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Abstract: The disposal of tires at the end of their lifespan results in societal and environmental
issues. To tackle this, recycling and reuse are effective solutions. Among various recycling methods,
devulcanization is considered to be a very sustainable option, as it involves the controlled breakdown
of crosslinks while maintaining the polymer backbones. The objective of this study is to develop a
sustainable devulcanization process for passenger car tire rubber using silanes. In this study, a thermo-
mechanical–chemical devulcanization process was conducted to screen six potential devulcanization
aids (DAs). Silanes were chosen as they are widely used in tire rubber as coupling agents for silica.
The efficiency of the devulcanization was studied by the degree of network breakdown, miscibility of
the devulcanized material, and mechanical properties of the de- and revulcanized material. Compared
to the parent compound, a 55–60% network breakdown was achieved for the devulcanizate along
with 50–55% of tensile strength recovery. In addition to superior devulcanization efficiency, this
DA offers a sustainable alternative to the conventional ones, such as di-phenyl-di-sulphide, due
to its compliance with safety regulations. The devulcanizate can be utilized in high-performance
applications, such as tires and seals, while 100% devulcanizate can be employed in low-strength
technical rubber products.

Keywords: devulcanization; rubber recycling; silane; end-of-life tire; sustainability; circular economy

1. Introduction

The extensive usage of rubber in various fields of application causes a serious environ-
mental problem in terms of waste. In this scenario, the great challenge for civilization is
to recycle and reuse this rubber [1]. Around 70% of the rubber production worldwide is
consumed by the tire industry [2]. The use of styrene butadiene rubber (SBR) in tire produc-
tion is increasing due the requirement of low rolling resistance, resulting in decreased fuel
consumption and less carbon dioxide emissions [3]. Apart from tires, different molded and
extruded rubber products, such as conveyor belts, hoses, etc., are also produced from SBR.
The greatest hurdle for recycling is that rubber products are mostly vulcanized. During the
vulcanization process, polymer chains are crosslinked, which provides a three-dimensional
stable network. The insoluble and infusible nature of vulcanized rubber impedes the
recycling process [1].

Landfilling of end-of-life tires (ELTs) is inhibited in the European Commission since
1999, which accelerated the recycling and reuse of ELTs in many European countries [4].
Most of the ELTs in Europe are granulated or ground to prepare floorings, walkway
tiles, thermal isolation, acoustic isolation, road materials, and road as well as rail equip-
ment [5]. Moreover, the usage of recycled rubber allows us to reduce the carbon footprint
of rubber products [6].

Different recycling methods for rubber are described in the literature [7,8], namely, me-
chanical [9–12], ultrasonic [13–15], chemical [16,17], microwave [18–20], cryogenic [21–23],
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microbial [24–26], thermo-mechanical–chemical [27–29], etc. Most of the recycling pro-
cesses are mainly based on the random scission of the polymer network and crosslinks [4],
whereas the selective breakdown of the crosslinks is required to improve the recycled rub-
ber quality. The polymer chains have to stay intact as much as possible, which introduces
the scope of devulcanization [3]. Devulcanized rubber depicts better mechanical proper-
ties than reclaimed rubber due to the higher percentage of intact polymer backbones [7].
Hence, devulcanization is considered the most sustainable solution for rubber recycling.
A comparative schematic diagram of rubber reclamation and devulcanization is shown
in Figure 1.

Polymers 2023, 14, x FOR PEER REVIEW 2 of 18 
 

 

Different recycling methods for rubber are described in the literature [7,8], namely, 
mechanical [9–12], ultrasonic [13–15], chemical [16,17], microwave [18–20], cryogenic [21–
23], microbial [24–26], thermo-mechanical–chemical  [27–29], etc. Most of the recycling 
processes are mainly based on the random scission of the polymer network and crosslinks 
[4], whereas the selective breakdown of the crosslinks is required to improve the recycled 
rubber quality. The polymer chains have to stay intact as much as possible, which 
introduces the scope of devulcanization [3]. Devulcanized rubber depicts better 
mechanical properties than reclaimed rubber due to the higher percentage of intact 
polymer backbones [7]. Hence, devulcanization is considered the most sustainable solution 
for rubber recycling. A comparative schematic diagram of rubber reclamation and 
devulcanization is shown in Figure 1. 

