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Abstract: The application of warm-mixing technology brings considerable economical and environ-
ment benefits by decreasing the mixing temperature during warm asphalt mixture (WMA) production.
However, the possible water residue also generates concerns for moisture susceptibility. For deep
investigation on the influencing factors and mechanisms of the moisture susceptibility of WMA,
surface free energy (SFE) tests and laboratory tests are applied in this research. A novel indicator
based on SFE, namely, effective adhesion work, is proposed to assess the asphalt–aggregate adhesion
with different moisture contents. Then, given the mixing procedure of the dry-mixing method, an
advanced three-phase model as a form of asphalt–aggregate-warm mixing additive is introduced,
improving the conventional two-phase asphalt–aggregate model for better reflecting the separate
addition of warm-mixing additives during mixing. Afterwards, the influence of aggregate type,
asphalt type, aggregate moisture content, warm-mixing agent type, and the warm-mixing process
on the moisture susceptibility of WMA is analyzed utilizing the models and indicators proposed.
Finally, the validity of the SFE indicator is verified by comparing the calculation of effective adhesion
work with freeze–thaw splitting test results. The results show that all of the above factors impact the
moisture susceptibility of WMA by influencing the interfacial adhesion, with the effect of moisture
content being the most significant. Meanwhile, effective adhesion work and the three-phase model
brought out in this research are proven to be feasible to characterize the adhesion properties of WMA,
offering theoretical support to the research on warm-mixing technology.

Keywords: warm-mix asphalt; moisture susceptibility; surface free energy (SFE); three-phase model;
effective adhesion work

1. Introduction

Warm-mixing technology allows asphalt to reach the viscosity needed for mixing at
lower temperatures and, therefore, is able to reduce the mixing temperature by 30–40 ◦C
during the asphalt mixture production, resulting in less energy consumption, better con-
struction convenience, and less aging of the asphalt [1–5]. However, problems also arise
in that the moisture susceptibility may deteriorate as a consequence of lower mixing and
compacting temperatures [6–8].

Relative studies have pointed out that the moisture damage of a mixture is attributed
to the adhesion failure between asphalt and aggregate and, therefore, researchers have
introduced various methods and indicators to characterize the adhesion properties [9–12].
Currently, many methods haven been brought out to estimate the moisture susceptibility
of asphalt mixtures. For instance, the boiling method indicates the moisture susceptibility
by comparing the stripping of the mixed aggregates before and after suffering boiling, but
the process takes a long time and is subjective [13]. Photoelectric colorimetry uses the
relationship between the concentration of a substance at a determined wavelength and the
absorption effect of light to determine the absorbance of a solution and then calculate the
concentration, but the operation is very complex [14]. Atomic force microscopy (AFM) is
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able to characterize the adhesive property between asphalt and aggregate in nanoscale, but
the sample preparation is demanding [15]. As for surface free energy (SFE), there is no
need for specimen compaction and the adhesive between the asphalt and aggregates can
be simply calculated by testing the SFE parameters. Therefore, SFE obtains more attention
in present studies on the moisture resistance of asphalt mixtures [16].

Elphingstone introduced SFE to asphalt mixture research for the first time to study the
interfacial cracking prediction in hot-mix asphalt (HMA) mixtures [17]. Cheng measured
the SFE indexes of different asphalts and aggregates and calculated the cohesion work of
asphalt and the adhesion work of the asphalt–aggregate interface. A comparison between
the SFE test and conventional moisture susceptibility tests confirmed the feasibility of SFE
indicators to evaluate the moisture susceptibility [18]. Zhang et al. compared the SFE
test result with adhesion grade and TSR obtained from a laboratory test of six different
WMAs, and the relevance among them was studied [19]. Xiao et al. utilized an SFE test
on asphalt with different aging degrees and found that the aging process had an adverse
influence on moisture susceptibility based on SFE indicators, but also pointed out the
limitation of the SFE method in characterizing the impact of the penetrating of asphalt
into pores on aggregates [20]. Alvarez et al. utilized SFE to determine the optimal dose of
WMA additives for achieving the best asphalt–aggregate adhesion [21]. Ali et al. combined
both SFE and laboratory tests to investigate the effect of additives as well as aging on the
moisture resistance of asphalt mixtures [22]. Yang et al. analyzed the mechanism of a certain
warm-mix additive using an SFE test [23]. Habal et al. compared the water resistance of
a mixture with different warm-mix additives and aggregate–asphalt combinations using
SFE and laboratory tests, finding a good relationship between the SFE indicators and
performance test results. Furthermore, a threshold was established based on SFE whose
accuracy is a favorable 90% [24,25].

