The Modification Mechanism, Evaluation Method, and Construction Technology of Direct-to-Plant SBS Modifiers in Asphalt Mixture: A Review
Abstract
:1. Introduction
2. Material Composition and Action Mechanism of Direct-to-Plant Modified
2.1. Direct-to-Plants Modifier Based on the Instant Dissolution Principle
2.1.1. Material composition
2.1.2. Mechanism
2.2. Direct-to-Plants Modifier Based on Intramolecular Lubrication Principle
2.2.1. Material Composition
2.2.2. Mechanism
2.3. Direct-to-Plant SBS Modifier Based on the No-Pelletizing Principle
2.3.1. Material Composition
2.3.2. Mechanism
2.4. Direct-to-Plants Modifier Based on Vulcanization Principle
2.4.1. Material Composition
2.4.2. Mechanism
3. Evaluation Method of Modification Effect
3.1. Analysis of the Microscopic Morphology of SBS-Modified Bitumen Based on Fluorescence Microscopy
3.2. Analysis of Asphalt Nano Morphology based on AFM
3.3. Prediction based on Molecular Dynamics Simulation Techniques
4. Construction Technology of Direct-to-Plant SBS-Modified Asphalt
- (1)
- Design stage: This is in accordance with the four aspects of the construction area: Road grade, climatic conditions, traffic conditions, and road-surface type. It is combined with site engineering experience to design a reasonable construction plan.
- (2)
- The selection stage of raw materials: The selection of raw materials includes the direct-to-plant SBS modifier (for technical specifications, see Table 1 below), matrix asphalt, aggregates, etc., in which the direct-to-plant SBS-modified asphalt mixture should choose a matrix asphalt with high compatibility after being mixed with the direct-to-plant SBS modifier. The SARA content of the asphalt will directly affect the performance of the modified asphalt. When selecting the matrix asphalt, compatibility with the modifier should be checked [136,137,138].
- (3)
- Design phase: The direct-to-plant SBS-modified asphalt mix design should be based on the mix type. The oil-to-stone ratio should be the percentage of the total mass of both the base asphalt and the direct-to-plant SBS modifier to the group of the aggregate. The design phase is divided into three stages: Target mix design, production mix design, and production mix design verification.
- (4)
- On-site construction phase: The direct-to-plant of SBS modifier and matrix asphalt, aggregate mixing, and placement can be used manually or mechanically. When mixing with the manual order of the direct-to-plant SBS modifier, the direct-to-plant SBS modifier should be divided into small portions in advance according to the designated dosage and manually placed directly into the floor mixing cylinder for mixing. After the direct-drop SBS modifier is placed into the mixing cylinder, it should be mixed dry with the hot aggregate for 5–10 s and then placed into the asphalt and mineral powder with the use of mechanical input mixing and the direct-to-plant SBS modifier, as shown in Figure 11. We set the drop time and drop volume each time the drop time is less than 10 s and the mass error of the drop volume is within 3%. The SBS-modified asphalt mix should be uniform, with no white material, coarse and fine material separation, lumping, or other phenomena.
5. Conclusions
- (1)
- This summary divides the joint direct-to-plant SBS modifiers into four main categories, depending on the mechanism of action. All four direct-to-plant SBS modifiers are based on small-particle-size SBS as the main material composition, supplemented by additives. Direct-to-plant SBS modifiers based on the principle of rapid solubility and intra-molecular lubrication improve the melting efficiency of the modifier and its compatibility with the bitumen by adding additives. Direct-to-plant SBS modifiers based on the no-pelletizing principle use burr generators to form burrs of varying lengths on the surface of SBS pellets, increasing the contact area and eliminating the need for pelletizing and improving production efficiency. Direct-to-plant SBS modifiers based on the vulcanization reaction change the asphalt components by adding sulfur to enhance the stability of the asphalt. Currently, the joint direct-to-plant SBS modifier on the market meets the standard of immediate injection construction; there is no high-performance direct-to-plant SBS modifier.
- (2)
- In the evaluation of the modification effect of direct-to-plant SBS-modified asphalt, the dispersibility of the direct-to-plant SBS modifier was determined by observing the particle residue after dry mixing; the macroscopic indicators of modified asphalt and modified asphalt mixture were used to determine the cross-linking effect between the direct-to-plant SBS modifier and asphalt; on the microscopic level, the modification mechanism and modification effect of the wet SBS modifier were evaluated by fluorescence microscopy, AFM, and molecular dynamics simulation techniques. At the microscopic level, wet SBS modifiers′ mechanism and modification effect are evaluated by fluorescence microscopy, the AFM technique, and molecular dynamics simulation. There is a lack of proprietary methods for assessing the modification effect of direct-to-plant SBS-modified bitumen. The existing evaluation methods are based on wet modifications, which are detached from the actual conditions of use.
