Optimization of the Electrospray Process to Produce Lignin Nanoparticles for PLA-Based Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Lignin Nanoparticles and Experimental Design
2.3. Synthesis of PLA-Grafted Lignin Nanoparticles
2.4. Preparation of PLA Lignin, Lignin Nanoparticles (LNPs) and PLA Grafted LNPs Films
2.5. Characterization of Lignin Nanoparticles and PLA Blend Composite Films
2.5.1. Particle Size and Surface Morphology
2.5.2. Fourier Transform Infrared (FTIR) Analysis and UV-Visible Spectroscopy of LNP and PLA Blend Films
2.5.3. Thermal Analysis of Lignin and PLA Blend Films
2.5.4. Mechanical Properties
2.5.5. Antioxidant Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of Lignin Concentration, Flow Rate, Voltage, and Tip-to-Collector Distance on the Synthesis of Rice Husk Lignin Nanoparticles by Electrospray
3.2. Experimental Optimization of LNPs Using a Box-Behnken Design
3.2.1. Effect of Interactive Process Parameters
3.2.2. Model Validation and Confirmation
3.3. Characterization of PLA Blend Composite Films
3.3.1. FTIR and Optical Properties
3.3.2. Optical Properties
3.3.3. Thermal Properties of Lignins and PLA-Lignin Composite Blends
3.3.4. Mechanical Properties
3.3.5. Antioxidant Capacity of Lignin-PLA Blends
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, W.D.H.; Dillon, A.J.P.; Camassola, M. Lignin Nanoparticles Enter the Scene: A Promising Versatile Green Tool for Multiple Applications. Biotechnol. Adv. 2021, 47, 107685. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.W.; Won, K. Preparation of Poly(Lactide)/Lignin/Silver Nanoparticles Composite Films with UV Light Barrier and Antibacterial Properties. Int. J. Biol. Macromol. 2018, 107, 1724–1731. [Google Scholar] [CrossRef]
- Boarino, A.; Schreier, A.; Leterrier, Y.; Klok, H.A. Uniformly Dispersed Poly(Lactic Acid)-Grafted Lignin Nanoparticles Enhance Antioxidant Activity and UV-Barrier Properties of Poly(Lactic Acid) Packaging Films. ACS Appl. Polym. Mater. 2022, 4, 4808–4817. [Google Scholar] [CrossRef]
- Domenek, S.; Louaifi, A.; Guinault, A.; Baumberger, S. Potential of Lignins as Antioxidant Additive in Active Biodegradable Packaging Materials. J. Polym. Environ. 2013, 21, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Fortunati, E.; Dominici, F.; Kenny, J.M.; Puglia, D. Effect of Processing Conditions and Lignin Content on Thermal, Mechanical and Degradative Behavior of Lignin Nanoparticles/Polylactic (Acid) Bionanocomposites Prepared by Melt Extrusion and Solvent Casting. Eur. Polym. J. 2015, 71, 126–139. [Google Scholar] [CrossRef]
- Parot, M.; Rodrigue, D.; Stevanovic, T. Electrospinning of Softwood Organosolv Lignin without Polymer Addition. ACS Sustain. Chem. Eng. 2022, 11, 607–616. [Google Scholar] [CrossRef]