 
Figure 1. Schematic diagram of reclamation and devulcanization. 

The most common and effective devulcanization mechanism is the rearrangement of 
the covalent bonds. Devulcanization aids (DAs) produce free radicals or reactive moieties 
during the devulcanization process, which react with the active groups of the broken 
crosslinks and form a new stable bond. Disulphides are the most common moieties for 
devulcanization, e.g., bis(3-triethoxysilyl propyl) disulphide (TESPD), diphenyl 
disulphide (DPDS), 2,2-dibenzamido-diphenyl disulphide (DBDPD), etc. [1]. A DA 
containing a polysulphide moiety is bis(3-triethoxysilyl propyl) tetrasulphide (TESPT) 
[2,6,27]. 

The filler system plays a vital role in the devulcanization process, as filler–polymer 
and filler–filler bonds become distorted during the thermo-mechanical process. For 
natural rubber (NR) filled with carbon black (CB), devulcanization is comparatively easier 
than for silica-filled rubbers: the breakdown of the physical interaction between the filler 
and polymer matrix is easier than the breakdown of the chemical bonds [1]. In tire 
technology, more and more tire treads contain a silica–silane filler system for 
reinforcement. Silanes are effective as bifunctional DAs for this type of rubber, as they 
potentially also reactivate the filler. For the silica-filled system, the breaking of the silica–
polymer network is an additional challenge of the devulcanization process [28,29]: the 
controlled breakdown of polymer crosslinks and filler–polymer bonds keeping the 
polymer backbone intact. To date, there is a lack of a dedicated devulcanization process 
specifically designed for silica–silane-filled tires. The novelty of this study lies in 
addressing this gap by proposing an efficient devulcanization process design for silica-
filled tires. 

In this study, different silane-based DAs are screened and the devulcanizates are 
analyzed by the degree of network breakdown, mechanical properties of the revulcanized 
material, and miscibility of the devulcanized rubber with a virgin compound. The process 
can be described as the devulcanization of crosslinked polystyrene and polybutadiene 
rubbers reinforced by a silica–silane system. A silica-filled SBR-BR-based model tire tread 
compound was used as the feed material for the devulcanization process. Commercially 
available silane coupling agents with disulphide, polysulphide, amino, alkenyl, and 
mercapto moieties were selected as DAs for the screening trials. The DAs are selected 

Figure 1. Schematic diagram of reclamation and devulcanization.

The most common and effective devulcanization mechanism is the rearrangement of
the covalent bonds. Devulcanization aids (DAs) produce free radicals or reactive moieties
during the devulcanization process, which react with the active groups of the broken
crosslinks and form a new stable bond. Disulphides are the most common moieties for
devulcanization, e.g., bis(3-triethoxysilyl propyl) disulphide (TESPD), diphenyl disulphide
(DPDS), 2,2-dibenzamido-diphenyl disulphide (DBDPD), etc. [1]. A DA containing a
polysulphide moiety is bis(3-triethoxysilyl propyl) tetrasulphide (TESPT) [2,6,27].

The filler system plays a vital role in the devulcanization process, as filler–polymer
and filler–filler bonds become distorted during the thermo-mechanical process. For natural
rubber (NR) filled with carbon black (CB), devulcanization is comparatively easier than
for silica-filled rubbers: the breakdown of the physical interaction between the filler and
polymer matrix is easier than the breakdown of the chemical bonds [1]. In tire technology,
more and more tire treads contain a silica–silane filler system for reinforcement. Silanes
are effective as bifunctional DAs for this type of rubber, as they potentially also reactivate
the filler. For the silica-filled system, the breaking of the silica–polymer network is an
additional challenge of the devulcanization process [28,29]: the controlled breakdown of
polymer crosslinks and filler–polymer bonds keeping the polymer backbone intact. To date,
there is a lack of a dedicated devulcanization process specifically designed for silica–silane-
filled tires. The novelty of this study lies in addressing this gap by proposing an efficient
devulcanization process design for silica-filled tires.