- (3)
- When comparing direct-to-planting SBS-modified production to the traditional wet production of SBS-modified asphalt, the construction process is simple, eliminating the production of modified asphalt to prevent the production process of modified asphalt environmental pollution, as well as energy consumption problems, and the high-temperature stability and water stability are superior. However, the direct-to-plant SBS-modified bitumen construction process uses traditional SBS-modified bitumen process construction and has not formed an exclusive construction process. Under the premise that the above problems exist, there is room for further optimization and enhancement of the mixing process specified in the Technical Guide for Highway Dry SBS-Modified Asphalt Pavements (T/CHTS 20003–2018).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.A.; Veeraragavan, A. Dynamic mechanical characterization of asphalt concrete mixes with modified asphalt binders. Mater. Sci. Eng. A 2011, 528, 6445–6454. [Google Scholar] [CrossRef]
- Süreyya, T.; Halit, O.; Atakan, A. Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Constr. Build. Mater. 2007, 21, 328–337. [Google Scholar] [CrossRef]
- Lin, P.; Huang, W.D.; Li, Y.; Tang, N.P.; Xiao, F.P. Investigation of influence factors on low temperature properties of SBS modified asphalt. Constr. Build. Mater. 2017, 154, 609–622. [Google Scholar] [CrossRef]
- Chen, J.Q.; Li, A.J.; Jin, M.Q.; Zheng, M.N.; Yang, W.Y. Study on Low Temperature Performance of SBS Modified Asphalt and its Mixture. Appl. Mech. Mater. 2014, 587–589, 1332–1336. [Google Scholar] [CrossRef]
- Kim, T.W.; Baek, J.; Lee, H.J.; Choi, J.Y. Fatigue performance evaluation of SBS modified mastic asphalt mixtures. Constr. Build. Mater. 2013, 48, 908–916. [Google Scholar] [CrossRef]
- Modarres, A. Investigating the toughness and fatigue behavior of conventional and SBS modified asphalt mixes. Constr. Build. Mater. 2013, 47, 218–222. [Google Scholar] [CrossRef]
- Iskender, E.; Aksoy, A.; Ozen, H. Indirect performance comparison for styrene–butadiene–styrene polymer and fatty amine anti-strip modified asphalt mixtures. Constr. Build. Mater. 2012, 30, 117–124. [Google Scholar] [CrossRef]
- Copeland, A.; Youtcheff, J.; Shenoy, A. Moisture Sensitivity of Modified Asphalt Binders: Factors Influencing Bond Strength. Transp. Res. Rec. J. Transp. Res. Board 2007, 1998, 18–28. [Google Scholar] [CrossRef]
- Gong, Y.; Xu, J.; Chang, R.; Yan, E.H. Effect of water diffusion and thermal coupling condition on SBS modified asphalts’ surface micro properties. Constr. Build. Mater. 2020, 273, 121758. [Google Scholar] [CrossRef]
- Hossain, R.; Wasiuddin, N.M. Degradation of SBS Polymer during Laboratory Aging of Asphalt Mixture. In Proceedings of the Airfield and Highway Pavements, Virtual, 8–10 June 2021. [Google Scholar] [CrossRef]
- Wang, P.; Wei, H.R.; Liu, X.Y.; Wang, L.Z. Identifying the Long-Term Thermal Storage Stability of SBS-Polymer-Modified Asphalt, including Physical Indexes, Rheological Properties, and Micro-Structures Characteristics. Sustainability 2021, 13, 10582. [Google Scholar] [CrossRef]
- Corte, J.F. Development and uses of hard-grade asphalt and of high-modulus asphalt mixes in france. Transp. Res. Circ. 2001, 503, 13–31. Available online: http://worldcat.org/issn/00978515 (accessed on 1 January 2001).
- Nakanishi, H.; Hamzah, M.O.; Hasan, M.; Karthigeyan, P.; Shaur, O. Mix design and application of porous asphalt pavement using Japanese technology. IOP Conf. Ser. Mater. Sci. Eng. 2019, 512, 012026. [Google Scholar] [CrossRef]
- Meng, Y.J.; Zhang, X.N. Effects of Additives on the Properties of Asphalt Cement. J. Highw. Transp. Res. Dev. 2006, 2, 17–20. [Google Scholar] [CrossRef]
- Maupin, G.W.; Diefenderfer, B.K. Design of a High-Binder-High-Modulus Asphalt Mixture; VTRC: Charlottesville, VA, USA, 2007. Available online: https://rosap.ntl.bts.gov/view/dot/19818/dot_19818_DS1.pdf (accessed on 1 December 2006).
- Lee, H.; Kim, Y.; Geisler, N.; As, J.; Villumsen, A.; Cheon, S.; Pyun, J. Building Asphalt Pavement with SBS-based Compound Added Using a Dry Process in Greenland. In Proceedings of the International Conference on Maintenance & Rehabilitation of Pavements & Technological Control, St. Louis, MO, USA, 21–24 April 2009. [Google Scholar]
- Duarte, G.M.; Faxina, A.L. Asphalt concrete mixtures modified with polymeric waste by the wet and dry processes: A literature review. Constr. Build. Mater. 2021, 312, 125408. [Google Scholar] [CrossRef]
- Chu, Y. The mechanism and production control of using direct injection modifiers in the production of asphalt mixtures. Construction 2011, 33, 3. (In Chinese) [Google Scholar]
