Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Isolation and Identification
2.2. RNA Isolation and Reverse Transcription Polymerase Chain Reaction RT-PCR Amplification of AMV Coat Protein Gene
2.3. Preparation of Chitosan Nanoparticles (CS-NPs)
2.4. Preparation of Chitosan Silver Nanocomposites (CS-Ag NC)
2.5. Characterization of Chitosan Nanoparticles and Chitosan Silver Nanocomposites
2.6. Effect of Foliar Application of Chitosan Nanoparticles and Chitosan Silver Nanocomposites on Virus Infectivity and Plant Vegetative Growth
2.7. Effect of Various Concentrations of Chitosan Nanoparticles and Chitosan Silver Nanocomposites on Active Ingredients in Pepper Pods
2.8. Data Analysis
3. Results
3.1. Collection of Field-Infected Pepper Plants and Preparation of Virus Inoculum
3.2. Characterization of Chitosan Nanoparticles and Chitosan Silver Nanocomposites
3.3. Effect of Chitosan Nanoparticles and Chitosan Silver Nanocomposites on Virus Infectivity
3.4. Effect of Various Concentrations of Chitosan Silver Nanocomposites and Chitosan Nanoparticles on Active Ingredients in Pepper Pods
3.5. Effect of Chitosan Silver Nanocomposites and Chitosan Nanoparticles on Growth and Yield of Pepper Plants Inoculated with AMV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamed, M.; Kalita, D.; Bartolo, M.E.; Jayanty, S.S. Capsaicinoids, polyphenols and antioxidant activities of Capsicum annuum: Comparative study of the effect of ripening stage and cooking methods. Antioxidants 2019, 8, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waweru, B.; Kilalo, D.; Miano, D.; Kimenju, J.; Rukundo, P. Diversity and economic importance of viral diseases of pepper (Capsicum spp.) in Eastern Africa. J. Appl. Hortic. 2019, 21, 70–76. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Al-Askar, A.A.; Behiry, S.I. Bacillus licheniformis strain POT1 mediated polyphenol biosynthetic pathways genes activation and systemic resistance in potato plants against Alfalfa mosaic virus. Sci. Rep. 2020, 10, 16120. [Google Scholar] [CrossRef]
- Gao, Y.; Fan, G.; Cheng, S.; Zhang, W.; Bai, Y. Evolutionary history and global spatiotemporal pattern of alfalfa mosaic virus. Front. Microbiol. 2022, 13, 1051834. [Google Scholar] [CrossRef]
- Mangeli, F.; Massumi, H.; Alipour, F.; Maddahian, M.; Heydarnejad, J.; Hosseinipour, A.; Amid-Motlagh, M.H.; Azizizadeh, M.; Varsani, A. Molecular and partial biological characterization of the coat protein sequences of Iranian alfalfa mosaic virus isolates. J. Plant Pathol. 2019, 101, 735–742. [Google Scholar] [CrossRef]
- van Leur, J.; Duric, Z.; George, J.; Boschma, S. Alfalfa mosaic virus infects the tropical legume Desmanthus virgatus in Australia and the potential role of the cowpea aphid (Aphis craccivora) as the virus vector. Aust. Plant. Dis. Notes 2019, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Fidan, H.; Adak, N.; Konuksal, A.; Akerzurumlu, E.; Yılmaz, M. Occurrence of Alfalfa Mosaic Virus (AMV) diseases on potato crops in northern Cyprus. In Proceedings of the V Balkan Symposium on Vegetables and Potatoes 960, Tirana, Albania, 9–12 October 2011; pp. 341–346. [Google Scholar]
- Abdalla, O.; Al-Shahwan, I.; Al-Saleh, M.; Amer, M. Molecular characterization of Alfalfa mosaic virus (AMV) isolates in alfalfa and other plant species in different regions in Saudi Arabia. Eur. J. Plant Pathol. 2020, 156, 603–613. [Google Scholar] [CrossRef]