In this study, different silane-based DAs are screened and the devulcanizates are
analyzed by the degree of network breakdown, mechanical properties of the revulcan-
ized material, and miscibility of the devulcanized rubber with a virgin compound. The
process can be described as the devulcanization of crosslinked polystyrene and polybu-
tadiene rubbers reinforced by a silica–silane system. A silica-filled SBR-BR-based model
tire tread compound was used as the feed material for the devulcanization process. Com-
mercially available silane coupling agents with disulphide, polysulphide, amino, alkenyl,
and mercapto moieties were selected as DAs for the screening trials. The DAs are selected
considering the potentially active chemical moieties and processibility for devulcaniza-
tion. Moreover, sustainability, environmental and health impacts, EU safety regulations,
innovation, and commercial feasibility are considered for this development.
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2. Materials and Methods

The experimental process can be classified into three parts:

I. Preparation of the model compound.
II. Devulcanization.
III. Characterization.

A brief description of each component of the experimental process is described below
and the flowchart is shown in Figure 2.
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2.1. Model Compound Preparation

A SBR-BR-based silica-filled model tire tread compound was prepared as feed ma-
terial for the devulcanization process. The kinetic viscosity of the TDAE oil at 40 ◦C was
331 mm2/s and at 100 ◦C it was 18.4 mm2/s. The different stages of the model compound
preparation are described below.

2.1.1. Materials

The model tire tread formulation is given in Table 1.

Table 1. Compounding formulation of the model tire tread compound.

Function Ingredient Trade Name Supplier Quantity (phr)

Polymer SSBR 1 Sprintan 4601 Trinseo 70

BR 2 CB 24 Arlanxeo 30

Filler system Silica ULTRASIL® 7000 GR Evonik 80

Silane Si 266® Evonik 5.8

Activators
Zinc oxide Merck Zinc Oxide Sigma-Aldrich 3

Stearic acid Merck Stearic Acid Sigma-Aldrich 2
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Table 1. Cont.

Function Ingredient Trade Name Supplier Quantity (phr)

Plasticizer TDAE oil 3 Vivatec H & R 25

Curing system
Curing aid Merck Sulphur Sigma-Aldrich 1.5

Pri. accelerator Santocure CBS Flexsys 1.7

Sec. accelerator Perkacit DPG Flexsys 2.5
1 Solution-polymerized styrene butadiene rubber; 2 polybutadiene rubber; 3 treated distillated aromatic
extracted oil.

The list of the DAs for screening, reference DAs, and chemicals used for the characteri-
zation processes are described in Table 2.

Table 2. Chemicals used for devulcanization and characterization processes.

Ingredient
Notation Chemical Identification Supplier

PS Polysulphide: bis-triethoxy-silyl-propyl tetrasulphide Evonik

DS Bis-triethoxy-silyl-propyl disulphide Evonik

ME Triethoxy-silyl-propyl mercapto silane Evonik

AM Triethoxy-silyl-propyl amino silane Evonik

VN Triethoxy-silyl-alkenyl silane Evonik

VP Triethoxy-silyl-alkenyl silane with activator Evonik

DPDS Di-phenyl di-sulphide Sigma-Aldrich

DBD Di-benzamido di-phenyl di-sulphide Sigma-Aldrich

Acetone Acetone Boom Lab.

Toluene Toluene Boom Lab.

THF Tetrahydrofuran VWR Chem.