- Yu, F.; Xie, J.G.; Wang, Z.Q. Research the Microstructure and Properties of Modified Asphalt from Dry SBS-T. In Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2020; p. 6033. [Google Scholar]
- Guolu Gaoke Engineering Technology Institute Co., Ltd. Technical Guideline for Construction of Direct-to-Plant SBS Modified Bituminous Pavement T/CHTS 20003–2018; China Communications Press: Beijing, China, 2018. [Google Scholar]
- Tang, G.Q. A Direct-Cast Instant SBS Modifier and Its Preparation Method and Application. CN Patent 104672744A, 3 June 2015. (In Chinese). [Google Scholar]
- Wang, L.Z. A Direct-Mixed Formula SBS Modifier and Its Preparation Method. CN Patent 201510178483, 23 November 2016. (In Chinese). [Google Scholar]
- Zhang, W.G.; Ding, L.T.; Jia, Z.R. Design of SBS-Modified Bitumen Stabilizer Powder Based on the Vulcanization Mechanism. Appl. Sci. 2018, 8, 457. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.G.; Jia, Z.R.; Zhang, Y.; Hu, K.; Ding, L.T.; Wang, F. The Effect of Direct-to-Plant Styrene-Butadiene-Styrene Block Copolymer Components on Bitumen Modification. Polymers 2019, 11, 140. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, S.; Tasaka, S.; Zhang, X.; Dong, D.; Inagaki, N. Compatibilizer Role of Styrene-butadiene-styrene Triblock Copolymer in Asphalt. Polym. J. 2001, 33, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Li, H.B.; Cui, C.Y.; Abdulakeem, T.A.; Feng, Z.X.; Zhao, G.J.; Guo, P. Effect of SBS and crumb rubber on asphalt modification: A review of the properties and practical application. J. Traffic Transp. Eng. 2022, 9, 836–863. [Google Scholar] [CrossRef]
- Luo, H.S.; Zheng, C.F.; Liu, B.X.; Bao, C.H.; Tian, B.; Liu, W.Y. Study on SBS modifier of bio-oil/sulfur compound under dry modification mode. Constr. Build. Mater. 2022, 326, 127059. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.; Muhammad, Y.; Sahibzada, M.; Zhu, Z.R.; Liu, T.; Liao, S.Y. Fabrication and application of polyurea formaldehyde-bioasphalt microcapsules as a secondary modifier for the preparation of high self-healing rate SBS modified asphalt. Constr. Build. Mater. 2020, 246, 118452. [Google Scholar] [CrossRef]
- Yu, R.E.; Liu, X.L.; Zhang, M.R.; Zhu, X.J.; Fang, C.Q. Dynamic stability of ethylene-vinyl acetate copolymer/crumb rubber modified asphalt. Constr. Build. Mater. 2017, 156, 284–292. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Koek, B.V.; Yilmaz, M.; Guler, M. Evaluation of high temperature performance of SBS + Gilsonite modified binder. Fuel 2011, 90, 3093–3099. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.D.; Fan, W.Y.; Yang, G.M.; Han, L.; Xing, B.D.; Lv, X.B. Influence of crumb rubber particle size and SBS structure on properties of CR/SBS composite modified asphalt. Constr. Build. Mater. 2019, 235, 117517. [Google Scholar] [CrossRef]
- Han, S.; Niu, D.Y.; Liu, Y.M.; Chen, D.; Liu, D.W. Analysis on the Impact of the Type and Content of SBS on the Performance of the Modified Asphalt Mixture. Adv. Mater. Res. 2014, 919–921, 1079–1084. [Google Scholar] [CrossRef]
- Chen, Y.D.M.; Cohen, R.E. The influence of molecular weight on the large deformation behavior of SBS triblock copolymer elastomers. J. Appl. Polym. Sci. 1977, 21, 629–643. [Google Scholar] [CrossRef]
- Wang, H.B. Direct-Cast SBS Modifier and Its Preparation Method. CN Patent 103509358A, 15 January 2014. (In Chinese). [Google Scholar]
- Zhang, H.G.; Zhang, Q.H.; Wang, X.T.; Tan, H.; Gao, L.N.; Cao, D.W. Compatibility and storage stability of asphalt binder modified by styrene-butadiene-styrene (sbs) graft copolymer. Mater. Sci. Forum 2022, 325, 126799. [Google Scholar] [CrossRef]
- Dong, F.Q.; Zhao, W.Z.; Zhang, Y.Z.; Wei, J.M.; Fan, W.Y.; Yu, Y.J.; Wang, Z. Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt. Constr. Build. Mater. 2014, 62, 1–7. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Wang, T.Z.; Fan, W.Y.; Ying, Y.; Wu, Y.M. Evaluation of the properties of bitumen modified by SBS copolymers with different styrene–butadiene structure. J. Appl. Polym. Sci. 2014, 131, 12. [Google Scholar] [CrossRef]
- Zhang, W.G.; Zou, L.; Wang, Y.; Liu, J.P.; Yang, C.X.; Di, J.P.; Hu, H.Y.; Yang, Z. Influence of High Viscosity Petroleum Resin (HV-PR) on the Intermediate and High Temperature Performances of Styrene-Butadiene-Styrene Block Copolymer (SBS) Modified Bitumen. Arab. J. Sci. Eng. 2022, 47, 12521–12533. [Google Scholar] [CrossRef]
- Wang, Y.; Zhan, B.C.; Cheng, J. Study on Preparation Process of SBS / Crumb Rubber Composite Modified Asphalt. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2012; Volume 450–451, pp. 417–422. [Google Scholar] [CrossRef]