- Herranz, M.C.; Pallas, V.; Aparicio, F. Multifunctional roles for the N-terminal basic motif of Alfalfa mosaic virus coat protein: Nucleolar/cytoplasmic shuttling, modulation of RNA-binding activity, and virion formation. Mol. Plant Microbe Interact. 2012, 25, 1093–1103. [Google Scholar] [CrossRef] [Green Version]
- Hassan, O.; Chang, T. Chitosan for eco-friendly control of plant disease. Asian J. Plant Pathol 2017, 11, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V.Q.; Matsui, T.; Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett. 2013, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Abdelkhalek, A.; Qari, S.H.; Abu-Saied, M.A.A.-R.; Khalil, A.M.; Younes, H.A.; Nehela, Y.; Behiry, S.I. Chitosan Nanoparticles Inactivate Alfalfa Mosaic Virus Replication and Boost Innate Immunity in Nicotiana glutinosa Plants. Plants 2021, 10, 2701. [Google Scholar] [CrossRef]
- El Gamal, A.Y.; Tohamy, M.R.; Abou-Zaid, M.I.; Atia, M.M.; El Sayed, T.; Farroh, K.Y. Silver nanoparticles as a viricidal agent to inhibit plant-infecting viruses and disrupt their acquisition and transmission by their aphid vector. Arch. Virol. 2022, 165, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, S.; Sharma, P.; Wati, L.; Mehta, S. Chapter 4—Effect of chitosan nanoparticles on growth and physiology of crop plants. In Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management; Husen, A., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 99–123. [Google Scholar]
- Lala, S. Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: A review. IET Nanobiotechnol. 2021, 15, 28–57. [Google Scholar] [CrossRef] [PubMed]
- Saharan, V.; Kumaraswamy, R.; Choudhary, R.C.; Kumari, S.; Pal, A.; Raliya, R.; Biswas, P. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J. Agric. Food Chem. 2016, 64, 6148–6155. [Google Scholar] [CrossRef] [PubMed]
- Stasińska-Jakubas, M.; Hawrylak-Nowak, B. Protective, Biostimulating, and Eliciting Effects of Chitosan and Its Derivatives on Crop Plants. Molecules 2022, 27, 2801. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.F.; Adams, A. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 1977, 34, 475–483. [Google Scholar] [CrossRef]
- Kuhn, C.W. Separation of cowpea virus mixtures. Phytopathology 1964, 54, 739. [Google Scholar]
- Xu, H.; Nie, J. Identification, characterization, and molecular detection of Alfalfa mosaic virus in potato. Phytopathology 2006, 96, 1237–1242. [Google Scholar] [CrossRef] [Green Version]
- Calvo, P.; Remunan-Lopez, C.; Vila-Jato, J.L.; Alonso, M. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 1997, 63, 125–132. [Google Scholar] [CrossRef]
- Babu, B.; Nair, R.S.; Angelo, J.M.C.; Mathai, V.; Vineet, R. Evaluation of efficacy of chitosan-silver nanocomposite on Candida albicans when compared to three different antifungal agents in combination with standard irrigation protocol: An: Ex vivo: Study. Saudi Endod. J. 2017, 7, 87–91. [Google Scholar]
- Devi, P.R.; Doraiswamy, S.; Nakkeeran, S.; Rabindran, R.; Ganapathy, T.; Ramiah, M.; Mathiyazhagan, S. Antiviral action of Harpulia Cupanioides and Mirabilis Jalapa against tomato spotted wilt virus (TSWV) infecting tomato. Arch. Phytopathol. Plant Protect. 2004, 37, 245–259. [Google Scholar] [CrossRef]