TiO2 Titanium dioxide Sigma-Aldrich

MBTS Mercapto-benzothiazole sulphenamide Sigma-Aldrich

2.1.2. Compounding

Compounding was performed in two stages: the first step was performed in a 390
mL internal mixer (Model-350S) from Brabender GmbH & Co., Germany, followed by the
final mixing on a lab scale two-roll mill (9 cm in diameter) of Schwabenthan GmbH &
Co., Germany. The first step of mixing was conducted with a fill factor of 70%, initial
temperature of 80 ◦C, and initial rotor speed of 70 rpm. During the initial step of the
compounding process, the polymer underwent mastication to facilitate the incorporation of
fillers and other compounding ingredients. As the temperature increased, the viscosity of
the polymer decreased. Simultaneously, the addition of fillers led to an increase in viscosity.
To ensure optimal reaction conditions for the silica–silane interaction, a temperature of
145 ◦C [30], known to be the optimum reaction temperature, was selected. Consequently,
the starting temperature and rotor speed of the internal mixer were adjusted accordingly
to achieve and maintain the desired temperature throughout the compounding process.
Due to the high shear forces in the internal mixer during the addition of the polymer,
filler, and other compounding ingredients, the temperature increased from 80 ◦C to 145 ◦C.
Isothermal mixing was performed at 145 ◦C for 5 min by adjusting the rotor speed. The
steps of the mixing process are detailed in Table 3.
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Table 3. Mixing process of the model tire tread compound.

Masterbatch (First) Step Final (Second) Step

Action Time [mm:ss] Action Time [mm:ss]

Polymer 00:00–00:30
Masterbatch -

Mastication 00:30–01:30

1/2 Silica + silane 01:30–02:00
Mixing 00:00–02:00

Mixing 02:00–03:00

1/2 Silica + silane
03:00–03:30

Curatives 02:00–02:30+other additives

Mixing (140–150 ◦C) 03:30–04:30

Ram sweep 04:30–05:00
Mixing 02:30–09:00

Mixing (target 145 ◦C) 05:00–09:00

Discharge and sheeting - Discharge -

The masterbatch, the material produced after the first mixing step, was kept for one
day at room temperature before final mixing. Then, the compound was kept again for one
day at room temperature before curing.

2.1.3. Curing

The optimum cure time was measured in a RPA Elite from TA Instruments, New
Castle, DE, USA. The samples were cured at 160 ◦C according to the T95 value. Compression
molding was performed in an automatic press of Wickert Maschinenbau GmbH, Germany,
with a 200 mm× 200 mm× 4 mm mold. After curing, the tensile strength of the vulcanized
sheets was around 16 ± 1 MPa and the elongation at break was around 310 ± 30%.

2.1.4. Chopping and Grinding

Chopping of the vulcanized sheets was performed with a bale cutter. The pre-
treatment of the chopped samples was conducted by dipping them into liquid nitrogen for
4–5 min to achieve a temperature below the glass transition, followed by grinding at room
temperature. Grinding was performed in a mechanical grinder from Fritsch, Germany,
with a 0.7 mm mesh screen.

2.1.5. Revulcanization

The devulcanized rubber samples were compounded and revulcanized for measuring
the stress–strain properties. The revulcanization formulation is shown in Table 4.

Table 4. Revulcanization formulation.

Function Component Weight (%)

Base polymer Devulcanized rubber sample 100

Activators
Zinc oxide 4

Stearic acid 2

Vulcanization agent Sulphur 2

Accelerator CBS 1

The compounded devulcanized rubber was tested in the RPA 2000 Elite of TA In-
struments, New Castle, DE, USA, at 160 ◦C for 30 min according to ASTM D7750-12 [31]
to determine the optimum cure time. Sheets of 2 mm thickness were molded at 160 ◦C
according to the T95 value in an automatic compression molding machine from Wickert
Maschinenbau GmbH, Germany.
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2.2. Devulcanization

The ground model tire tread rubber was the feed material for the devulcanization
process. It was swollen with oil and DA before performing the devulcanization reaction. A
brief description of the devulcanization process is given below.

2.2.1. Swelling

The rubber granulate was first mixed with the process oil and after that with the DA
at room temperature. After each addition, the samples were kept for one day at room
temperature for swelling. Due to the high viscosity of the process oil, the rubber granulate
was mixed with oil and manually stirred. The oil-swollen sample was then re-swollen with
the DA and kept for one day for the migration of the DA into the particles.

2.2.2. Devulcanization

The thermo-mechanical–chemical devulcanization process was performed in a Plasto-
graph EC internal mixer with a volume of 50 cc from Brabender GmbH & Co., Germany.
Non-intermeshing counter-rotating rotors and a telescopic ram were used. To minimize
oxidation at high temperatures, the cavity was sealed with paraffin wax.