- Liang, J.K.; Aoyun, C.M.; Yuan, W.J. Strengthening effect of C9 petroleum resin on SBS modified asphalt. J. Zhengzhou Univ. 2022, 43, 105–110. (In Chinese) [Google Scholar]
- Liu, Y.X.; Chen, J.; Li, G.X.; Liu, X.L.; Xia, L. Effect of physical and chemical crosslinking structure on fatigue behavior of styrene butadiene elastomer. J. Appl. Polym. Sci. 2014, 131, 40917. [Google Scholar] [CrossRef]
- Tang, G.Q. A Dry SBS Modifier without Granulation, Preparation Method and Application. CN Patent 10020830.6, 15 November 2022. (In Chinese). [Google Scholar]
- Liu, X.; Sha, A.M.; Li, C.; Zhang, Z.W.; Li, H.X. Influence of water on warm-modified asphalt: Views from adhesion, morphology, and chemical characteristics. Constr. Build. Mater. 2020, 264, 120475. [Google Scholar] [CrossRef]
- Tian, Z.N.; Zhang, Z.Q.; Zhang, K.W.; Huang, S.L.; Luo, Y.F. Preparation and properties of high viscosity and elasticity asphalt by styrene–butadiene–styrene/polyurethane prepolymer composite modification. J. Appl. Polym. Sci. 2020, 137, 49123. [Google Scholar] [CrossRef]
- Ahmed, E.; Zaid, A.; Azman, M.; Mohd, R.H.; Ahmed, E.; Mahmoud, E. Synergistic effect of SBS copolymers and aromatic oil on the characteristics of asphalt binders and mixtures containing reclaimed asphalt pavement. Constr. Build. Mater. 2022, 327, 127026. [Google Scholar] [CrossRef]
- Wang, T.; Huang, X.S.; Zhang, Y.Z. Application of Hansen Solubility Parameters to Predict Compatibility of SBS-Modified Bitumen. J. Mater. Civ. Eng. 2010, 22, 773–778. [Google Scholar] [CrossRef]
- Liang, M.; Xin, X.; Fan, W.Y.; Zhang, J.Z.; Jiang, H.G.; Yao, Z.Y. Comparison of rheological properties and compatibility of asphalt modified with various polyethylene. Int. J. Pavement Eng. 2021, 22, 11–22. [Google Scholar] [CrossRef]
- Al-Hadidy, A.I.; Tan, Y.Q. Effect of Styrene-Butadiene-Styrene on the Properties of Asphalt and Stone-Matrix-Asphalt Mixture. J. Mater. Civ. Eng. 2010, 23, 504–510. [Google Scholar] [CrossRef]
- Wang, T.; Yi, T.; Zhen, Y.Z. The Compatibility of SBS-Modified Asphalt. Pet. Sci. Technol. 2010, 28, 764–772. [Google Scholar] [CrossRef]
- Chen, M.Y.; Geng, J.G.; Xia, C.Y.; He, L.L.; Liu, Z. A review of phase structure of SBS modified asphalt: Affecting factors, analytical methods, phase models and improvements. Constr. Build. Mater. 2021, 294, 123610. [Google Scholar] [CrossRef]
- Yu, J.Y.; Wang, L.; Zeng, X.; Wu, S.P.; Li, B. Effect of montmorillonite on properties of styrene–butadiene–styrene copolymer modified bitumen. Polym. Eng. Sci. 2007, 47, 1289–1295. [Google Scholar] [CrossRef]
- Goli, A.; Ziari, H.; Amini, A. Influence of Carbon Nanotubes on Performance Properties and Storage Stability of SBS Modified Asphalt Binders. J. Mater. Civ. Eng. 2017, 29, 04017070. [Google Scholar] [CrossRef]
- Mohamed, S.E.; Ahmed, M.; Mohamed, E.B.; Ayman, A.; Jong, R.K. Mechanical properties of asphalt concrete modified with carbon nanotubes (CNTs). Case Stud. Constr. Mater. 2022, 16, e00930. [Google Scholar] [CrossRef]
- Wen, G.A.; Zhang, Y.; Zhang, Y.X.; Sun, K.; Fan, Y.Z. Improved properties of SBS-modified asphalt with dynamic vulcanization. Polym. Eng. Sci. 2004, 42, 1070–1081. [Google Scholar] [CrossRef]
- Liang, M.; Xin, X.; Fan, W.Y.; Wang, H.; Ren, S.S.; Shi, J.T. Effects of polymerized sulfur on rheological properties, morphology and stability of SBS modified asphalt. Constr. Build. Mater. 2017, 150, 860–871. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Zhang, W.G.; Jia, Z.R.; Gao, L. Comparative Study on the Stability of SBS Modified Asphalt with M Resin Replacing Sulfur. Sci. Technol. Eng. 2018, 18, 6. (In Chinese) [Google Scholar]
- Wen, G.A.; Zhang, Y.; Zhang, Y.X.; Sun, K.; Chen, Z.Y. Vulcanization characteristics of asphalt/SBS blends in the presence of sulfur. J. Appl. Polym. Sci. 2001, 82, 989–996. [Google Scholar] [CrossRef]
- Martínez-Estrada, A.; Chávez-Castellanos, A.E.; Herrera-Alonso, M.; Herrera-Nájera, R. Comparative study of the effect of sulfur on the morphology and rheological properties of SB- and SBS-modified asphalt. J. Appl. Polym. Sci. 2010, 115, 3409–3422. [Google Scholar] [CrossRef]
- Guo, G.H.; Zhang, H.L. The Effect of Morphology of ZnO Particle on Properties of Asphalt Binder and Mixture. Int. J. Transp. Sci. Technol. 2021, 9, 137–147. [Google Scholar] [CrossRef]
- Saltan, M.; Terzi, S.; Karahancer, S. Performance analysis of nano modified bitumen and hot mix asphalt. Constr. Build. Mater. 2018, 173, 228–237. [Google Scholar] [CrossRef]
- Zhang, H.L.; Gao, Y.; Guo, G.H.; Zhao, B.J.; Yu, J.Y. Effects of ZnO particle size on properties of asphalt and asphalt mixture. Constr. Build. Mater. 2018, 159, 578–586. [Google Scholar] [CrossRef]