- Daassi, R.; Kasangana, P.B.; Khasa, D.P.; Stevanovic, T. Chemical Characterization of Tropical Ramial and Trunk Woods and Their Lignins in View of Applications in Soil Amendments. Ind. Crops Prod. 2020, 156, 112880. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A Concise Review of Current Lignin Production, Applications, Products and Their Environment Impact. Ind. Crops Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Laurichesse, S.; Avérous, L. Chemical Modification of Lignins: Towards Biobased Polymers. Prog. Polym. Sci. 2014, 39, 1266–1290. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Greener Synthesis of Lignin Nanoparticles and Their Applications. Green Chem. 2020, 22, 612–636. [Google Scholar] [CrossRef]
- Puglia, D.; Luzi, F.; Torre, L. Preparation and Applications of Green Thermoplastic and Thermosetting Nanocomposites Based on Nanolignin. Polymers 2022, 14, 5470. [Google Scholar] [CrossRef] [PubMed]
- Latif, N.H.A.; Rahim, A.A.; Brosse, N.; Hussin, M.H. The Structural Characterization and Antioxidant Properties of Oil Palm Fronds Lignin Incorporated with P-Hydroxyacetophenone. Int. J. Biol. Macromol. 2019, 130, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Stevanovic, T.; Perrin, D. Chimie Du Bois; Presses Polytechniques et Universitaires Romandes: Lausanne, Switzerland, 2009; ISBN 978-2-88074-799-2. [Google Scholar]
- Zhou, H.; Modi, S.; Biswas, P. Controlled Synthesis of Charged Lignin Nanocarriers by Electrospray. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 648, 129314. [Google Scholar] [CrossRef]
- Gañán-Calvo, A.M.; López-Herrera, J.M.; Herrada, M.A.; Ramos, A.; Montanero, J.M. Review on the Physics of Electrospray: From Electrokinetics to the Operating Conditions of Single and Coaxial Taylor Cone-Jets, and AC Electrospray. J. Aerosol Sci. 2018, 125, 32–56. [Google Scholar] [CrossRef]
- Morais, A.Í.S.; Vieira, E.G.; Afewerki, S.; Sousa, R.B.; Honorio, L.M.C.; Cambrussi, A.N.C.O.; Santos, J.A.; Bezerra, R.D.S.; Furtini, J.A.O.; Silva-Filho, E.C.; et al. Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters. J. Funct. Biomater. 2020, 11, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almería, B.; Gomez, A. Electrospray Synthesis of Monodisperse Polymer Particles in a Broad (60 nm–2 μm) Diameter Range: Guiding Principles and Formulation Recipes. J. Colloid Interface Sci. 2014, 417, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Park, C.W.; Youe, W.J.; Kim, S.J.; Han, S.Y.; Park, J.S.; Lee, E.A.; Kwon, G.J.; Kim, Y.S.; Kim, N.H.; Lee, S.H. Effect of Lignin Plasticization on Physico-Mechanical Properties of Lignin/Poly(Lactic Acid) Composites. Polymers 2019, 11, 2089. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.H.; Park, J.H.; Kim, O.Y.; Hwang, S.H. Preparation of Chemically Modified Lignin-Reinforced Pla Biocomposites and Their 3d Printing Performance. Polymers 2021, 13, 667. [Google Scholar] [CrossRef]
- Koumba-Yoya, G.; Stevanovic, T. New Biorefinery Strategy for High Purity Lignin Production. ChemistrySelect 2016, 1, 6562–6570. [Google Scholar] [CrossRef]
- Kasangana, P.B.; Auclair, N.; Daassi, R.; Durand, K.; Rodrigue, D.; Stevanovic, T. Impact of Pre-Extraction on Xylose Recovery from Two Lignocellulosic Agro-Wastes. BioResources 2022, 17, 6131–6147. [Google Scholar] [CrossRef]