There are more factors impacting the moisture susceptibility of WMA compared with
HMA [7]. In addition to the commonly accepted factors of HMA, the involvement of
warm-mixing additives and the mixing procedure applied also attracted the attention of
researchers in terms of their impact on the moisture susceptibility of WMA. Hurley et al.
found that the influence of different warm-mixing additives on different aggregates is
distinct [26–28]. Zaumanis noted that the poor adhesion between asphalt and aggregates
may occur due to unevaporated water remaining during some warm-mixing process, thus
leading to the negative performance of WMA [29].

Current research has carried out remarkable investigations into SFE theory and the
influencing factors on the moisture susceptibility of WMA. It can still be noticed that few
studies concern the influence of moisture content and the mixing process and are therefore
unable to precisely estimate the moisture susceptibility of WMA, especially with dry-mix
additives. In this research, on the basis of SFE theory, a novel indicator for evaluating
the asphalt–aggregate adhesive property with different moisture contents is proposed.
Moreover, a three-phase model of aggregate–asphalt-warm mixing additives is introduced
and enhanced from the conventional two-phase model by taking the process of dry mixing
into consideration. The influence of several factors on the moisture susceptibility is analyzed
using the advanced indicator and model put forward in this paper and the freeze–thaw
splitting test is applied for the verification of the SFE test.

2. Surface Free Energy Theory

SFE theory provides a quantitative measurement method for adhesion properties
between aggregates and asphalt. Understanding the SFE components of asphalts and
aggregates contributes to the prediction of moisture susceptibility.

2.1. Two-Phase Model

In the traditional two-phase model, the adhesion process of asphalt and aggregate
can be expressed as asphalt + stone→ asphalt–stone. The amount of energy change per
unit area of the adhesion interface is the adhesion work (Was). The larger the Was is,
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the stronger the asphalt–stone interface is. The adhesion work without moisture can be
calculated according to Equation (1). When water-related damage appears in the asphalt
pavement, water enters the void, and then gradually adheres to the aggregate by replacing
the asphalt. This process requires work by external forces, which is called the adhesion
work with moisture (Wasw), the physical meaning of which is the energy change per unit
after two contacted materials are separated by water. The larger the Wasw is, the weaker the
asphalt–stone interface is. The adhesion work with moisture can be calculated according to
Equation (2) [30].

Was = γa + γs − γas = 2
√
γLW

s γLW
a + 2

√
γ+s γ

−
a + 2

√
γ−s γ

+
a (1)

Wasw = γsw + γaw − γas= 2γw + 2
√
γLW

a γLW
s + 2

√
γ+a γ

−
s + 2

√
γ−a γ

+
s − 2

√
γLW

a γLW
w

−2
√
γLW

s γLW
w − 2

√
γ+a γ

−
w − 2

√
γ−a γ

+
w − 2

√
γ+s γ

−
w − 2

√
γ−s γ

+
w

(2)

where γa, γs, and γw represent the surface free energy of asphalt, stone, and water, respec-
tively, mJ·m−2; γsw,γas, and γaw represent the stone–water, asphalt-stone, and asphalt–
water interface energy, mJ·m−2; γLW is the van der Waals component, mJ·m−2; and γ+ and
γ− are the Lewis acid term and base term, mJ·m−2.