A two-roll mill from Schwabenthan, GmbH & Co., Germany, with a 200 mm length ×
80 mm diameter was used at room temperature, with a 1.25 speed ratio at 30 rpm for the
milling of the devulcanized rubber. The nip gap was reduced gradually from 1 to 0.1 mm,
and the devulcanized rubber formed a band.

According to pre-trial data, the variable and constant process conditions for the
devulcanization were selected. For the reference sample, DPDS (diphenyl disulphide) and
DBD (2-2′-dibenzamido-diphenyl disulphide) were used as DAs and processed according to
the conditions obtained from the literature [32]. The sample details, including the variable
and constant parameters for the DA screening trials, are shown in Table 5 and Figure 3.

Table 5. Details of devulcanization process optimization.

Devulcanization Aid Screening

No. Name of DA Temperature (◦C) Time (min) Constant Parameters

1–4 PS

140 ◦C
160 ◦C

4 min
6 min

DA (silane): 5% (w/w)
Process oil: 5% (w/w)
Shear rate: 150 RPM

Fill factor: 80%

5–8 DS

9–12 ME

13–16 AM

17–20 VN

21–24 VP

Benchmark Samples

No. DA DA Conc. Swelling Oil Temperature Speed Fill Factor Time

1 DPDS
30 mmol 1 day at 65 ◦C 5% TDAE 220 ◦C 50 rpm 60% 6 min

2 DBD

2.2.3. Characterization Process

The characterization process consisted of three parts: degree of devulcanization as
deducted from the HorikxVerbruggen plot, stress–strain properties in tensile mode, and
white rubber analysis.
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2.2.4. Degree of Network Breakdown

ASTM D 6814-02 [32] describes the standard procedure for the evaluation of the
crosslink density according to the equilibrium volume swelling method and Flory–Rehner
equation [33]. At first, the samples were extracted in acetone for the removal of the
polar components, then dried. To remove the non-polar parts, the material was extracted
with tetrahydrofuran.

The samples were then swollen in toluene at room temperature for 72 h, according
to the ASTM standard. The volume fraction of the sample in the swollen gel (Vr) was
determined using the additivity rule of volumes as given in Equation (1) [33]:

Vr =
Wr/ρr

Wr/ρr + Ws/ρs
(1)

where Wr is the weight of the rubber specimen, Ws is the weight of the absorbed solvent,
ρr is the density of the rubber, and ρs is the density of the solvent. The apparent crosslink
density (Vc) was calculated according to Flory–Rehner using Equation (2) [34]:

Vc =
1

2Mc
=
−[ln(1−Vr) + Vr + χ ∗ V2

r ]

Vs (V
1
3
r − Vr

2 )
(2)

where Vr is the volume fraction of the polymer in the swollen specimen, χ is the Flory–
Huggins polymer–solvent interaction parameter, Mc is the molecular weight between
crosslinks, and Vs is the molar volume of the solvent. For the SBR–toluene system [35],
the value of χ was 0.38 and the molar volume (Vs) and the density values of toluene were
106.2 cm3/mol and 0.866 g/cm3, respectively. The percentage of network breakdown was
calculated according to Equation (3) [36,37]:

Network breakdown percentage (%) =
Vc1 − Vc2

Vc2
(3)

where Vc1 and Vc2 are the crosslink densities of the samples before and after devulcaniza-
tion, respectively [33,36,37].

The crosslink density according to the Flory–Rehner equation was not the actual
one in a filled compound. To determine the exact crosslink density, the Kraus correction
was applied.

Vactual =
Vapparent

1 + k× Φ
(4)
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Φ =
Weight fraction of the filler × density of the compound × Wb

Density of the filler × Wa
(5)

where Vapparent is the measured crosslink density according to the Flory–Rehner equation
and Vactual is the actual crosslink density after correction for the filler. k is a constant for a
given filler, Φ is the volume fraction of the filler in the specimen, Wb is the weight of the
specimen before extraction, and Wa is the weight of the specimen after the extraction of all
soluble material, such as polymer sol fraction, oil, and soluble chemical residues [36,37].

Considering the sol fraction of the feed material, the limiting lines of the random scis-
sion and crosslink scission were calculated according to the Horikx–Verbruggen method [37].
Plotting the values of the sol fraction and network breakdown of the devulcanizates in
the graph, the type of network breakdown can be predicted. For one network breakdown
versus a sol-content data plot, the average result of five samples was considered.

