Metal-Chelated Polymeric Nanomaterials for the Removal of Penicillin G Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of p(GMA)-IDA-Cu2+ Nanoparticles
2.3. Characterization of p(GMA)-IDA-Cu2+ Nanoparticles
2.4. High-Performance Liquid Chromatography (HPLC) Analysis for Pen G Assays
2.5. Optimization Studies for Removal of Pen G with p(GMA)-IDA-Cu2+ Nanoparticles
2.6. pH Effect on Pen G Removal
2.7. Initial Concentration Effect on Pen G Removal
2.8. Ionic Strength Effect on Pen G Removal
2.9. Time Effect on Pen G Removal
2.10. Temperature Effect on Pen G Removal
2.11. Reusability Experiment of Metal-Chelated Nanoparticles
2.12. Selectivity Experiment of p(GMA)-IDA-Cu2+ Nanoparticles
3. Results
3.1. Characterization of the Metal-Chelated Nanoparticles
3.1.1. FTIR-ATR Spectrum of p(GMA), p(GMA)-IDA, p(GMA)-IDA-Cu2+, and p(GMA)-IDA-Cu-Pen G Nanoparticles
3.1.2. SEM Analysis of p(GMA)-IDA-Cu2+ Nanoparticles
3.1.3. Elemental Analysis of p(GMA)-IDA-Cu2+ Nanoparticles with EDS
3.1.4. Zeta Size Analysis of p(GMA) Nanoparticles
3.1.5. Surface Area of p(GMA)-IDA-Cu2+ Nanoparticles
3.2. Removal of Pen G with Metal-Chelated Nanoparticles
3.2.1. The pH Effect
3.2.2. Initial Concentration Effect
3.2.3. Ionic Strength Effect
3.3. Time Effect
3.4. Temperature Effect
3.5. Reusability Experiment of p(GMA)-IDA-Cu2+ Nanoparticles
3.6. Selectivity and Specificity Experiment of Metal-Chelated Nanoparticles
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Queener, S.W.; Neuss, N. The Biosynthesis of β-Lactam Antibiotics. In The Biology of Beta-Lactam Antibiotics; Elsevier: Amsterdam, The Netherlands, 1982; pp. 1–81. [Google Scholar]
- Jevinova, P.; Dudrikova, E.; Sokol, J.; Nagy, J.; Mate, D.; Pipova, M.; Cabadaj, R. Determination of Oxytetracycline Residues in Milk with the Use of HPLC Method and Two Microbial Inhibition Assays. Bull. Vet. Inst. Pulawy 2003, 47, 211–216. [Google Scholar]
- Christian, T.; Schneider, R.J.; Färber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E. Determination of Antibiotic Residues in Manure, Soil, and Surface Waters. Acta Hydrochim. Hydrobiol. 2003, 31, 36–44. [Google Scholar] [CrossRef]
- Hernández, F.; Calısto-Ulloa, N.; Gómez-Fuentes, C.; Gómez, M.; Ferrer, J.; González-Rocha, G.; Bello-Toledo, H.; Botero-Coy, A.M.; Boıx, C.; Ibáñez, M.; et al. Occurrence of Antibiotics and Bacterial Resistance in Wastewater and Sea Water from the Antarctic. J. Hazard. Mater. 2019, 363, 447–456. [Google Scholar] [CrossRef]
- Kumar, A.; Pal, D. Antibiotic Resistance and Wastewater: Correlation, Impact and Critical Human Health Challenges. J. Environ. Chem. Eng. 2018, 6, 52–58. [Google Scholar] [CrossRef]
- Urraca, J.L.; Moreno-Bondi, M.C.; Hall, A.J.; Sellergren, B. Direct Extraction of Penicillin G and Derivatives from Aqueous Samples Using a Stoichiometrically Imprinted Polymer. Anal. Chem. 2007, 79, 695–701. [Google Scholar] [CrossRef]
- Report for 2014 on the Results from the Monitoring of Veterinary Medicinal Product Residues and Other Substances in Live Animals and Animal Products. EFSA Support. Public 2016, 13, 1–70. [CrossRef]
- Jing, T.; Wang, Y.; Dai, Q.; Xia, H.; Niu, J.; Hao, Q.; Mei, S.; Zhou, Y. Preparation of Mixed-Templates Molecularly Imprinted Polymers and Investigation of the Recognition Ability for Tetracycline Antibiotics. Biosens. Bioelectron. 2010, 25, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
- Beyene, T. Veterinary Drug Residues in Food-Animal Products: Its Risk Factors and Potential Effects on Public Health. J. Vet. Sci. Technol. 2015, 7, 1000285. [Google Scholar] [CrossRef]
- Kantiani, L.; Farré, M.; Barceló, D.; Barceló, D. Analytical Methodologies for the Detection of β-Lactam Antibiotics in Milk and Feed Samples. TrAC Trends Anal. Chem. 2009, 28, 729–744. [Google Scholar] [CrossRef]