In addition, some researchers have proposed some comprehensive indicators by
considering the adhesion work with/without moisture and cohesion work of asphalt, such
as ER1, ER2, ER1·SSA, ER2·SSA, etc. Among them, ER2 is proved to be well-correlated with
indicators of moisture susceptibility, and furthermore, a threshold value is recommended
in an NCHRP report [31,32]. Therefore, in this paper, ER2 is used as the comprehensive
indicator, noted as ER. The larger the ER value, the better the moisture susceptibility of the
corresponding asphalt mixture. ER can be calculated using Equation (3).

ER =

∣∣∣∣Was − 2γa
Wasw

∣∣∣∣ (3)

2.2. Three-Phase Adhesion Model

In the conventional two-phase adhesion model, only asphalt (or warm-mix additive
modified asphalt) and aggregate are considered, as shown in Figure 1a, which is suitable
for wet-mixing processes. However, in the engineering practice of WMA, dry mixing is
also widely used, during which the aggregates are first mixed with warm-mix additives
and afterwards with asphalt, as shown in Figure 1b. This process is absolutely inconsistent
with the original two-phase model. Hence, a corresponding three-phase model needs to be
established which takes the warm-mix agent into account. The adhesion in the dry-mixing
method can be expressed as asphalt + extra agent + stone → asphalt-extra agent-stone.
According to its energy change, the corresponding formula of adhesion work without
moisture (Wase) can be introduced, as shown in Equation (4).

wase = γae + γse − γa − 2γe − γs

= 2(
√

γLW
e γLW

a +
√

γLW
s γLW

e +
√

γ+
e γ−a +

√
γ−e γ+

a +
√

γ+
e γ−s +

√
γ−e γ+

s )
(4)

where γae and γse denote the interfacial energy of the asphalt-extra agent and aggregate-
extra agent, respectively, mJ·m−2; γe is the surface free energy of the extra agent.
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The adhesion failure process with moisture of the three-phase model is complex.
The interfacial failure caused by water may occur at two interfaces. One is the warm-
mixing agent–asphalt interface, and the other is the warm-mixing agent–aggregate interface,
as shown in Figure 2. Assuming a 50/50 split between the two scenarios, the formula
of adhesion with moisture is calculated as Equation (5), and ER can be calculated as
Equation (6).
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+
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∣∣∣∣ = ∣∣∣∣Was − γa − γe
Wasw

∣∣∣∣ (6)
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The three-phase model can characterize the process of the dry-mixing method and the
corresponding adhesion indicators can be calculated. It enables the SFE theory to study the
effect of the mixing process on the water stability of WMA.

3. Materials and Methods
3.1. Materials

In this research, two kinds of asphalt were involved, including base asphalt with
penetration 60/80 and I-D linear SBS modified asphalt. The indexes of both asphalts met
the requirement of the Technical Specification for Construction of Highway Asphalt Pavements
standards, a Chinese standard [33]. The specific properties are shown in Table 1.
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Table 1. Properties of asphalt.

Indicator Penetration
(25 ◦C, 100 g)

Ductility *
(cm, 5 cm/min)

Softening
Point
(◦C)

70# base asphalt
Properties 64.1 78.8 50.7

Requirement 60–80 ≥40 ≥43
SBS modified asphalt

Properties 57 28.5 85
Requirement 40–60 ≥20 ≥60

* The test temperature of ductility for 70# base asphalt and SBS modified asphalt was 15 ◦C and 5 ◦C, respectively.

Additionally, five kinds of warm-mixing agents, shown in Figure 3, were employed
in this study. Among them, agent A was surface active additive and was mixed with
aggregates first and asphalt thereafter. Agent B was organic viscosity-reducing additive.
Agents C and D were both brown viscous liquids. B, C, and D were all required to be
mixed with asphalt first to prepare modified asphalt. Agent E was white water-soluble
latex and was sprayed into a mixing pot with asphalt during mixing. The mixing content is
summarized in Table 2.
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Table 2. Mixing content of warm-mixing agents.

Additives Mixing Content

A 3 wt.% to the aggregate
B 3 wt.% to the bitumen
C 6 wt.% to the bitumen
D 6 wt.% to the bitumen
E 10 wt.% to the bitumen

Three kinds of aggregates, including limestone, basalt, and granite, which are com-
monly used in the field of road engineering, were selected for further research. The densities
indexed are shown in Table 3.
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Table 3. Density indexes of aggregates.

