Iran. Polym. J. 2008, 17, 691–701. [Google Scholar]
- Jacobi, E.; Lüderwald, I.; Schulz, R. Strukturuntersuchung von polyestern durch direkten abbau im massenspektrometer, 4. Polyester und copolyester der milchsure und glykolsure. Die Makromol. Chem. 1978, 179, 429–436. [Google Scholar] [CrossRef]
- Sivalingam, G.; Madras, G. Thermal degradation of binary physical mixtures and copolymers of poly (ε-caprolactone), poly (d, l-lactide), poly (glycolide). Polym. Degrad. Stab. 2004, 84, 393–398. [Google Scholar] [CrossRef]
- Ayyoob, M.; Lee, D.H.; Kim, J.H.; Nam, S.W.; Kim, Y.J. Synthesis of Poly(glycolic acids) via Solution Polycondensation and Investigation of Their Thermal Degradation Behaviors. Fibers Polym. 2017, 18, 407–415. [Google Scholar] [CrossRef]
- Yang, Q.; Hirata, M.; Hsu, Y.-I.; Lu, D.; Kimura, Y. Improved Thermal and Mechanical Properties of Poly(butylene succinate) by Polymer Blending with a Thermotropic Liquid Crystalline Polyester. J. Appl. Polym. Sci. 2014, 131, 39952. [Google Scholar] [CrossRef]
- Najafi, N.; Heuzey, M.C.; Carreau, P.J.; Wood-Adams, P.M. Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders. Polym. Degrad. Stab. 2012, 97, 554–565. [Google Scholar] [CrossRef]
- Shen, J.; Wang, K.; Ma, Z.; Xu, N.; Pang, S.; Pan, L. Biodegradable blends of poly(butylene adipate-co-terephthalate) and polyglycolic acid with enhanced mechanical, rheological and barrier performances. J. Appl. Polym. Sci. 2021, 138, 15. [Google Scholar] [CrossRef]
- Wu, D.D.; Guo, Y.; Huang, A.P.; Xu, R.W.; Liu, P. Effect of the multi-functional epoxides on the thermal, mechanical and rheological properties of poly(butylene adipate-co-terephthalate)/polylactide blends. Polym. Bull. 2021, 78, 5567–5591. [Google Scholar] [CrossRef]
- Yang, Z.; Xin, C.; Mughal, W.; Li, X.; He, Y. High-melt-elasticity poly(ethylene terephthalate) produced by reactive extrusion with a multi-functional epoxide for foaming. J. Appl. Polym. Sci. 2018, 135, 45805. [Google Scholar] [CrossRef]
- Xue, G.; Sun, B.; Han, L.; Liu, B.; Liang, H.; Pu, Y.; Tang, H.; Ma, F. Triblock Copolymer Compatibilizers for Enhancing the Mechanical Properties of a Renewable Bio-Polymer. Polymers 2022, 14, 2734. [Google Scholar] [CrossRef]
- Pan, H.; Li, Z.; Yang, J.; Li, X.; Ai, X.; Hao, Y.; Zhang, H.; Dong, L. The effect of MDI on the structure and mechanical properties of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate) blends. RSC Adv. 2018, 8, 4610–4623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yahyaee, N.; Javadi, A.; Garmabi, H.; Khaki, A. Effect of Two-Step Chain Extension using Joncryl and PMDA on the Rheological Properties of Poly (lactic acid). Macromol. Mater. Eng. 2020, 305, 13. [Google Scholar] [CrossRef]
- Dawin, T.P.; Ahmadi, Z.; Taromi, F.A. Bio-based solution-cast blend films based on polylactic acid and polyhydroxybutyrate: Influence of pyromellitic dianhydride as chain extender on the morphology, dispersibility, and crystallinity. Prog. Org. Coat. 2018, 119, 23–30. [Google Scholar] [CrossRef]
- Sirisinha, K.; Samana, K. Improvement of melt stability and degradation efficiency of poly (lactic acid) by using phosphite. J. Appl. Polym. Sci. 2021, 138, 11. [Google Scholar] [CrossRef]