- Guo, C.-L.; Chen, H.-Y.; Cui, B.-L.; Chen, Y.-H.; Zhou, Y.-F.; Peng, X.-S.; Wang, Q. Development of a HPLC method for the quantitative determination of capsaicin in collagen sponge. Int. J. Anal. Chem. 2015, 2015, 912631. [Google Scholar] [CrossRef] [PubMed]
- Diaz, D.H.; Martin, G.C. Peach seed dormancy in relation to endogenous inhibitors and applied growth substances1. J. Am. Soc. Hortic. Sci. 1972, 97, 651–654. [Google Scholar] [CrossRef]
- Soudani, S.; Poza-Carrión, C.; De la Cruz Gómez, N.; González-Coloma, A.; Andrés, M.F.; Berrocal-Lobo, M. Essential oils prime epigenetic and metabolomic changes in tomato defense against Fusarium oxysporum. Front. Plant Sci. 2022, 13, 4104. [Google Scholar] [CrossRef]
- Awasthi, A.; Saxena, K.K.; Arun, V. Sustainable and smart metal forming manufacturing process. Mater. Today Proc. 2021, 44, 2069–2079. [Google Scholar] [CrossRef]
- Kanakari, E.; Dendrinou-Samara, C. Fighting Phytopathogens with Engineered Inorganic-Based Nanoparticles. Materials 2023, 16, 2388. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.-R.; Jiang, R.; Chen, J.-F.; Xiao, Y.; Lv, Z.-Y.; Chen, W.-S. Strategic nanoparticle-mediated plant disease resistance. Crit. Rev. Biotechnol. 2023, 43, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Behiry, S.; Abdelkhalek, A.; Younes, H. Isolation and purification of Alfalfa mosaic virus-infecting potato (Solanum tuberosum L.) in Beheira governorate. Middle East J. 2020, 9, 617–623. [Google Scholar]
- Sofy, A.R.; Sofy, M.R.; Hmed, A.A.; Dawoud, R.A.; Refaey, E.E.; Mohamed, H.I.; El-Dougdoug, N.K. Molecular Characterization of the Alfalfa mosaic virus Infecting Solanum melongena in Egypt and the Control of Its Deleterious Effects with Melatonin and Salicylic Acid. Plants 2021, 10, 459. [Google Scholar] [CrossRef]
- Aleem, E.E.A.; Taha, R.M.; Fattouh, F.A. Biodiversity and full genome sequence of potato viruses Alfalfa mosaic virus and potato leaf roll virus in Egypt. Z. Naturforsch. C J. Biosci. 2018, 73, 423–438. [Google Scholar] [CrossRef]
- Parrella, G.; Acanfora, N.; Bellardi, M.G. First Record and Complete Nucleotide Sequence of Alfalfa mosaic virus from Lavandula stoechas in Italy. Plant Dis. 2010, 94, 924. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, S.; Erilmez, S.; Paylan, I. First report of Alfalfa mosaic virus in eggplant in Turkey. J. Plant Pathol. 2011, 93, 4–82. [Google Scholar]
- Al-Shahwan, I.; Abdalla, O.; Al-Saleh, M.; Amer, M. Detection of new viruses in alfalfa, weeds and cultivated plants growing adjacent to alfalfa fields in Saudi Arabia. Saudi J. Biol. Sci. 2017, 24, 1336–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortella, G.R.; Rubilar, O.; Diez, M.C.; Padrão, J.; Zille, A.; Pieretti, J.C.; Seabra, A.B. Advanced Material Against Human (Including COVID-19) and Plant Viruses: Nanoparticles As a Feasible Strategy. Glob. Chall. 2021, 5, 2000049. [Google Scholar] [CrossRef] [PubMed]
- El Gamal, A.Y.; Atia, M.M.; Sayed, T.E.; Abou-Zaid, M.I.; Tohamy, M.R. Antiviral activity of chitosan nanoparticles for controlling plant-infecting viruses. S. Afr. J. Sci. 2022, 118, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Boroumand, H.; Badie, F.; Mazaheri, S.; Seyedi, Z.S.; Nahand, J.S.; Nejati, M.; Baghi, H.B.; Abbasi-Kolli, M.; Badehnoosh, B.; Ghandali, M. Chitosan-based nanoparticles against viral infections. Front. Cell. Infect. Microbiol. 2021, 11, 643953. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, R.C.; Kumaraswamy, R.; Kumari, S.; Sharma, S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci. Rep. 2017, 7, 9754. [Google Scholar] [CrossRef]