- Chen, H.X.; Chen, M.Y.; Geng, J.G.; He, L.L.; Xia, C.Y.; Niu, Y.H.; Luo, M.J. Effect of multiple freeze-thaw on rheological properties and chemical composition of asphalt binders. Constr. Build. Mater. 2021, 308, 125086. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Ma, T.; Fan, J.W.; Fang, Z.Y.; Chen, T.; Zhou, Y. Experimental study of high modulus asphalt mixture containing reclaimed asphalt pavement. J. Clean. Prod. 2020, 263, 121447. [Google Scholar] [CrossRef]
- Al-Qudsi, A.; Falchetto, A.C.; Wang, D.; Büchler, S.; Kim, Y.S.; Wistuba, M.P. Finite element cohesive fracture modeling of asphalt mixture based on the semi-circular bending (SCB) test and self-affine fractal cracks at low temperatures. Cold Reg. Sci. Technol. 2020, 169, 102916. [Google Scholar] [CrossRef]
- Moon, K.H.; Falchetto, A.C.; Wang, D.; Wistuba, M.P.; Tebaldi, G. Low-temperature performance of recycled asphalt mixtures under static and oscillatory loading. Road Mater. Pavement Des. 2017, 18, 297–314. [Google Scholar] [CrossRef]
- Zhang, N.T.; Fan, G.P.; Lv, S.T.; He, F.W.; Fan, X.P.; Peng, X.H.; Liu, T.J.; Liu, H.L. The influence of SBS modification on the rheological property of asphalt before and after regeneration. Constr. Build. Mater. 2021, 310, 125239. [Google Scholar] [CrossRef]
- Zhang, W.G.; Zou, L.; Chen, F.; Yang, C.X.; Li, Y.F.; Yan, X.; Zhang, J.B.; Liu, J.P. Evaluation method of storage stability of SBS modified bitumen based on dynamic rheological properties. Constr. Build. Mater. 2022, 323, 126615. [Google Scholar] [CrossRef]
- Martin, H.; Wang, D.; Cannone, F.A.; Laurent, P.; De Maeijer, P.K.; Orešković, M.; Margarida, S.D.C.; Hassan, T.; Edoardo, B.; Atsushi, K.; et al. Correction to: Recommendation of RILEM TC 264 RAP on the evaluation of asphalt recycling agents for hot mix asphalt. Mater. Struct. 2022, 55, 31. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Li, G.N.; Dan, L.Y.; Lv, H.J.; Meng, A.X. Research progress on microstructure composition of asphalt. J. Transp. Eng. 2020, 20, 1–17. (In Chinese) [Google Scholar]
- Mturi, G.; Mogonedi, K.; Marais, H.; Ntombela, R. A Microstructural insight of modified bitumen using epi-fluorescence microscopy. In Proceedings of the 36th Annual Southern African Transport Conference, Pretoria, South Africa, 10–13 July 2017; Available online: http://hdl.handle.net/2263/62711 (accessed on 1 June 2023).
- Chen, Z.H.; Zhang, H.L.; Duan, H.H. Investigation of ultraviolet radiation aging gradient in asphalt binder. Constr. Build. Mater. 2020, 246, 118501. [Google Scholar] [CrossRef]
- Hu, M.J.; Sun, G.Q.; Sun, D.Q.; Zhang, Y.; Ma, J.M.; Lu, T. Effect of thermal aging on high viscosity modified asphalt binder: Rheological property, chemical composition and phase morphology. Constr. Build. Mater. 2020, 241, 118023. [Google Scholar] [CrossRef]
- Kou, C.J.; Kang, A.L.; Zhang, W.H. Methods to prepare polymer modified bitumen samples for morphological observation. Constr. Build. Mater. 2015, 81, 93–100. [Google Scholar] [CrossRef]
- Laukkanen, O.V.; Soenen, H.; Winter, H.H.; Seppala, J. Low-temperature rheological and morphological characterization of SBS modified bitumen. Constr. Build. Mater. 2018, 179, 348–359. [Google Scholar] [CrossRef]
- Jelčić, Ž.; Ocelić Bulatović, V.; Jurkaš Marković, K.; Rek, V. Multi-fractal morphology of un-aged and aged SBS polymer-modified bitumen. Plast. Rubber Compos. 2017, 46, 77–98. [Google Scholar] [CrossRef]
- Yan, C.Q.; Huang, W.D.; Xiao, F.P.; Lv, Q. Influence of polymer and sulphur dosages on attenuated total reflection Fourier transform infrared upon Styrene–Butadiene–Styrene-modified asphalt. Road Mater. Pavement Des. 2018, 20, 1586–1600. [Google Scholar] [CrossRef]
- Dong, Z.J.; Tao, Z.; Luan, H.; Williams, R.C.; Leng, Z. Composite Modification Mechanism of Blended Bio-asphalt Combining Styrene-Butadiene-Styrene with Crumb Rubber: A Sustainable and Environmental-friendly Solution for Wastes. J. Clean. Prod. 2019, 214, 593–605. [Google Scholar] [CrossRef]
- Huang, T.; He, H.W.; Zhang, P.; Lv, S.T.; Jiang, H.H.; Liu, H.F.; Peng, X.H. Laboratory investigation on performance and mechanism of polyphosphoric acid modified bio-asphalt. J. Clean. Prod. 2022, 333, 130104. [Google Scholar] [CrossRef]
- Liang, M.; Xin, X.; Fan, W.Y.; Wang, H.; Sun, W. Phase field simulation and microscopic observation of phase separation and thermal stability of polymer modified asphalt. Constr. Build. Mater. 2019, 204, 132–143. [Google Scholar] [CrossRef]
- Kang, A.H.; Kou, C.J.; Zhang, W.H. Acquisition and processing of fluorescent microscopic image for SBS modified asphalt. J. Jiangsu Univ. (Nat. Sci. Ed.) 2012, 33, 710–714. (In Chinese) [Google Scholar]