- Gug, J.; Soule, J.; Tan, B.; Sobkowicz, M.J. Effects of chain-extending stabilizer on bioplastic poly(lactic acid)/polyamide blends compatibilized by reactive extrusion. Polym. Degrad. Stab. 2018, 153, 118–129. [Google Scholar] [CrossRef]
- Villalobos, M.; Awojulu, A.; Greeley, T.; Turco, G.; Deeter, G. Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy 2006, 31, 3227–3234. [Google Scholar] [CrossRef]
- Lamnawar, K.; Maazouz, A. Rheology and morphology of multilayer reactive polymers: Effect of interfacial area in interdiffusion/reaction phenomena. Rheol. Acta 2008, 47, 383–397. [Google Scholar] [CrossRef]
- Japon, S.; Luciani, A.; Nguyen, Q.T.; Leterrier, Y.; Månson, J.A.E. Molecular characterization and rheological properties of modified poly (ethylene terephthalate) obtained by reactive extrusion. Polym. Eng. Sci. 2001, 41, 1299–1309. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97, 1898–1914. [Google Scholar] [CrossRef]
- Japon, S.; Boogh, L.; Leterrier, Y.; Månson, J.-A. Reactive processing of poly (ethylene terephthalate) modified with multifunctional epoxy-based additives. Polymer 2000, 41, 5809–5818. [Google Scholar] [CrossRef]
- Haralabakopoulos, A.A.; Tsiourvas, D.; Paleos, C.M. Chain extension of poly (ethylene terephthalate) by reactive blending using diepoxides. J. Appl. Polym. Sci. 1999, 71, 2121–2127. [Google Scholar] [CrossRef]
- Bikiaris, D.N.; Karayannidis, G.P. Chain extension of polyesters PET and PBT with two new diimidodiepoxides. II. J. Polym. Sci. Part A Polym. Chem. 1996, 34, 1337–1342. [Google Scholar] [CrossRef]
- Chen, L.; Sun, X.; Ren, Y.; Wang, R.; Liang, W.; Duan, X. Influence of chain extenders on the melt strength and thermal stability of polyglycolic acid. J. Appl. Polym. Sci. 2021, 138, 50551. [Google Scholar] [CrossRef]
- Sun, X.; Chen, L.; Wang, R.; Jiang, M.; Sun, M.; Liang, W. Control of hydrolytic degradation of polyglycolic acid using chain extender and anti-hydrolysis agent. J. Appl. Polym. Sci. 2022, 139, 9. [Google Scholar] [CrossRef]
- Lebedev, B.V.; Yevstropov, A.A.; Kiparisova, Y.G.; Belov, V.I. The thermodynamics of glycollide, polyglycollide and of polymerization of glycollide in the temperature range of 0–550° K. Polym. Sci. USSR 1978, 20, 32–42. [Google Scholar] [CrossRef]
- Li, S.; Xiao, M.; Wei, D.; Xiao, H.; Hu, F.; Zheng, A. The melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer 2009, 50, 6121–6128. [Google Scholar] [CrossRef]
- Graessley, W.W. Entangled linear, branched and network polymer systems—Molecular theories. In Synthesis and Degradation Rheology and Extrusion; Springer: Berlin/Heidelberg, Germany, 1982; pp. 67–117. [Google Scholar]
- Graebling, D. Synthesis of branched polypropylene by a reactive extrusion process. Macromolecules 2002, 35, 4602–4610. [Google Scholar] [CrossRef]
- Vega, J.F.; Santamaria, A.; Munoz-Escalona, A.; Lafuente, P. Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromolecules 1998, 31, 3639–3647. [Google Scholar] [CrossRef]
- Wood-Adams, P.M.; Dealy, J.M.; Degroot, A.W.; Redwine, O.D. Effect of Molecular Structure on the Linear Viscoelastic Behavior of Polyethylene. Macromolecules 2000, 33, 7489–7499. [Google Scholar] [CrossRef]