- Rendina, N.; Nuzzaci, M.; Scopa, A.; Cuypers, A.; Sofo, A. Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants. J. Plant Physiol. 2019, 234–235, 9–17. [Google Scholar] [CrossRef]
- Nagorskaya, V.; Reunov, A.; Lapshina, L.; Davydova, V.; Yermak, I. Effect of chitosan on tobacco mosaic virus (TMV) accumulation, hydrolase activity, and morphological abnormalities of the viral particles in leaves of N. tabacum L. cv. Samsun. Virol. Sin. 2014, 29, 250–256. [Google Scholar] [CrossRef]
- El-Shazly, M.A.; Kobeasy, M.I.; Altalhi, S.H. Biological, serological and inhibition activity of Tomato spotted wilt virus isolated from tomato plants in Taif region, Saudi Arabia. J. Vir. Sci. 2016, 13, 52–73. [Google Scholar]
- Kobayashi, S.; Ishimaru, M.; Hiraoka, K.; Honda, C. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 2002, 215, 924–933. [Google Scholar]
- Phang, J.M. The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr. Top. Dev. Biol. 1985, 25, 91–132. [Google Scholar]
- Ibrahim, M.; Abd El-Gawad, H.; Bondok, A. Physiological impacts of potassium citrate and folic acid on growth, yield and some viral diseases of potato plants. Middle East J. Agric. Res. 2015, 4, 577–589. [Google Scholar]
- Da Costa, M.; Sharma, P. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 2016, 54, 110–119. [Google Scholar] [CrossRef]
- Khan, M.N.; Mobin, M.; Abbas, Z.K.; AlMutairi, K.A.; Siddiqui, Z.H. Role of nanomaterials in plants under challenging environments. Plant Physiol. Biochem. 2017, 110, 194–209. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.; El-Shehawi, A.; Ibrahim, O.; Abdul-Hafeez, E.; Moussa, M.; Hassan, F. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiol. Biochem. 2021, 161, 166–175. [Google Scholar] [CrossRef]
- Mahdi, A.; Ibrahim, H.; Farroh, K.; Saleh, E.; Ghaly, O. Chitosan nanoparticles and its impact on growth, yield, some biochemical and molecular markers in Silybium marianum. Egypt. J. Desert Res. 2021, 71, 163–190. [Google Scholar] [CrossRef]
- Ismail, A.M.; Mosa, M.A.; El-Ganainy, S.M. Chitosan-Decorated Copper Oxide Nanocomposite: Investigation of Its Antifungal Activity against Tomato Gray Mold Caused by Botrytis cinerea. Polymers 2023, 15, 1099. [Google Scholar] [CrossRef]
- Sathiyabama, M.; Manikandan, A. Foliar application of chitosan nanoparticle improves yield, mineral content and boost innate immunity in finger millet plants. Carbohydr. Polym. 2021, 258, 117691. [Google Scholar] [CrossRef] [PubMed]
- Krishnaraj, C.; Jagan, E.; Ramachandran, R.; Abirami, S.; Mohan, N.; Kalaichelvan, P. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem. 2012, 47, 651–658. [Google Scholar] [CrossRef]
- Sadak, M.S. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull. Natl. Res. Cent. 2019, 43, 38. [Google Scholar] [CrossRef]
- Trucco, V.; Castellanos Collazo, O.; Vaghi Medina, C.G.; Cabrera Mederos, D.; Lenardon, S.; Giolitti, F. Alfalfa mosaic virus (AMV): Genetic diversity and a new natural host. J. Plant Pathol. 2022, 104, 349–356. [Google Scholar] [CrossRef]
- Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules 2011, 16, 8894–8918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandelwal, N.; Kaur, G.; Kumar, N.; Tiwari, A. Application of silver nanoparticles in viral inhibition: A new hope for antivirals. Dig. J. Nanomater. Biostruct. 2014, 9, 175–186. [Google Scholar]