Aggregate Type Limestone Basalt Granite

Bulk Density/g·cm−3 2.692 2.815 2.721
Apparent Density/g·cm−3 2.720 2.933 2.784

In order to study the factor of aggregate moisture content, limestone with different
moisture contents was obtained by soaking limestone in water for three hours and placing
it in a 145 ◦C oven for different times. The quality was recorded every half an hour and,
therefore, the relationship between the moisture content of the aggregate and the drying
time can be acknowledged, which is shown in Table 4 and Figure 4.

Table 4. Moisture content of limestone at different drying times.

Drying Time 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Moisture content 4.8 3.8 2.9 2.1 1.5 0.9 0.4 0.1 0.01 0
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3.2. Experimental Methods
3.2.1. Surface Free Energy Testing Technology

The sessile drop method was employed in this research to test the surface free energy
of asphalt and aggregates. The instrument used was a contact angle system OCA, as
shown in Figure 5, of which the theoretical basis is the Young’s equation (Equation (7))
deduced in Figure 6. Combining it with the LW-AB model (Lewis Acid/Base Model) of
Equation (8), Equation (9) was obtained. Regarding the solid as the object to be measured,
by increasing the number of known liquids, the linear equation set shown in Equation (10)
was established and the surface free energy parameters were obtained when the equation
was solved.

γs = γl cos θ + γsl (7)

γ = γLW + γAB = γLW + 2
√

γ+γ− (8)

γl(1 + cos θ) = 2(
√
γLW

s γLW
l +

√
γ+s γ

−
l +

√
γ−s γ

+
l

)
(9)
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
√
γLW

l1

√
γ+l1

√
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√
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√
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√
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

√
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 =


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(1+cosθ 1

)
2

γl2
(1+cosθ 2)

2
γl3

(1+cosθ 3)
2

 (10)

where θ represents the contact angle between the test solid and known liquid; γs and γl
represent the surface free energy of solid and liquid, respectively, mJ·m−2; γsl represents
the solid–liquid interface energy, mJ·m−2; l1, l2, and l3 represent different known liquids.
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In the NCHRP report, the surface energy parameters of five known liquids suitable
for testing asphalt and aggregates were given, which are listed in Table 5 [34]. Some
preliminary researches have been conducted to select proper liquids based on conditional
number (CN) to reduce the impact of parameters on test results. As a consequence, distilled
water, diiodomethane, and glycerin were chosen for the following test.

Table 5. The surface energy parameters of five liquids.

Liquid Type γ (mJ/m2) γLW (mJ/m2) γ− (mJ/m2) γ+ (mJ/m2)

Distilled water 72.8 21.8 25.5 25.5
Glycol 48.0 29.0 47.0 1.92

Glycerin 64.0 34.0 57.4 3.92
Formamide 58.0 39.0 39.6 2.28

Diiodomethane 50.8 50.8 0 0

3.2.2. Freeze–Thaw Splitting Test

According to the corresponding standard of China, the moisture susceptibility is
evaluated using freeze–thaw splitting test [33,34]. The test requires two groups of four
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specimens prepared via 50 times of Marshall compaction in each side and one group,
namely the freeze–thaw group, needs to undergo freeze–thaw conditioning, while the other
group is the control group stored in ambient environment. Both groups are tested at 25 ◦C
and the splitting strength can be obtained using Equation (11). The tensile strength ratio
(TSR) can be calculated with Equation (12).

ST1 or ST2 =
0.006287PT

h
(11)

TSR =
ST2

ST1
× 100 (12)

where TSR is tensile strength ratio (%); ST1 and ST2 are splitting tensile strength (kPa) under
dry and freeze–thaw conditioning, respectively; PT is the maximum load (N); and h is the
height of the specimen, mm.