- Fabien, A.; Lefebvre, G.; Calvignac, B.; Legout, P.; Badens, E.; Crampon, C. Interfacial Tension of Ethanol, Water, and Their Mixtures in High Pressure Carbon Dioxide: Measurements and Modeling. J. Colloid Interface Sci. 2022, 613, 847–856. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Zhang, Z.; Terrasson, V.; Guénin, E. Lignin Nanoparticles and Their Nanocomposites. Nanomaterials 2021, 11, 1336. [Google Scholar] [CrossRef] [PubMed]
- Ago, M.; Huan, S.; Borghei, M.; Raula, J.; Kauppinen, E.I.; Rojas, O.J. High-Throughput Synthesis of Lignin Particles (~30 Nm to ~2 Μm) via Aerosol Flow Reactor: Size Fractionation and Utilization in Pickering Emulsions. ACS Appl. Mater. Interfaces 2016, 8, 23302–23310. [Google Scholar] [CrossRef]
- Pylypchuk, I.V.; Riazanova, A.; Lindström, M.E.; Sevastyanova, O. Structural and Molecular-Weight-Dependency in the Formation of Lignin Nanoparticles from Fractionated Soft- and Hardwood Lignins. Green Chem. 2021, 23, 3061–3072. [Google Scholar] [CrossRef]
- Shen, Y. Rice Husk Silica Derived Nanomaterials for Sustainable Applications. Renew. Sustain. Energy Rev. 2017, 80, 453–466. [Google Scholar] [CrossRef]
- Rahman, O.U.; Shi, S.; Ding, J.; Wang, D.; Ahmad, S.; Yu, H. Lignin Nanoparticles: Synthesis, Characterization and Corrosion Protection Performance. New J. Chem. 2018, 42, 3415–3425. [Google Scholar] [CrossRef]
- Tian, D.; Hu, J.; Bao, J.; Chandra, R.P.; Saddler, J.N.; Lu, C. Lignin Valorization: Lignin Nanoparticles as High-Value Bio-Additive for Multifunctional Nanocomposites. Biotechnol. Biofuels 2017, 10, 192. [Google Scholar] [CrossRef] [Green Version]
- Mendez, O.E.; Astete, C.E.; Cueto, R.; Eitzer, B.; Hanna, E.A.; Salinas, F.; Tamez, C.; Wang, Y.; White, J.C.; Sabliov, C.M. Lignin Nanoparticles as Delivery Systems to Facilitate Translocation of Methoxyfenozide in Soybean (Glycine Max). J. Agric. Food Res. 2022, 7, 100259. [Google Scholar] [CrossRef]
- Makri, S.P.; Xanthopoulou, E.; Klonos, P.A.; Grigoropoulos, A.; Kyritsis, A.; Tsachouridis, K.; Anastasiou, A.; Deligkiozi, I.; Nikolaidis, N.; Bikiaris, D.N. Effect of Micro-and Nano-Lignin on the Thermal, Mechanical, and Antioxidant Properties of Biobased PLA–Lignin Composite Films. Polymers 2022, 14, 5274. [Google Scholar] [CrossRef]
- Qian, Y.; Qiu, X.; Zhu, S. Sunscreen Performance of Lignin from Different Technical Resources and Their General Synergistic Effect with Synthetic Sunscreens. ACS Sustain. Chem. Eng. 2016, 4, 4029–4035. [Google Scholar] [CrossRef]
- Perera, U.P.; Foo, M.L.; Chew, I.M.L. Synthesis and Characterization of Lignin Nanoparticles Isolated from Oil Palm Empty Fruit Bunch and Application in Biocomposites. Sustain. Chem. Clim. Action 2023, 2, 100011. [Google Scholar] [CrossRef]
Lignin Concentration (mg/mL) | Surface Tension (mN/m) a | Viscosity (cP) b | Electrical Conductivity (μS/cm) c |
---|---|---|---|
5 | 24.68 | 0.795 | 17.65 |
27.5 | 25.34 | 1.560 | 220 |
49.1 * | 24.18 * | 1.425 * | 106 * |
50 | 25.96 | 1.957 | 261 |