- Dehghani, M.; Nasseri, S.; Ahmadi, M.; Samaei, M.R.; Anushiravani, A. Removal of Penicillin G from Aqueous Phase by Fe+3-TiO2/UV-A Process. J. Environ. Health Sci. Eng. 2014, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Norzaee, S.; Bazrafshan, E.; Djahed, B.; Kord Mostafapour, F.; Khaksefidi, R. UV Activation of Persulfate for Removal of Penicillin G Antibiotics in Aqueous Solution. Sci. World J. 2017, 2017, 3519487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caudell, M.A.; Quinlan, M.B.; Subbiah, M.; Call, D.R.; Roulette, C.J.; Roulette, J.W.; Roth, A.; Matthews, L.; Quinlan, R.J. Antimicrobial Use and Veterinary Care among Agro-Pastoralists in Northern Tanzania. PLoS ONE 2017, 12, e0170328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasho, R.P.; Cho, J.Y. Veterinary Antibiotics in Animal Waste, Its Distribution in Soil and Uptake by Plants: A Review. Sci. Total Environ. 2016, 563–564, 366–376. [Google Scholar] [CrossRef]
- Baynes, R.E.; Dedonder, K.; Kissell, L.; Mzyk, D.; Marmulak, T.; Smith, G.; Tell, L.; Gehring, R.; Davis, J.; Riviere, J.E. Health Concerns and Management of Select Veterinary Drug Residues. Food Chem. Toxicol. 2016, 88, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Gehring, R.; Riviere, J.E.; Lin, Z. Development and Application of a Population Physiologically Based Pharmacokinetic Model for Penicillin G in Swine and Cattle for Food Safety Assessment. Food Chem. Toxicol. 2017, 107, 74–87. [Google Scholar] [CrossRef]
- Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M. Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality. Environ. Health Perspect. 2007, 115, 308–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishi, K.; Isobe, S.-I.; Zhu, Y.; Kiyama, R. Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials. Sensors 2015, 15, 25831–25867. [Google Scholar] [CrossRef] [Green Version]
- Toprak, A.; Görgün, C.; Kuru, C.I.; Türkcan, C.; Uygun, M.; Akgöl, S. Boronate Affinity Nanoparticles for RNA Isolation. Mater. Sci. Eng. C 2015, 50, 251–256. [Google Scholar] [CrossRef]
- Wang, T.; Ai, S.; Zhou, Y.; Luo, Z.; Dai, C.; Yang, Y.; Zhang, J.; Huang, H.; Luo, S.; Luo, L. Adsorption of Agricultural Wastewater Contaminated with Antibiotics, Pesticides and Toxic Metals by Functionalized Magnetic Nanoparticles. J. Environ. Chem. Eng. 2018, 6, 6468–6478. [Google Scholar] [CrossRef]
- Wang, H.; Wang, R.; Han, Y. Preparation of Molecular Imprinted Microspheres Based on Inorganic–Organic Co-Functional Monomer for Miniaturized Solid-Phase Extraction of Fluoroquinolones in Milk. J. Chromatogr. B 2014, 949–950, 24–29. [Google Scholar] [CrossRef]
- Kuru, C.İ.; Türkcan, C.; Uygun, M.; Okutucu, B.; Akgöl, S. Preparation and Characterization of Silanized Poly(HEMA) Nanoparticles for Recognition of Sugars. Artif. Cells Nanomed. Biotechnol. 2014, 44, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Aktaş Uygun, D.; Uygun, M.; Akgöl, S.; Denizli, A. Reversible Adsorption of Catalase onto Fe3+ Chelated Poly(AAm-GMA)-IDA Cryogels. Mater. Sci. Eng. C 2015, 50, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Akgöl, S.; Türkmen, D.; Denizli, A. Cu(II)-Incorporated, Histidine-Containing, Magnetic-Metal-Complexing Beads as Specific Sorbents for the Metal Chelate Affinity of Albumin. J. Appl. Polym. Sci. 2004, 93, 2669–2677. [Google Scholar] [CrossRef]
- Bangs, L. Uniform Latex Particles; Seragen Diagnostics Inc.: Indianapolis, IN, USA, 1984. [Google Scholar]
- Javanbakht, M.; Pishro, K.A.; Nasab, A.H.; Akbari-adergani, B. Extraction and Purification of Penicillin G from Fermentation Broth by Water-Compatible Molecularly Imprinted Polymers. Mater. Sci. Eng. C 2012, 32, 2367–2373. [Google Scholar] [CrossRef]
- Benito-Peña, E.; Moreno-Bondi, M.C.; Aparicio, S.; Orellana, G.; Cederfur, J.; Kempe, M. Molecular Engineering of Fluorescent Penicillins for Molecularly Imprinted Polymer Assays. Anal. Chem. 2006, 78, 2019–2027. [Google Scholar] [CrossRef]
- Bayramoğlu, G.; Yakup Arıca, M. Immobilization of Laccase onto Poly(Glycidylmethacrylate) Brush Grafted Poly(Hydroxyethylmethacrylate) Films: Enzymatic Oxidation of Phenolic Compounds. Mater. Sci. Eng. C 2009, 29, 1990–1997. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Yakup Arica, M. Poly(Methyl Methacrylate-Glycidiyl Methacrylate) Film with Immobilized Iminodiacetic Acid and Cu(II) Ion: For Protein Adsorption. Fibers Polym. 2012, 13, 1225–1232. [Google Scholar] [CrossRef]
- Zetasizer User Manual; Malvern Instruments Ltd.: Worcestershire, UK, 2013.