- Cao, J.F.; Chen, L.; Wang, M. Implementing a parallel image edge detection algorithm based on the otsu-canny operator on the hadoop platform. Comput. Intell. Neurosci. 2018, 2018, 3598284. [Google Scholar] [CrossRef] [Green Version]
- Sibley, A.R.; Giger, M.L.; Liarski, V.; Clark, M. Simultaneous segmentation and classification of multichannel immuno-fluorescently labeled confocal microscopy images using deep convolutional neural networks. In Medical Imaging 2018: Digital Pathology; SPIE: Paris, France, 2018; Volume 10581, pp. 271–277. [Google Scholar]
- Von Toussaint, U.; Schimmel, T.; Küppers, J. Computer Simulation of the AFM/LFM Imaging Process: Hexagonal versus Honeycomb Structure on Graphite. Surf. Interface Anal. 2015, 25, 620–625. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, L.B.; Wang, D.W.; Guo, M.; Liu, P.F.; Yu, J.X. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation. Materials 2017, 10, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofko, B.; Eberhardsteiner, L.; Füssl, J.; Grothe, H.; Handle, F.; Hospodka, M.; Scarpas, A. Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen. Mater. Struct. 2015, 49, 829–841. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.C.; Zhang, K.; Liu, K.F.; Shi, X.M. Adhesion characteristics of graphene oxide modified asphalt unveiled by surface free energy and AFM-scanned micro-morphology. Constr. Build. Mater. 2020, 244, 118404. [Google Scholar] [CrossRef]
- Rashid, F.; Hossain, Z.; Bhasin, A. Investigation of Nanomechanistic Properties of Reclaimed Asphalt Pavement Modified Asphalt Binders by Using an Atomic Force Microscope. Int. J. Pavement Eng. 2017, 20, 357–365. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Hao, P.W.; Dong, S.; Li, Y.; Yuan, G.A. Asphalt binder micro-characterization and testing approaches: A review. Measurement 2019, 151, 107255. [Google Scholar] [CrossRef]
- Pauli, A.T.; Grimes, R.W.; Beemer, A.G.; Turner, T.F.; Branthaver, J.F. Morphology of Asphalts, Asphalt Fractions And Model Wax-Doped Asphalts Studied By Atomic Force Microscopy. Int. J. Pavement Eng. 2011, 12, 291–309. [Google Scholar] [CrossRef]
- Li, C.; Xie, X.F.; Wang, L.; Guo, Y.Y.; Zhang, L.; Xue, Z.H. Evaluation of the effect of thermal oxygen aging on base and SBS-modified bitumen at micro and macroscales. Constr. Build. Mater. 2022, 324, 126623. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.T. Influence of asphalt microstructure to its high and low temperature performance based on atomic force microscope (AFM). Constr. Build. Mater. 2021, 267, 120998. [Google Scholar] [CrossRef]
- Blom, J.; Soenen, H.; Katsiki, A.; Niko, V.D.B.; Rahier, H.; Wim, V.D.B. Investigation of the bulk and surface microstructure of bitumen by atomic force microscopy. Constr. Build. Mater. 2018, 177, 158–169. [Google Scholar] [CrossRef]
- Magonov, S.; Alexander, J.; Surtchev, M.; Hung, A.M.; Fini, E.H. Compositional mapping of bitumen using local electrostatic force interactions in atomic force microscopy. J. Microsc. 2017, 265, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Calandra, P.; Caputo, P.; Santo, M.D.; Todaro, L.; Liveri, V.T.; Rossi, C.O. Effect of additives on the structural organization of asphaltene aggregates in bitumen. Constr. Build. Mater. 2018, 199, 288–297. [Google Scholar] [CrossRef]
- Ramm, A.; Sakib, N.; Bhasin, A.; Downer, M.C. Optical characterization of temperature- and composition-dependent microstructure in asphalt binders. J. Microsc. 2015, 262, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Moraes, M.; Pereira, R.B.; Ra, S.; Leite, L. High temperature AFM study of CAP 30/45 pen grade bitumen. J. Microsc. 2010, 239, 46–53. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.T.; Gong, M.H.; Chen, X.H.; Jiao, L.Y. Analysis of the Microscopic Images of Asphalt Getting From Atomic Force Microscopy. J. Pet. Pet. Process. 2015, 31, 1110–1115. (In Chinese) [Google Scholar]
- Yang, Z.; Zhang, X.N.; Yu, J.M. Comparative Study on Micro-and Macro-mechanical Properties of Asphalt before and after Aging. Jianzhu Cailiao Xuebao/J. Build. Mater. 2018, 21, 335–339. [Google Scholar] [CrossRef]
- Zhang, H.T.; Wang, Y.; Yu, T.J.; Liu, Z.Q. Microstructural characteristics of differently aged asphalt samples based on atomic force microscopy (AFM). Constr. Build. Mater. 2020, 255, 119388. [Google Scholar] [CrossRef]
- Li, M.; Shuai, J.; Li, P.; Kang, X.; Lei, Y. Analysis of rheological properties and micro-mechanism of aged and reclaimed asphalt based on multi-scales. Constr. Build. Mater. 2022, 321, 126290. [Google Scholar] [CrossRef]