In Figure 4, the marked green zone is the targeted area for the devulcanized rubber
considering the minimum sol fraction with maximum devulcanization percentage. To
achieve higher values, monosulphidic bonds have to be broken, which goes together with
a higher degree of random scission. Moreover, bound rubber cannot be solved, limiting
the sol content. FTIR was performed with a Spectrum 100 spectrometer from PerkinElmer,
Waltham, MA, USA.
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2.2.5. Stress–Strain Properties

Stress–strain properties of the revulcanized rubber were measured with a Z010 tensile
tester manufactured by Zwick Roell GmbH & Co., Germany, according to ASTM D412 [38].
For each sample, a total of seven tensile dumbbells were tested and, among those, five
significant values were plotted in one data point with their average values and error bars.

2.2.6. Miscibility

After the devulcanization process, there may still be undevulcanized particle cores
in the devulcanizate. Devulcanized polymer chains are homogeneously miscible with a
compatible polymer or compound; however, undevulcanized particle cores are not under
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the same conditions. Considering this, it is important to analyze the number, size, and total
area of these undevulcanized particle cores. For this purpose, white rubber analysis (WRA)
was developed. In this quantitative analytical method, the devulcanizate was blended with
a bright-white polybutadiene-based compound colored with titanium dioxide. The white
colorant was judiciously selected to create a high contrast between the background and
devulcanizate, which led to a quantitative characterization process.

White rubber compounds are polybutadiene and titanium dioxide based. The samples
were prepared by mixing 10% devulcanizate into this white rubber compound. This
resulted in a gray compound, in which the remaining non-devulcanized particles were
visible as brownish spots. The digital analysis of the particles and particle size distribution
was performed using a VHX 5000 digital microscope from Keyence.

2.2.7. Thermogravimetric Analysis

Thermogravimetric Analysis (TGA) was performed using a TGA 550 instrument,
supplied by TA Instruments, New Castle, DE, USA. The test was conducted in a nitrogen
atmosphere with a flow rate of 50 mL/min, ramp speed of 10 ◦C/min, and ranging from
30 ◦C to 600 ◦C. Subsequently, the test was continued in an air atmosphere comprising
70% N2 and 30% O2, with the same flow rate and ramp speed, from 600 ◦C to 900 ◦C.
Equilibration was performed at three different temperatures, namely, 30 ◦C, 600 ◦C, and
900 ◦C, each for a duration of five minutes.

3. Results and Discussion

This part was classified into the three main properties: degree of network breakdown,
stress–strain properties, and homogeneity. Finally, the reaction mechanism was elucidated.

3.1. Network Breakdown

In Figure 5, the network breakdown versus sol-content data of six silane devulcanized
samples along with DPDS and DBD devulcanizates as reference is plotted. Network
breakdown and sol content gradually increased with the increasing residence time and
temperature. It can be concluded that, on an average, VP showed the highest efficiency
and ME was the least efficient one in terms of network breakdown and sol content. Using
VP as DA, the network breakdown reached 57.1% at a sol content of 13.4%: this was much
lower than the random scission limit. The more efficient crosslink scission compared to the
other chemicals tested as DAs must have been due to the presence of the alkenyl moiety
and activator in VP. VN resulted in a network breakdown of app. 45% on average with a
sol content of 2% for the best processing conditions.
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With PS, the network breakdown percentage increased from 25% to 40% with an
increasing residence time of 4 to 6 min, for a devulcanization temperature of 140 ◦C. When
the temperature was increased to 160 ◦C at a residence time of 6 min, the sol content
increased from 6% to 10% and the network breakdown percentage increased to 53%. The
breaking of the crosslinks and reaction with the DA to hamper the recombination and to
form sulphur–silane bonds was a probable reason for the higher degree of devulcanization.
For the samples devulcanized with DS, AM, and ME, the data points were mostly close and
above the random scission line. The points are on the left side of the graph, which indicates
insufficient devulcanization of the granulate. It can be concluded that the di-sulphidic,
mercapto, and amino moieties are less efficient than the alkenyl and polysulphide groups
in this process window.