- Narasimha, G.; Khadri, H.; Alzohairy, M. Antiviral properties of silver nanoparticles synthesized by Aspergillus spp. Der Pharm. Lett. 2012, 4, 649–651. [Google Scholar]
- Xing, K.; Chen, X.G.; Liu, C.S.; Cha, D.S.; Park, H.J. Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int. J. Food Microbiol. 2009, 132, 127–133. [Google Scholar] [CrossRef]
- Mansilla, A.Y.; Albertengo, L.; Rodríguez, M.S.; Debbaudt, A.; Zúñiga, A.; Casalongué, C. Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Appl. Microbiol. Biotechnol. 2013, 97, 6957–6966. [Google Scholar] [CrossRef]
Family | Test Plant | Common Name | Symptoms * | Molecular Detection | |
---|---|---|---|---|---|
ELISA | RT-PCR | ||||
Apocynaceae | Catharanthus roseus | Periwinkle | SM&Y | 0.502 ± 0.05 | 700 bp |
Chenopodiaceae | C. amaranticolor | CLL | 0.503 ± 0.02 | 700 bp | |
C. quinoa | Quinoa | CLL | 0.501 ± 0.01 | 700 bp | |
C. murale | Nettle-leaved Goosefoot | CLL | 0.497 ± 0.03 | 700 bp | |
Fabaceae | Vicia faba | Faba bean | SN&D | 0.494 ± 0.04 | 700 bp |
Phaseolus vulgaris | Bean | NLL&CF | 0.483 ± 0.07 | 700 bp | |
Vigna ungiuculata | Cowpea | NLL | 0.490 ± 0.02 | 700 bp | |
Lamiaceae | Ocimum basilicum | basil | SM&Y | 0.504 ± 0.07 | 700 bp |
Solanaceae | Datura stramonium | Jimson weed | SM | 0.489 ± 0.09 | 700 bp |
Nicotiana tabacum | Tobacco | SM | 0.495 ± 0.08 | 700 bp |
Concentrations | Pre-Inoculation | Post-Inoculation | Simultaneously with AMV Inoculation |
---|---|---|---|
Inhibition % | Inhibition % | Inhibition % | |
CS-Ag NC | |||
200 ppm | 67 a | 91 a | 78 a |
150 ppm | 64 ab | 89 a | 68 abc |
100 ppm | 57 bcd | 82 b | 64 bc |
50 ppm | 53 cd | 69 c | 59 d |
CS-NPs | |||
400 ppm | 60 abc | 90 a | 76 ab |
200 ppm | 54 cd | 86 ab | 65 bc |
150 ppm | 51 cd | 81 b | 63 bc |
100 ppm | 47 d | 66 c | 57 cd |
Healthy control | 0 e | 0 d | 0 d |
Healthy control treated with CS-NPs | 0 e | 0 d | 0 d |
Healthy control treated with CS-Ag NC | 0 e | 0 d | 0 d |
Infected control | 0 e | 0 d | 0 e |
L.S.D. at 0.05 | 5.829 | 5.11 | 9.37 |
Pre-Inoculation | Post-Inoculation | Simultaneously with Virus Inoculation | |||||||
---|---|---|---|---|---|---|---|---|---|
Concentrations | Phenol mg/100 gFW | Capsaicin mg/kg DW | Proline mg/g FW−1 | Phenol mg/100 gFW | Capsaicn mg/kg DW | Proline mg/g FW−1 | Phenol mg/100 gFW | Capsaicin mg/kg DW | Proline mg/g FW−1 |
CS-Ag NC | |||||||||
200 ppm | 1.62 a | 401.20 b | 1.14 a | 1.83 a | 481.79 a | 1.23 a | 1.75 a | 472.33 bc | 1.17 a |
150 ppm | 1.53 a | 393.63 c | 1.10 a | 1.78 a | 473.56 a | 1.18 c | 1.63 b | 468.86 bc | 1.11 b |
100 ppm | 1.47 ab | 385.73 e | 1.06 a | 1.67 a | 469.87 a | 1.12 b | 1.58 ab | 459.73 b | 1.08 c |
50 ppm | 1.38 ab | 376.53 h | 1.03 ab | 1.55 a | 458.97 a | 1.09 f | 1.49 abc | 445.40 bc | 1.04 de |
CS-NPs | |||||||||
400 ppm | 1.58 a | 390.73 d | 1.13 a | 1.80 a | 478.83 b | 1.20 b | 1.70 a | 470.47 bc | 1.16 a |
200 ppm | 1.48 ab | 382.63 f | 1.01 ab | 1.76 a | 468.76 a | 1.15 d | 1.59 b | 463.91 bc | 1.07 cd |
150 ppm | 1.39 ab | 378.52 g | 0.99 ab | 1.63 a | 463.53 a | 1.09 f | 1.47 abc | 451.78 bc | 1.05 cde |
100 ppm | 1.29 ab | 371.43 i | 0.96 ab | 1.52 a | 453.81 a | 1.05 g | 1.39 abc | 439.56 c | 1.02 d |
Healthy control | 1.12 b | 622.17 a | 0.75 b | 1.12 a | 622.17 a | 0.75 i | 1.12 c | 622.17 a | 0.75 g |