4. Results and Discussion

The factors affecting the moisture susceptibility of WMA, which are complicated, can
be studied by using SFE theory. The characteristics of raw materials, the mixture design,
and the mixing temperature will all make a difference [35]. In this paper, the influence of
aggregate type, aggregate moisture content, warm-mix additives, asphalt type, and mixing
method on the water stability of WMA are studied utilizing SFE theory.

4.1. Surface Free Energy Components

The test samples and the testing procedures are shown in Figure 7. The parameters
based on surface free energy were calculated after contact angles were measured, and the
results are shown in Table 6.
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Table 6. SFE parameters.

Items γ (mJ/m2) γLW (mJ/m2) γ− (mJ/m2) γ+ (mJ/m2)

Base asphalt 34.84 33.26 l.04 0.60
Agent A modified asphalt 43.04 41.04 0.69 1.45
Agent B modified asphalt 33.03 32.98 0.01 0.05
Agent C modified asphalt 34.84 32.59 2.00 0.64
Agent D modified asphalt 37.21 35.77 0.74 0.70
Agent E modified asphalt 34.60 33.32 0.85 0.48

SBS modified asphalt 33.70 31.28 2.60 0.57
Agent A modified SBS 35.06 33.15 2.31 0.39
Agent B modified SBS 34.34 32.13 2.60 0.47
Agent C modified SBS 39.68 34.61 5.96 1.08
Agent D modified SBS 32.29 31.10 1.39 0.25
Agent E modified SBS 37.11 34.11 2.95 0.76

Basalt 42.8 36.9 18.04 0.48
Granite 40.57 35.49 14.66 0.44

Limestone 49.68 40.40 24.85 0.87
Agent E 30.09 25.05 0.67 9.45

4.2. The Effect of Aggregate Type

In order to explore the effect of aggregate type on the water stability of WMA, the
adhesion parameters of basalt, granite, and limestone with agent A modified base asphalt
were calculated and are shown in Figure 8. The TSR test values of corresponding mixtures
were prepared and tested for verification. The mixture gradation was AC-20. Results are
shown in Table 7.
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Table 7. TSR test results for different aggregates.

Aggregate Basalt Granite Limestone

TSR/% 80.1 76.9 81.4

It can be seen from the viewpoint of adhesion indicators that the type of aggregate had
a significant influence on the asphalt–aggregate adhesion. The ranking result was limestone
> basalt > granite ordered by Was, Wasw, as well as ER. The ranking of TSR results shows
favorable consistency with the adhesion indicators.
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4.3. The Effect of Aggregate Moisture Content

None of the existing adhesion indicators consider the effect of aggregate moisture
content. Calculation models of adhesion work, with and without moisture, respectively,
simulate conditions of no water and adequate water. In this paper, the effective adhesion
work is proposed based on the moisture content of aggregate in the mixtures. The physical
meaning of effective adhesion is the value of the surface energy change on a unit area of
the aggregate after adhesion among water, asphalt, and aggregate. The value is positively
correlated with asphalt content and adhesion work without moisture, and negatively
correlated with moisture content and adhesion work with moisture, as shown in Equation
(13). The larger the effective adhesion work, the better the adhesion between asphalt
and aggregate.

Was,eff = Was ×
pa

pa + w
−Wasw ×

w
pa + w

(13)

where Was,eff is the effective adhesion work, mJ/m2; ω and Pa represent the aggregate
moisture content and asphalt content, respectively, %.

The adhesion work with and without moisture between warm-mixing agent A modi-
fied asphalt and different aggregates were calculated, as shown in Table 8. Analysis of the
results shows that for all combinations of asphalts and aggregates, Wasw was less than Was,
meaning that water was more prone to achieve adhesion to aggregate than asphalt. This
indicates that the presence of water influenced the adhesion between asphalt and aggregate,
thus creating weakened adhesion areas at the interface of asphalt and aggregates, which can
result in easier water invasion into the asphalt–aggregate interface and moisture damage.

Table 8. Values of Was and Wasw.