- García-Franco, C.A.; Srinivas, S.; Lohse, D.J.; Brant, P. Similarities between Gelation and Long Chain Branching Viscoelastic Behavior. Macromolecules 2001, 34, 3115–3117. [Google Scholar] [CrossRef]
- Wu, W.-J.; Sun, X.-L.; Chen, Q.; Qian, Q. Recycled Poly(Ethylene Terephthalate) from Waste Textiles with Improved Thermal and Rheological Properties by Chain Extension. Polymers 2022, 14, 510. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, X.; Li, J.; Xin, S.; Jiang, S. Crystallization behavior and structure of metallocene polyethylene with long-chain branch. Colloid Polym. Sci. 2022, 300, 521–530. [Google Scholar] [CrossRef]
- Tian, J.; Yu, W.; Zhou, C. The preparation and rheology characterization of long chain branching polypropylene. Polymer 2006, 47, 7962–7969. [Google Scholar] [CrossRef]
- Lohse, D.J.; Milner, S.T.; Fetters, L.J.; Xenidou, M.; Hadjichristidis, N.; Mendelson, R.A.; García-Franco, C.A.; Lyon, M.K. Well-Defined, Model Long Chain Branched Polyethylene. 2. Melt Rheological Behavior. Macromolecules 2002, 35, 3066–3075. [Google Scholar] [CrossRef]
- Wood-Adams, P.; Costeux, S. Thermorheological behavior of polyethylene: Effects of microstructure and long chain branching. Macromolecules 2001, 34, 6281–6290. [Google Scholar] [CrossRef]
- Lu, X.; Lv, Q.; Huang, X.; Song, Z.; Xu, N.; Pang, S.; Pan, L.; Li, T. Isothermal melt crystallization and performance evaluation of polylactide/thermoplastic polyester blends with multi-functional epoxy. J. Appl. Polym. Sci. 2018, 135, 46343. [Google Scholar] [CrossRef]
- Corre, Y.-M.; Maazouz, A.; Reignier, J.; Duchet, J. Influence of the chain extension on the crystallization behavior of polylactide. Polym. Eng. Sci. 2014, 54, 616–625. [Google Scholar] [CrossRef]
- Nofar, M.; Zhu, W.; Park, C.B.; Randall, J. Crystallization Kinetics of Linear and Long-Chain-Branched Polylactide. Ind. Eng. Chem. Res. 2011, 50, 13789–13798. [Google Scholar] [CrossRef]
- Allegra, G.; Corradini, P.; Elias, H.-G.; Geil, P.H.; Keith, H.D.; Wunderlich, B. Definitions of terms relating to crystalline polymers (Recommendations 1988). Pure Appl. Chem. 1989, 61, 769–785. [Google Scholar] [CrossRef] [Green Version]
- Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 1978, 19, 1142–1144. [Google Scholar] [CrossRef]
- Kawamoto, N.; Sakai, A.; Horikoshi, T.; Urushihara, T.; Tobita, E. Physical and mechanical properties of poly (l-lactic acid) nucleated by dibenzoylhydrazide compound. J. Appl. Polym. Sci. 2007, 103, 244–250. [Google Scholar] [CrossRef]
- Yu, C.; Bao, J.; Xie, Q.; Shan, G.; Bao, Y.Z.; Pan, P.J. Crystallization behavior and crystalline structural changes of poly(glycolic acid) investigated via temperature-variable WAXD and FTIR analysis. Crystengcomm 2016, 18, 7894–7902. [Google Scholar] [CrossRef]
- Zong, X.-H.; Wang, Z.-G.; Hsiao, B.S.; Chu, B.; Zhou, J.J.; Jamiolkowski, D.D.; Muse, E.; Dormier, E. Structure and morphology changes in absorbable poly (glycolide) and poly (glycolide-co-lactide) during in vitro degradation. Macromolecules 1999, 32, 8107–8114. [Google Scholar] [CrossRef]
Samples | MFR (g/10 min) |
---|---|
Neat PGA | 54.76 ± 0.28 |
PGA_0.3 | 9.74 ± 0.77 |
PGA_0.6 | 0.87 ± 0.20 |
PGA_0.9 | 0.51 ± 0.07 |
Samples | Φ (°C/min) | To (°C) | Tp (°C) | Te (°C) | ΔT (°C) | Tc (min) | Tm (°C) | ΔHm (J/g) | Xc (%) |