- Mansourkhaki, A.; Ameri, M.; Daryaee, D. Application of different modifiers for improvement of chemical characterization and physical-rheological parameters of reclaimed asphalt binder. Constr. Build. Mater. 2019, 203, 83–94. [Google Scholar] [CrossRef]
- Ji, X.P.; Hou, Y.Q.; Zou, H.W.; Chen, B.; Jiang, Y.J. Study of surface microscopic properties of asphalt based on atomic force microscopy. Constr. Build. Mater. 2020, 242, 118025. [Google Scholar] [CrossRef]
- Zhang, W.G.; Wang, F.; Shi, J.; Li, Z.M.; Liang, X.F. Experimental Study on Nano-Parameters of Styrene-Butadiene-Styrene Block Copolymer Modified Bitumen Based on Atomic Force Microscopy. Polymers 2019, 11, 989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, C.W.; Liu, L.P.; Wang, M. A new preparation method and imaging parameters of asphalt binder samples for atomic force microscopy. Constr. Build. Mater. 2019, 205, 622–632. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wu, S.P.; Liu, Q.T.; Xie, J.; Li, H.C.; Dai, Y.; Li, C.M.; Nie, S.; Song, W. Aging effects of ultraviolet lights with same dominant wavelength and different wavelength ranges on a hydrocarbon-based polymer (asphalt). Polym. Test. 2019, 75, 64–75. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, J.Y.; Gong, M.H. Investigation of Aging Behavior of Biorejuvenated Asphalt with Chemical and Micromechanical Methods. J. Test. Eval. A Multidiscip. Forum Appl. Sci. Eng. 2019, 47, 3605–3621. [Google Scholar] [CrossRef]
- Cavalli, M.C.; Partl, M.N.; Poulikakos, L.D. Effect of ageing on the microstructure of reclaimed asphalt binder with bio-based rejuvenators. Road Mater. Pavement Des. 2019, 20, 1683–1694. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Wang, X.C.; Zhang, W.G.; Ding, L.T. Study on the Relationship between Nano-Morphology Parameters and Properties of Bitumen during the Ageing Process. Materials 2020, 13, 1472. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhu, X.Y.; Yuan, Y.; Li, L. Effects of Aging on Micromechanical Properties of Asphalt Binder Using AFM. J. Mater. Civ. Eng. 2020, 32, 4020081. [Google Scholar] [CrossRef]
- Dehouche, N.; Kaci, M.; Mouillet, V. The effects of mixing rate on morphology and physical properties of bitumen/organo-modified montmorillonite nanocomposites. Constr. Build. Mater. 2016, 114, 76–86. [Google Scholar] [CrossRef]
- Guo, M.; Liang, M.C.; Jiao, Y.B.; Tan, Y.Q.; Yu, J.X.; Luo, D.S. Effect of aging and rejuvenation on adhesion properties of modified asphalt binder based on AFM. J. Microsc. 2021, 284, 244–255. [Google Scholar] [CrossRef]
- Li, Y.J.; Yang, J.; Tan, T. Study on adhesion between asphalt binders and aggregate minerals under ambient conditions using particle-modified atomic force microscope probes. Constr. Build. Mater. 2015, 101, 159–165. [Google Scholar] [CrossRef]
- Ye, F.; Yin, W.; Lu, H.; Dong, Y.S. Property improvement of Nano-Montmorillonite/SBS modified asphalt binder by naphthenic oil. Constr. Build. Mater. 2020, 243, 118200. [Google Scholar] [CrossRef]
- Shan, L.Y.; Zhang, E.H.; Liu, S.; Xu, H.L.; Tan, Y.Q. Analysis of microscopic damage mechanism of asphalt binder through atomic force microscopy (AFM). China J. Highw. Transp. 2020, 33, 171. [Google Scholar]
- Su, M.M.; Zhou, J.L.; Lu, J.Z.; Chen, W.; Zhang, H.L. Using Molecular Dynamics and Experiments to Investigate the Morphology and Micro-structure of SBS Modified Asphalt binder. Mater. Today Commun. 2021, 30, 103082. [Google Scholar] [CrossRef]
- Elkashef, M.; Williams, R.C.; Cochran, E. Thermal stability and evolved gas analysis of rejuvenated reclaimed asphalt pavement (RAP) bitumen using thermogravimetric analysis–Fourier transform infrared (TG–FTIR). J. Therm. Anal. Calorim. 2017, 131, 865–871. [Google Scholar] [CrossRef]
- Sun, D.Q.; Zhang, L.W. Quantitative Determination of SBS Content in SBS Modified Asphalt. Jianzhu Cailiao Xuebao/J. Build. Mater. 2013, 16, 180–184. [Google Scholar] [CrossRef]
- Qu, X.; Wang, D.W.; Wang, L.B.; Huang, Y.C.; Hou, Y.; Markus, O. The State-of-the-Art Review on Molecular Dynamics Simulation of Asphalt Binder. Adv. Civ. Eng. 2018, 2018, 4546191. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Dai, Q.L.; You, Z.P. Molecular dynamics simulation of physicochemical properties of the asphalt model. Fuel 2016, 164, 83–93. [Google Scholar] [CrossRef]
- Tuckerman, M.E.; Martyna, G.J. Understanding Modern Molecular Dynamics: Techniques and Applications. J. Phys. Chem. B 2000, 104, 159178. [Google Scholar] [CrossRef]
- Ding, Y.J.; Tang, B.M.; Zhang, Y.Z.; Wei, J.M.; Cao, X.J. Molecular Dynamics Simulation to Investigate the Influence of SBS on Molecular Agglomeration Behavior of Asphalt. J. Mater. Civ. Eng. 2015, 27, C4014004. [Google Scholar] [CrossRef]