Asphalt Type Was (mJ/m2) Wasw (mJ/m2)

Agent A
modified asphalt

Basalt Granite Limestone Basalt Granite Limestone

89.210 86.652 94.992 47.819 50.880 41.100

Meanwhile, specimens using warm-mixing additive agent A and limestone with
moisture contents of 0%, 0.01%, 0.4%, and 1.5%, respectively, were prepared for the freeze–
thaw splitting test. The mixing temperature was 135 ◦C, the gradation was AC-13, and
the asphalt content was 5.0%. The TSR results and effective adhesion work of mixtures
with different moisture contents were summarized and then subjected to linear regression
analysis, as shown in Figure 9.
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From the figure, it can be seen that the effective adhesion work decreased significantly
as the moisture content of aggregate increased, indicating that the presence of water in the
aggregate significantly degraded the adhesion of the asphalt to the aggregate. The TSR
values verified this phenomenon. As the moisture content of the aggregate increased, the
splitting strength without freeze–thaw cycles decreased slightly, while that with freeze–
thaw conditioning decreased sharply, leading to a dramatic decline in TSR.

Linear regression analysis shows that the correlation coefficient between TSR and
Was,eff calculated reached 0.95, which means strong correlation. This proves the validity of
the effective adhesion work in evaluating the water stability of the WMA.

4.4. The Effect of Warm-Mixing Agent Type

It has been researched that warm-mixing agents have an important effect on the perfor-
mance of WMA. In this section, the adhesion indicators of different warm-mixing modified
base asphalts to limestone are calculated. The results are shown in Table 9 and Figure 10.

Table 9. Adhesion indicators of asphalts and limestone.

Asphalt Type Was (mJ/m2) Wasw (mJ/m2) ER

Base asphalt 82.938 37.442 0.4385
Agent A modified asphalt 94.992 41.100 0.3142
Agent B modified asphalt 82.007 38.276 0.4015
Agent C modified asphalt 75.420 45.005 0.2102
Agent D modified asphalt 83.185 33.994 0.5297
Agent E modified asphalt 85.975 39.468 0.3657
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Figure 10. Adhesion indicators of asphalts and limestone.

The ranking based on the calculation of the three adhesion indicators was different.
The results ranked by the Was were A > E > D > B > C, while those by the Wasw and ER
were D > B > E > A > C. The difference emerged due to the consideration of the effect of
moisture. When lacking the consideration of water, agents A and D were able to promote
the adhesion as the Was value announced, while all the agents deteriorated the adhesion
when moisture was taken into account as Wasw and ER, with oil-based warm-mixing agent
D having the least effect.

To verify the above findings, WMA samples using warm-mixing agents A, D, and E
were compacted and the TSR test was conducted. The mixture gradation was AC-20, and
the aggregate was limestone. Results are shown in Table 10.
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Table 10. TSR of WMA using different warm-mixing agents.

Agent HMA Agent A Agent D Agent E

TSR/% 91.9 81.3 86.6 81.5

From the view of TSR, all the warm-mixing agents degraded the moisture susceptibility,
among which the mixture with agent D was the least affected. The ranking by TSR test
result was consistent with the calculation of Wasw and ER. The reason may be the possible
introduction of moisture brought by agents A and E. Agent A was a kind of water-soluble
solid and, thus, can easily absorb water, while agent E was in the form of an emulsion
containing water. Agent D was oil-based, and thus hydrophilic, and would not be a cause
for the introduction of water. Overall, all the indicators except Was came to the consensus
that the water stability of WMA with an oil-based warm-mixing agent was better.

4.5. The Effect of Asphalt Type

To investigate the effect of asphalt type on the moisture stability of WMA, the adhesion
indicators were calculated based on the SFE parameters of base asphalt, SBS modified
asphalt, and limestone aggregates, and the result is shown in Figure 11. The freeze–thaw
splitting test was conducted for verification on the hot mix and warm mix simultaneously
with limestone and base asphalt or SBS modified. The warm-mix additive was agent C and
the mixing temperature was 30 ◦C lower than that for HMA. The test result is shown in
Table 11.
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Table 11. TSR of mixtures with different asphalts and warm-mix additive C.