---|---|---|---|---|---|---|---|---|---|
Neat PGA | −5 | 205.4 | 198.3 | 192.2 | 13.2 | 2.64 | 220.0 | −91.49 | 46.2 |
−10 | 202.0 | 194.4 | 187.9 | 14.1 | 1.41 | 220.6 | −89.03 | 44.9 | |
−15 | 198.2 | 191.5 | 184.4 | 13.8 | 0.92 | 221.8 | −84.33 | 42.6 | |
−20 | 197.0 | 190.0 | 182.3 | 14.7 | 0.74 | 222.0 | −80.83 | 40.8 | |
PGA_0.3 | −5 | 200.5 | 196.2 | 190.0 | 10.5 | 2.10 | 218.8 | −87.38 | 44.2 |
−10 | 197.2 | 192.4 | 187.0 | 10.2 | 1.02 | 218.3 | −84.07 | 42.6 | |
−15 | 195.5 | 190.2 | 184.0 | 11.5 | 0.77 | 219.9 | −79.97 | 40.5 | |
−20 | 193.3 | 188.1 | 181.5 | 11.8 | 0.59 | 219.4 | −75.86 | 38.4 | |
PGA_0.6 | −5 | 199.5 | 194.9 | 190.5 | 9.0 | 1.80 | 218.2 | −84.18 | 42.7 |
−10 | 196.2 | 191.5 | 186.5 | 9.7 | 0.97 | 216.9 | −78.50 | 39.9 | |
−15 | 194.7 | 189.7 | 183.7 | 11.1 | 0.74 | 217.2 | −76.21 | 38.7 | |
−20 | 193.0 | 188.1 | 181.8 | 11.2 | 0.56 | 219.0 | −74.86 | 38.0 | |
PGA_0.9 | −5 | 199.5 | 194.8 | 190.4 | 9.1 | 1.82 | 218.0 | −81.69 | 41.6 |
−10 | 196.5 | 191.1 | 185.9 | 10.6 | 1.06 | 217.4 | −76.17 | 38.8 | |
−15 | 193.6 | 188.2 | 181.9 | 11.7 | 0.78 | 217.5 | −74.01 | 37.7 | |
−20 | 192.2 | 186.1 | 178.6 | 13.6 | 0.68 | 218.2 | −71.88 | 36.6 |
Φ °C/min | Neat PGA | PGA_0.3 | PGA_0.6 | PGA_0.9 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
−5 | 3.4 | −1.552 | −0.310 | 4.3 | −1.643 | −0.329 | 4.2 | −1.597 | −0.319 | 3.7 | −1.434 | −0.287 |
−10 | 4.0 | −1.005 | −0.101 | 4.7 | −0.739 | −0.074 | 4.5 | −0.662 | −0.066 | 4.0 | −0.591 | −0.059 |
−15 | 4.3 | −0.478 | −0.032 | 4.3 | −0.176 | −0.012 | 4.3 | −0.047 | −0.003 | 4.0 | −0.145 | −0.010 |
−20 | 4.3 | −0.070 | −0.003 | 4.3 | 0.125 | 0.006 | 4.3 | 0.351 | 0.018 | 4.0 | 0.109 | 0.005 |
Samples | Tg (°C) | Tm (°C) | ΔHm (J/g) | Xc (%) |
---|---|---|---|---|
Neat PGA | 41 | 223.3 | −74.79 | 37.7 |
PGA_0.3 | 43 | 221.3 | −71.00 | 35.9 |
PGA_0.6 | 43 | 220.6 | −69.14 | 35.1 |
PGA_0.9 | 43 | 220.4 | −60.19 | 30.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Wang, K.; Xu, N.; Li, L.; Ma, Z.; Zhang, Y.; Xiang, K.; Pang, S.; Pan, L.; Li, T. Influence of a Multiple Epoxy Chain Extender on the Rheological Behavior, Crystallization, and Mechanical Properties of Polyglycolic Acid. Polymers 2023, 15, 2764. https://doi.org/10.3390/polym15132764
Gao J, Wang K, Xu N, Li L, Ma Z, Zhang Y, Xiang K, Pang S, Pan L, Li T. Influence of a Multiple Epoxy Chain Extender on the Rheological Behavior, Crystallization, and Mechanical Properties of Polyglycolic Acid. Polymers. 2023; 15(13):2764. https://doi.org/10.3390/polym15132764
Chicago/Turabian StyleGao, Jianfeng, Kai Wang, Nai Xu, Luyao Li, Zhao Ma, Yipeng Zhang, Kun Xiang, Sujuan Pang, Lisha Pan, and Tan Li. 2023. "Influence of a Multiple Epoxy Chain Extender on the Rheological Behavior, Crystallization, and Mechanical Properties of Polyglycolic Acid" Polymers 15, no. 13: 2764. https://doi.org/10.3390/polym15132764
APA StyleGao, J., Wang, K., Xu, N., Li, L., Ma, Z., Zhang, Y., Xiang, K., Pang, S., Pan, L., & Li, T. (2023). Influence of a Multiple Epoxy Chain Extender on the Rheological Behavior, Crystallization, and Mechanical Properties of Polyglycolic Acid. Polymers, 15(13), 2764. https://doi.org/10.3390/polym15132764