- Li, C.; Fan, S.; Xu, T. Method for Evaluating Compatibility between SBS Modifier and Asphalt Matrix Using Molecular Dynamics Models. J. Mater. Civ. Eng. 2021, 33, 04021207. [Google Scholar] [CrossRef]
- Fan, W.Y.; Zhao, P.H.; Kang, J.Q.; Nan, G.Z.; Shang, N. Application of molecular simulation technology to emulsified asphalt study. Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/J. China Univ. Pet. (Ed. Nat. Sci.) 2014, 38, 179–185. [Google Scholar] [CrossRef]
- Liu, W.Y.; Zheng, C.F.; Luo, H.S.; Yang, X.; Lin, Z. Study on SBS Optimal Block Ratio Based on Molecular Simulation. Polymers 2022, 14, 4894. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.S.; Zheng, C.F.; Yang, X.; Bao, C.H.; Liu, W.Y.; Lin, Z.; Cb, A.; Wl, A.; Zhi, L.A. Development of technology to accelerate SBS-modified asphalts swelling in dry modification mode. Constr. Build. Mater. 2022, 314, 125703. [Google Scholar] [CrossRef]
- Su, M.M.; Si, C.; Zhang, Z.P.; Zhang, H.L. Molecular dynamics study on influence of Nano-ZnO/SBS on physical properties and molecular structure of asphalt binder. Fuel 2020, 263, 116771–116777. [Google Scholar] [CrossRef]
- Qu, X.; Ding, H.Y.; Wang, H.N. The State-of-the-art Review on Evaluation Methods of Asphalt Binder Aging. China J. Highw. Transp. 2022, 35, 205–220. (In Chinese) [Google Scholar]
- Pan, J.L.; Rafiqul, A.T. Investigation of asphalt aging behaviour due to oxidation using molecular dynamics simulation. Mol. Simul. 2016, 42, 667–678. [Google Scholar] [CrossRef]
- He, L.; Li, G.N.; Lv, S.T.; Gao, J.; Kowalski, K.J.; Valentin, J.; Alexiadis, A. Self-healing behavior of asphalt system based on molecular dynamics simulation. Constr. Build. Mater. 2020, 254, 119225. [Google Scholar] [CrossRef]
- Yu, T.J.; Zhang, H.T.; Wang, Y. Multi-gradient analysis of temperature self-healing of asphalt nano-cracks based on molecular simulation. Constr. Build. Mater. 2020, 250, 118859. [Google Scholar] [CrossRef]
- Luo, L.; Chu, L.J.; Fwa, T.F. Molecular dynamics analysis of oxidative aging effects on thermodynamic and interfacial bonding properties of asphalt mixtures. Constr. Build. Mater. 2020, 269, 121299. [Google Scholar] [CrossRef]
- Hu, D.L.; Pei, J.Z.; Li, R.; Zhang, J.P.; Jia, Y.S.; Fan, Z.P. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation. Front. Struct. Civ. Eng. 2020, 14, 109–122. [Google Scholar] [CrossRef]
- Xu, G.J.; Hao, W. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Xu, M.; Yi, J.Y.; Feng, D.C.; Huang, Y.D. Diffusion characteristics of asphalt rejuvenators based on molecular dynamics simulation. Int. J. Pavement Eng. 2019, 20, 615–627. [Google Scholar] [CrossRef]
- He, R.; Dou, H.B.; Li, D. Experimental research on compatibility between sbs modifier and base asphalt. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2014; Volume 633–634, pp. 1090–1094. [Google Scholar] [CrossRef]
- Ming, L.; Peng, L.; Fan, W.Y.; Qian, C.D.; Xin, X.; Shi, J.T.; Nan, G.Z. Thermo-rheological behavior and compatibility of modified asphalt with various styrene-butadiene structures in SBS copolymers. Mater. Des. 2015, 88, 177–185. [Google Scholar] [CrossRef]
- Gao, M.X.; Chen, Y.L.; Fan, C.H.; Li, M.J. Molecular Dynamics Study on the Compatibility of Asphalt and Rubber Powder with Different Component Contents. ACS Omega 2022, 7, 36157–36164. [Google Scholar] [CrossRef] [PubMed]
Test Items | Unit | Technical Requirement |
---|---|---|
SBS content | % | ≥50 |
ash content | % | ≤1 |
Melt index | g/10 min | ≥2 |
Dry-mixed dispersibility | - | No particle residue |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Wu, D.; Hu, K.; Zhang, W.; Xing, J.; Cui, L.; Shi, S.; Yang, J.; Yang, C. The Modification Mechanism, Evaluation Method, and Construction Technology of Direct-to-Plant SBS Modifiers in Asphalt Mixture: A Review. Polymers 2023, 15, 2768. https://doi.org/10.3390/polym15132768
Yan X, Wu D, Hu K, Zhang W, Xing J, Cui L, Shi S, Yang J, Yang C. The Modification Mechanism, Evaluation Method, and Construction Technology of Direct-to-Plant SBS Modifiers in Asphalt Mixture: A Review. Polymers. 2023; 15(13):2768. https://doi.org/10.3390/polym15132768
Chicago/Turabian StyleYan, Xiang, Di Wu, Kui Hu, Wengang Zhang, Jianbao Xing, Lilong Cui, Silin Shi, Jixu Yang, and Chengxu Yang. 2023. "The Modification Mechanism, Evaluation Method, and Construction Technology of Direct-to-Plant SBS Modifiers in Asphalt Mixture: A Review" Polymers 15, no. 13: 2768. https://doi.org/10.3390/polym15132768
APA StyleYan, X., Wu, D., Hu, K., Zhang, W., Xing, J., Cui, L., Shi, S., Yang, J., & Yang, C. (2023). The Modification Mechanism, Evaluation Method, and Construction Technology of Direct-to-Plant SBS Modifiers in Asphalt Mixture: A Review. Polymers, 15(13), 2768. https://doi.org/10.3390/polym15132768