- Yin, J.; Meng, Z.; Du, M.; Liu, C.; Song, M.; Wang, H. Pseudo-Template Molecularly Imprinted Polymer for Selective Screening of Trace β-Lactam Antibiotics in River and Tap Water. J. Chromatogr. A 2010, 1217, 5420–5426. [Google Scholar] [CrossRef]
- Kuru, C.I.; Ulucan, F.; Kuşat, K.; Akgöl, S. A Model Study by Using Polymeric Molecular Imprinting Nanomaterials for Removal of Penicillin G. Environ. Monit. Assess. 2020, 192, 367. [Google Scholar] [CrossRef]
- Ahmadi, S.; Mostafapour, F. Survey of Efficiency of Dissolved Air Flotation in Removal Penicillin G Potassium from Aqueous Solutions. Br. J. Pharm. Res. 2017, 15, 1–11. [Google Scholar] [CrossRef]
- Kwon, D.; Yoo, H.; Lee, H.; Jeon, S. Colorimetric Detection of Penicillin G in Milk Using Antibody-Functionalized Dendritic Platinum Nanoparticles. Sens. Actuators B Chem. 2018, 255, 552–556. [Google Scholar] [CrossRef]
- Alamgir; Talha, K.; Wang, B.; Liu, J.-H.; Ullah, R.; Feng, F.; Yu, J.; Chen, S.; Li, J.-R. Effective Adsorption of Metronidazole Antibiotic from Water with a Stable Zr(IV)-MOFs: Insights from DFT, Kinetics and Thermodynamics Studies. J. Environ. Chem. Eng. 2020, 8, 103642. [Google Scholar] [CrossRef]
- Cederfur, J.; Pei, Y.; Zihui, M.; Kempe, M. Synthesis and Screening of a Molecularly Imprinted Polymer Library Targeted for Penicillin G. J. Comb. Chem. 2003, 5, 67–72. [Google Scholar] [CrossRef]
- Hsieh, S.-H.; Huang, H.-Y.; Lee, S. Determination of Eight Penicillin Antibiotics in Pharmaceuticals, Milk and Porcine Tissues by Nano-Liquid Chromatography. J. Chromatogr. A 2009, 1216, 7186–7194. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Xu, Y.; Wang, H.; Zeng, Q.; Zhao, Q.; Ren, N.; Ding, L. Determination of β-Lactam Antibiotics in Milk Based on Magnetic Molecularly Imprinted Polymer Extraction Coupled with Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. B 2010, 878, 3421–3426. [Google Scholar] [CrossRef]
- Briscoe, S.E.; McWhinney, B.C.; Lipman, J.; Roberts, J.A.; Ungerer, J.P.J. A Method for Determining the Free (Unbound) Concentration of Ten Beta-Lactam Antibiotics in Human Plasma Using High Performance Liquid Chromatography with Ultraviolet Detection. J. Chromatogr. B 2012, 907, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhou, Q.; Jiang, G. Nanomaterials for Analysis and Monitoring of Emerging Chemical Pollutants. TrAC Trends Anal. Chem. 2014, 58, 10–22. [Google Scholar] [CrossRef]
- Pouretedal, H.R.; Sadegh, N. Effective Removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from Aqueous Solutions Using Activated Carbon Nanoparticles Prepared from Vine Wood. J. Water Process Eng. 2014, 1, 64–73. [Google Scholar] [CrossRef]
- Gaudin, V. Advances in Biosensor Development for the Screening of Antibiotic Residues in Food Products of Animal Origin–A Comprehensive Review. Biosens. Bioelectron. 2017, 90, 363–377. [Google Scholar] [CrossRef]
- Aksu, Z.; Tunç, Ö. Application of Biosorption for Penicillin G Removal: Comparison with Activated Carbon. Process Biochem. 2005, 40, 831–847. [Google Scholar] [CrossRef]
- Nourmoradi, H.; Daneshfar, A.; Mazloomi, S.; Bagheri, J.; Barati, S. Removal of Penicillin G from Aqueous Solutions by a Cationic Surfactant Modified Montmorillonite. MethodsX 2019, 6, 1967–1973. [Google Scholar] [CrossRef] [PubMed]