3.2. Stress–Strain Properties

Based on Figure 6, the results reveal that the increase in curing torque is lowest for
the DPDS samples, highest for the PS samples, and followed by the VP samples. This can
be attributed to the presence of unreacted polysulphide moieties in the PS samples, which
contributed to the formation of additional crosslinks and resulted in a greater curing torque
increase. Furthermore, compared to the VN samples, the VP samples exhibited increased
curing torque due to the contribution of the activator. Additionally, the samples with a
lower degree of network breakdown exhibited a lower increase in torque, indicating less
formation of additional crosslinks.
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The comparative analysis of the tensile strength of the revulcanized samples is shown
in Figure 7. The tensile strength of the revulcanizate varied with increasing time and
temperature. The best stress–strain properties were obtained for the VN and VP samples.
The tensile strength was in the range of 8 to 9.4 MPa. From these screening trials, it can be
concluded that VP and VN as DAs resulted in the best mechanical strength.
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A comparative analysis of the elongation at break values of the revulcanized samples
is shown in Figure 8. For the reference DAs as well as for PS, DS, and AM devulcanized
samples, elongation at break was in the range of 60% to 80% and did not show any
significant change with increasing time and temperature. For ME as DA, the range was
between 50% to 65%, and for VN the range was 75% to 95%. The best elongation at break
values were found for the VP samples, which were in the range of 95% to 110%.
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From this screening, it can be concluded that VP resulted in the best stress–strain
properties, followed by VN. Considering the tensile strength of the feed material, the tensile
strength recovery was around 50–55%. This fits well with the findings of the network
breakdown analysis: VP showed the best performance as DA.

3.3. Miscibility Analysis

The homogeneity of the DA optimization trials was elaborated in the white rubber
analysis. From the statistical analysis of the brownish devulcanizate dispersed in the
white rubber matrix, the total number of visible particles and the particle size distribution
were analyzed. The series of samples devulcanized at 160 ◦C for 6 min was selected. The
comparative results for devulcanizates using different DAs are shown in Figure 9.
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For the samples devulcanized with VP or AM, the particle size distribution was on the
finer side, and the total number of visible particles was higher than for all other samples.
The samples devulcanized with DS, PS, VN, ME, and DPDS were comparatively coarser
with a lower number of visible particles. This shift in the particle size distribution was an
effect of the devulcanization efficiency and mechanical grinding processes.

In Figure 10, the total area of visible particles (TAVPs) is plotted against the tensile
strength (TS). With an increasing devulcanization efficiency, as indicated by a smaller TAVP,
the TS improved. For ME devulcanized samples, the TAVP had the highest value, resulting
in the lowest TS, and for VP as devulcanization aid, the TAVP was the minimum, resulting
in the best TS, fitting with the explanation mentioned above.



Polymers 2023, 15, 2848 13 of 17Polymers 2023, 14, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 10. Correlation between tensile strength and total area of visible particles (sample notations 
are explained in Table 2). 

3.4. Thermogravimetric Analysis 
Figure 11 illustrates the TGA analysis curve of the VP devulcanized rubber sample, 

which comprises approximately 45–50% of the polymer. The volatile content of the sample 
was approximately 10% and no significant weight loss was observed up to 200 °C. This 
indicated that the devulcanizate exhibited thermal stability within typical application 
temperatures. The residual content observed in the TGA curve represented the 
contribution from silica, which accounted for approximately 35%, while the concentration 
of zinc oxide was around 2–3%. In comparison to the TGA of the feedstock, the 
devulcanizate had higher content of volatiles due to the addition of oil and low-molecular-
weight polymer fragments. It had a lower residue as the addition of oil resulted in a lower 
content of inorganic components. 

Figure 10. Correlation between tensile strength and total area of visible particles (sample notations
are explained in Table 2).