Healthy control treated with CS-NPs | 1.51 a | 623.06 a | 0.83 c | 1.55 b | 627.09 b | 0.87 e | 1.53 d | 625.11 a | 0.85 e |
Healthy control treated with CS-Ag NC | 1.59 c | 626.03 a | 0.86 c | 1.65 c | 629.13 b | 0.89 e | 1.62 e | 627.13 a | 0.87 e |
Infected control | 1.22 ab | 369.45 j | 0.95 ab | 1.22 a | 369.45 a | 0.95 h | 1.22 c | 369.45 d | 0.95 f |
L.S.D. at 0.05 | 0.25 | 1.76 | 0.19 | 0.47 | 86.5 | 0.015 | 0.26 | 32.7 | 0.027 |
Pre-Inoculation | Post-Inoculation | Simultaneously with Virus Inoculation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentrations of | Pl. Height (cm) | Pod Weigh (g) | N. Pod per Plant | Pl. Height (cm) | Pod Weigh (g) | N. Pod per Plant | Pl. Height (cm) | Pod Weigh (g) | N. Pod per Plant | |||
CS-Ag NC | Fresh | Dry | Fresh | Dry | Fresh | Dry | ||||||
200 ppm | 58.8 a | 20.0 ab | 9.9 ab | 23.0 a | 60.6 a | 21.2 a | 10.3 ab | 24.7 a | 59.5 a | 20.8 a | 9.9 bc | 23.8 a |
150 ppm | 57.8 a | 19.3 ab | 9.1 ab | 21.8 a | 59.3 a | 20.5 a | 9.8 ab | 23.4 a | 58.2 a | 19.9 a | 9.2 cd | 22.6 a |
100 ppm | 56.9 a | 18.0 ab | 7.9 ab | 20.7 a | 57.9 a | 19.8 a | 9.1 ab | 22.6 a | 57.9 a | 18.4 a | 8.3 cde | 21.5 a |
50 ppm | 55.9 a | 16.9 ab | 6.8 b | 20.0 a | 56.8 a | 18.5 a | 8.6 ab | 21.8 a | 56.2 a | 17.9 a | 7.6 de | 20.4 a |
CS-NPs | ||||||||||||
400 ppm | 58.0 a | 19.9 ab | 9.1 ab | 22.3 a | 58.9 a | 20.6 a | 10.1 ab | 23.5 a | 58.9 a | 20.1 a | 10.2 bc | 22.7 a |
200 ppm | 57.0 a | 18.6 ab | 8.0 ab | 21.8 a | 57.7 a | 19.3 a | 9.2 ab | 22.9 a | 57.8 a | 19.2 a | 9.0 cd | 22.1 a |
150 ppm | 56.1 a | 17.0 ab | 7.0 b | 21.3 a | 56.5 a | 18.7 a | 8.8 ab | 21.8 a | 56.8 a | 17.9 a | 7.5 de | 21.6 a |
100 ppm | 55.9 a | 16.7 ab | 6.9 b | 20.7 a | 56.2 a | 17.5 a | 7.3 b | 21.3 a | 56.0 a | 17.1 a | 6.8 e | 20.9 a |
Healthy control | 55.8 a | 16.1 ab | 6.5 b | 20.6 a | 55.8 a | 16.1 a | 6.5 b | 20.6 a | 55.8 a | 16.1 a | 6.5 e | 20.6 a |
Healthy control treated with CS-NPs | 60.3 a | 22.1 a | 11.0 ab | 25.3 a | 60.9 a | 22.9 a | 11.8 a | 25.7 a | 60.7 a | 22.5 a | 11.3 ab | 25.5 a |
Healthy control treated with CS-Ag NC | 61.1 a | 23.0 a | 12.0 a | 26.0 a | 61.9 a | 23.7 a | 12.5 a | 26.8 a | 61.7 a | 23.4 a | 12.3 a | 26.5 a |
Infected control | 43.6 b | 8.7 b | 2.3 c | 11.8 b | 43.6 b | 8.7 b | 2.3 c | 11.8 b | 43.6 b | 8.7 b | 2.3 f | 11.8 b |
L.S.D. at 0.05 | 11.6 | 7.57 | 2.89 | 3.94 | 9.1 | 5.13 | 2.57 | 3.7 | 7.6 | 11.83 | 1.53 | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Ganainy, S.M.; Soliman, A.M.; Ismail, A.M.; Sattar, M.N.; Farroh, K.Y.; Shafie, R.M. Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus. Polymers 2023, 15, 2961. https://doi.org/10.3390/polym15132961
El-Ganainy SM, Soliman AM, Ismail AM, Sattar MN, Farroh KY, Shafie RM. Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus. Polymers. 2023; 15(13):2961. https://doi.org/10.3390/polym15132961
Chicago/Turabian StyleEl-Ganainy, Sherif Mohamed, Ahmed M. Soliman, Ahmed Mahmoud Ismail, Muhammad Naeem Sattar, Khaled Yehia Farroh, and Radwa M. Shafie. 2023. "Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus" Polymers 15, no. 13: 2961. https://doi.org/10.3390/polym15132961
APA StyleEl-Ganainy, S. M., Soliman, A. M., Ismail, A. M., Sattar, M. N., Farroh, K. Y., & Shafie, R. M. (2023). Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus. Polymers, 15(13), 2961. https://doi.org/10.3390/polym15132961