Source | Sizes Z-Ave (d/nm) | Polydispersity Index (PDI) | Zeta Potential (mV) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
DF | Mean Square | F Value | p Value | Mean Square | F Value | p Value | Mean Square | F Value | p Value | |
Model | 15 | 59,572 | 6.28 | 0.000 | 0.027653 | 3.13 | 0.000 | 48.946 | 4.59 | 0.000 |
A: Lignin concentration | 1 | 141,827 | 14.96 | 0.001 | 0.018648 | 2.11 | 0.155 | 0.597 | 0.06 | 0.814 |
B: Flow rate | 1 | 357,204 | 37.68 | 0.000 | 0.116622 | 13.18 | 0.001 | 0.23 | 0.02 | 0.884 |
C: Voltage | 1 | 2800 | 0.30 | 0.59 | 0.03828 | 4.33 | 0.044 | 35.078 | 3.29 | 0.077 |
D: Distance | 18,092 | 1.91 | 0.175 | 0.04399 | 4.97 | 0.032 | 26.355 | 2.47 | 0.124 | |
AB | 1 | 41,213 | 4.35 | 0.044 | 0.0315 | 3.56 | 0.067 | 35.701 | 3.35 | 0.075 |
AC | 1 | 2615 | 0.28 | 0.602 | 0.00845 | 0.96 | 0.335 | 213.366 | 20.03 | 0.000 |
AD | 1 | 123,529 | 13.03 | 0.001 | 0.048828 | 5.52 | 0.024 | 261.061 | 24.51 | 0.000 |
BC | 1 | 4756 | 0.50 | 0.483 | 0.000171 | 0.02 | 0.89 | 97.301 | 9.13 | 0.004 |
BD | 502 | 0.05 | 0.819 | 0.01428 | 1.61 | 0.212 | 2.365 | 0.22 | 0.64 | |
CD | 1 | 59,521 | 6.28 | 0.017 | 0.0063 | 0.71 | 0.404 | 1.201 | 0.11 | 0.739 |
A2 | 1 | 30,078 | 3.17 | 0.083 | 0.012765 | 1.44 | 0.237 | 5.264 | 0.49 | 0.486 |
B2 | 1 | 7721 | 0.81 | 0.372 | 0.016987 | 1.92 | 0.174 | 29.916 | 2.81 | 0.102 |
C2 | 1 | 75,245 | 7.94 | 0.008 | 0.024576 | 2.78 | 0.104 | 3.808 | 0.36 | 0.553 |
D2 | 1 | 27,178 | 2.87 | 0.099 | 0.021123 | 2.39 | 0.131 | 14.719 | 1.38 | 0.247 |
Lack of Fit | 34 | 10,336 | 4.7 | 0.07 | 0.009672 | 5.24 | 0.058 | 11.888 | 75.28 | 0.000 |
R2 (X) | 94.57 | 79.54 | 64.46 | |||||||
AdjR2 (%) | 91.72 | 68.77 | 50.43 |
Optimum Condition | Lignin Nanoparticles of Rice Husk | ||||||||
---|---|---|---|---|---|---|---|---|---|
LC | FR | Applied Voltage | TCD | Size Z-Ave (nm) | PDI | ZP (mV) | |||
Predicted | Experimental | Predicted | Experimental | Predicted | Experimental | ||||
49.10 | 0.50 | 25.4 | 22.0 | 284.2 | 260.3 ± 10.1 | 0.241 | 0.257 ± 0.020 | −31.7 | −35.2 ± 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daassi, R.; Durand, K.; Rodrigue, D.; Stevanovic, T. Optimization of the Electrospray Process to Produce Lignin Nanoparticles for PLA-Based Food Packaging. Polymers 2023, 15, 2973. https://doi.org/10.3390/polym15132973
Daassi R, Durand K, Rodrigue D, Stevanovic T. Optimization of the Electrospray Process to Produce Lignin Nanoparticles for PLA-Based Food Packaging. Polymers. 2023; 15(13):2973. https://doi.org/10.3390/polym15132973
Chicago/Turabian StyleDaassi, Rodrigue, Kalvin Durand, Denis Rodrigue, and Tatjana Stevanovic. 2023. "Optimization of the Electrospray Process to Produce Lignin Nanoparticles for PLA-Based Food Packaging" Polymers 15, no. 13: 2973. https://doi.org/10.3390/polym15132973
APA StyleDaassi, R., Durand, K., Rodrigue, D., & Stevanovic, T. (2023). Optimization of the Electrospray Process to Produce Lignin Nanoparticles for PLA-Based Food Packaging. Polymers, 15(13), 2973. https://doi.org/10.3390/polym15132973