3.4. Thermogravimetric Analysis

Figure 11 illustrates the TGA analysis curve of the VP devulcanized rubber sample,
which comprises approximately 45–50% of the polymer. The volatile content of the sample
was approximately 10% and no significant weight loss was observed up to 200 ◦C. This
indicated that the devulcanizate exhibited thermal stability within typical application
temperatures. The residual content observed in the TGA curve represented the contribution
from silica, which accounted for approximately 35%, while the concentration of zinc oxide
was around 2–3%. In comparison to the TGA of the feedstock, the devulcanizate had
higher content of volatiles due to the addition of oil and low-molecular-weight polymer
fragments. It had a lower residue as the addition of oil resulted in a lower content of
inorganic components.

3.5. Model Devulcanization Mechanism

The alkenyl silane with the activator presented the best performance within this group
of potential DAs. From a mechanistic view, one of the reasons was the presence of the
unsaturated carbon–carbon bond. The proposed reaction mechanism is that the alkenyl
silane and polymer react and experience a chain-transfer reaction, in which the alkenyl
moiety becomes attached to the broken crosslinks and restricts a further recombination, as
shown in Figure 12.

After the chain transfer, the molecule experiences a disproportion reaction to achieve
greater chemical stability. The activator in the alkenyl silane improved the reactivity
of the latter during devulcanization, as shown in Figure 13. An additional mechanistic
investigation is necessary to prove this reaction hypothesis for the devulcanization.
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Figure 13. Disproportionation reaction between alkenyl silane and polymer crosslinks.

The model compound used as the feed material for the devulcanization process
contained carbon–carbon double bonds: the base polymers were unsaturated rubbers, such
as SBR and BR. In the preparation of the model compound, Si 266® was employed as a
coupling agent to enhance silica reinforcement containing ethoxy groups. VN contains
both ethoxy groups and carbon–carbon double bonds. The comparative peak intensities
can provide an insight into the progression of the devulcanization reaction, as shown
in Figure 14.
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Figure 14. FTIR spectroscopy of the model compound, VN, and VN devulcanizate (sample notations
are explained in Table 2).

In the devulcanizate, a reduction in the intensity was observed for the peaks at
2850 cm−1 and 2917 cm−1, which corresponded to the C–H bending of the alkanes and
alkenes. The devulcanization reaction did not typically result in the formation of new
moieties in the final product; it was primarily a chain-transfer reaction. No other significant
peaks were observed [39].

In comparison to pure VN, several peaks disappeared in the devulcanized sample. A
peak at 1166 cm−1, corresponding to C–O stretching, was noted, indicating the involvement
of this functional group in the devulcanization process. Additionally, a peak at 754 cm−1,
associated with the C=C bending of alkene, was detected, signifying the reactivity of
VN during devulcanization. These observations provide evidence of the reactivity and
transformation of VN during the devulcanization process [39].

4. Conclusions

The devulcanization efficiencies of the different silanes in terms of mechanical proper-
ties, network breakdown, and miscibility were comparatively analyzed in this study. The
SBR-silica network is the main challenge for passenger car tire rubber devulcanization,
and a potential solution was developed by using alkenyl silane as a devulcanization aid
(DA). The efficiency of this silane as DA was further improved by the presence of an
activator; this combination turned out to be the most promising DA for passenger car tire
rubber devulcanization.

Alkenyl silane and alkenyl silane with activator devulcanized samples showed the
best mechanical and network breakdown properties, followed by the ones devulcanized
with polysulphidic and amino silane. Compared to other silanes, the alkenyl and the
variant with the activator showed a higher crosslink-to-random-scission ratio, resulting in
a better devulcanizate quality. A greater extent of devulcanization in rubber leads to an
increased number of free polymer chains, resulting in enhanced miscibility. Conversely,
reduced devulcanization leads to a reduced presence of free polymer chains, resulting in
decreased miscibility and an increased quantity of immiscible particles. A linear correlation
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was established between the devulcanizate quality in terms of tensile strength and the total
area of visible, insufficiently devulcanized particles for all silane devulcanized samples.

Considering the properties of the feed material, the recovery of the tensile strength
was around 50–55%, and the network breakdown percentage was 55–60%: these are rather
high percentages for an SBR–silica system due to the strong filler–polymer network. An
optimization of the process parameters is required for the further improvement of the
devulcanizate quality. A reaction mechanism was proposed; however, further research on
and the analysis of the devulcanization process and reactions are required.
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