- Akbulut Soylemez, M. Selective Removal of Penicillin G from Environmental Water Samples by Using Molecularly Imprinted Membranes. Hittite J. Sci. Eng. 2020, 7, 329–337. [Google Scholar] [CrossRef]
- Sadeghi, M.; Moradian, M.; Tayebi, H.-A.; Mirabi, A. Removal of Penicillin G from Aqueous Medium by PPI@SBA-15/ZIF-8 Super Adsorbent: Adsorption Isotherm, Thermodynamic, and Kinetic Studies. Chemosphere 2023, 311, 136887. [Google Scholar] [CrossRef] [PubMed]
Molecule | p(GMA)-IDA-Cu2+ | p(GMA) | ||
---|---|---|---|---|
Kd (mL/mg) | K | Kd (mL/mg) | K | |
Penicillin G | 2894.92 | - | 940.74 | 3.08 |
Ampicilline | 1045.02 | 2.77 | - | - |
Used System | Size | Adsorption Capacity | Time | Sample | References |
---|---|---|---|---|---|
BLA-imprinted polymers | 25–38 µm particles | 9.56 μg/L | NA | Rivers and drinking water | Yin et al., 2010 [31] |
HPLC | Reverse phase C18 2.5 μm 4.6 × 30 mm XBridge column | 7.76 μg/L | 10 min | Patient samples from pathology laboratory | Briscoe et al., 2012 [39] |
PenG-imprinted polymers | 25–50 μm | 100% cross-reactivity | 20 h | Screening from library | Cederfur et al., 2003 [36] |
Nanoscale liquid chromatography (nano-LC) with UV and MS | 0.2 μm pore size | Nano-LC-MS showed 4- to 340-fold reduction in detection limit according to nano-LC-UV | 45 min | Drug, milk, and, body fluid samples | Hsieh et al., 2009 [37] |
Dried R. arrhizus and dried activated sludge | <0.15 mm | 1000 mg/L | 20–30 min | Aqueous solution | Aksu et al., 2005 [43] |
Molecular-imprinted polymers | 50–100 μm | 92 to 103% | 20 h | Molecular-engineered assay | Benito-Pena et al., 2006 [27] |
Nanoparticles of titanium dioxide (TiO2) doped with Fe3+ | Less than 50 nm | 90.5% | 120 min | Drinking water | Dehghani et al., 2014 [11] |
Hexadecyl Trimethyl Ammonium Bromide modified montmorillonite (HDTMA-Mt) | NA | 88.5 mg/g | 60 min | Aqueous solutions | Nourmoradi et al., 2019 [44] |
Molecular-imprinted polymers | 60.38 nm | 71.91 g/g | 15 min | Laboratory scale | Kuru et al., 2020 [32] |
Molecular-imprinted membrane | 0.570 nm holes | 3.50 µg/g | 20 min | Tap and natural water | Akbulut Soylemez, 2020 [45] |
PPI@SBA-15/ZIF-8 nanoparticles | NA | 400 mg/g | 90 min | Aqueous solutions | Sadeghi et al., 2023 [46] |
This study | 150 nm | 633.92 mg/g | 15 min | Laboratory scale |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuru, C.İ.; Ulucan-Karnak, F.; Akgol, S. Metal-Chelated Polymeric Nanomaterials for the Removal of Penicillin G Contamination. Polymers 2023, 15, 2832. https://doi.org/10.3390/polym15132832
Kuru Cİ, Ulucan-Karnak F, Akgol S. Metal-Chelated Polymeric Nanomaterials for the Removal of Penicillin G Contamination. Polymers. 2023; 15(13):2832. https://doi.org/10.3390/polym15132832
Chicago/Turabian StyleKuru, Cansu İlke, Fulden Ulucan-Karnak, and Sinan Akgol. 2023. "Metal-Chelated Polymeric Nanomaterials for the Removal of Penicillin G Contamination" Polymers 15, no. 13: 2832. https://doi.org/10.3390/polym15132832
APA StyleKuru, C. İ., Ulucan-Karnak, F., & Akgol, S. (2023). Metal-Chelated Polymeric Nanomaterials for the Removal of Penicillin G Contamination. Polymers, 15(13), 2832. https://doi.org/10.3390/polym15132832