Asphalt Type Mixture Type TSR/%

SBS modified asphalt HMA 91.0
WMA-C 93.4

70# base asphalt HMA 76.7
WMA-C 68.9
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It can be inferred from the results that when different warm-mix additives were applied
to different asphalts, the adhesion properties between asphalt and aggregate were distinct.
In other words, there was compatibility between asphalt and warm-mix agents. From
the calculation result of ER, agent D was the best among the five agents for base asphalt,
while agent C was the best for SBS modified asphalt. The choice of asphalt can determine
the application of warm-mix agents and, therefore, result in distinct performances of
WMA mixtures.

In the meantime, when applying different asphalts to warm mixing, the effect on
the moisture susceptibility is distinct. To take the combination of asphalt + agent C as
an example, the introduction of agent C resulted in an extreme decrease in ER for base
asphalt, while the ER for SBS modified asphalt was almost equivalent to that of original
asphalt and was much higher than agent C modified base asphalt. This was verified by the
TSR result. Also, it is worth noticing that the TSR result for the base asphalt mixture was
consistent with ER value, which both showed a sharp decrease, while that of SBS modified
asphalt showed a slight enhancement and was not consistent with ER. There may be other
more sophisticated mechanisms for the interaction between polymer modified asphalt and
warm-mix agent that compensate for the slight decline in SFE parameters.

4.6. The Effect of the Mixing Process

As interpreted above, the conventional two-phase asphalt–aggregate adhesion model
is suitable for the wet-mixing method, in which the warm-mixing additives are added
into asphalt to modified asphalt first and then mixed with aggregates. When confronted
with additives needing the dry-mixing method, the adhesion of asphalt, aggregate, and
warm-mixing agent should be characterized using the three-phase model proposed in
previous sections. In this article, the adhesion indicator ER of agent E with base asphalt
based on two- and three-phase model was calculated and is shown in Figure 12. Dry-mixing
and wet-mixing WMA mixture specimens using AC-13 gradation for the TSR test were
prepared with agent E, limestone, and base asphalt for validation. The mixing temperature
was 135 ◦C. The freeze–thaw splitting test results are shown in Table 12.
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Table 12. TSR values of different mixing methods.

Mixing Method VV/% ST1/MPa ST2/MPa TSR/%

Dry 5.44 0.717 0.966 81.7
Wet 5.47 0.567 0.850 74.3

For different types of aggregates, the ER values of the three-phase model were greater
than those of the two-phase model, indicating better adhesion prepared using the dry-
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mixing method. The TSR result demonstrated the theoretical calculation, with mixtures
prepared using the dry-mixing method superior to those using the wet-mixing method.
This consistency also indicates that the three-phase model proposed in this paper is effective
for predicting the water stability of the WMA prepared with the dry-mixing method.

5. Conclusions

Using surface free energy theory, the influence of several factors on the moisture
susceptibility of WMA focusing on the adhesion properties of asphalt–aggregate interface
was studied, and the following conclusions were drawn:

1. Aggregate type, moisture content of aggregate, warm-mixing agent type, asphalt
type, and mixing process have significant effects on the water stability of WMA,
and the conclusions of adhesion indicators based on SFE and conventional moisture
susceptibility test method results are consistent. Specifically, the water content of
the aggregate state is the most significant factor affecting the moisture susceptibility.
The presence of water greatly affects the performance of the mixture. Therefore, the
dryness of the aggregate should be strictly controlled in WMA.

2. Based on the surface free energy theory, the effective adhesion work considering the
water content of the aggregate is proposed to characterize the aggregate–asphalt adhe-
sion condition under different water contents. This indicator is highly correlated with
TSR value and can be used as a convenient index to predict the moisture susceptibility
of WMA.

3. A three-phase model of asphalt-warm mixing agent–aggregate is proposed according
to the production process of the dry-mixing method. The corresponding calculation
equations of adhesion indicators were also derived. The consistency between the
adhesion indicator and TSR indicated that the three-phase model is applicable to the
adhesion process of WMA prepared using the dry-mixing method.
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