Tetramine-Based Hyperbranched Polyimide Membranes with Rigid Crosslinker for Improved Gas Permeability and Stability
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Chemicals
2.2. Synthesis of 6FDA−DAM/TPDA Hyperbranched Polyimides (HBPI) and Membrane Fabrication
2.3. Characterization
2.4. Gas Permeation Measurements
3. Results and Discussion
3.1. Preparation of 6FDA−DAM/TPDA Membranes
3.2. Polymer and Membrane Properties
3.3. Gas Permeation Properties
3.4. Anti-Aging Properties
3.5. Pressure-Dependent Gas Separation Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Galizia, M.; Chi, W.S.; Smith, Z.P.; Merkel, T.C.; Baker, R.W.; Freeman, B.D. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules 2017, 50, 7809–7843. [Google Scholar] [CrossRef]
- Mondal, M.K.; Balsora, H.K.; Varshney, P. Progress and trends in CO2 capture/separation technologies: A review. Energy 2012, 46, 431–441. [Google Scholar] [CrossRef]
- Ramimoghadam, D.; Gray, E.M.; Webb, C.J. Review of polymers of intrinsic microporosity for hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 16944–16965. [Google Scholar] [CrossRef]
- Yingge, W.; Ma, X.; Ghanem, B.S.; Alghunaimi, F.; Pinnau, I.; Han, Y. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater. Today Nano 2018, 3, 69–95. [Google Scholar]
- Sanders, D.F.; Smith, Z.P.; Guo, R.; Robeson, L.M.; McGrath, J.E.; Paul, D.R.; Freeman, B.D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer 2013, 54, 4729–4761. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.W.; Low, B.T. Gas Separation Membrane Materials: A Perspective. Macromolecules 2014, 47, 6999–7013. [Google Scholar] [CrossRef]
- Zou, X.; Zhu, G. Microporous Organic Materials for Membrane-Based Gas Separation. Adv. Mater. 2018, 30, 1700750. [Google Scholar] [CrossRef]
- Low, Z.X.; Budd, P.M.; McKeown, N.B.; Patterson, D.A. Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. Chem. Rev. 2018, 118, 5871–5911. [Google Scholar] [CrossRef] [PubMed]
- Freeman, B.D. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules 1999, 32, 375–380. [Google Scholar] [CrossRef]
- Kraftschik, B.; Koros, W.J. Cross-Linkable Polyimide Membranes for Improved Plasticization Resistance and Permselectivity in Sour Gas Separations. Macromolecules 2013, 46, 6908–6921. [Google Scholar] [CrossRef]
- Balçık, M.; Velioğlu, S.; Tantekin-Ersolmaz, S.B.; Ahunbay, M.G. Can crosslinking improve both CO2 permeability and plasticization resistance in 6FDA–pBAPS/DABA copolyimides? Polymer 2020, 205, 122789. [Google Scholar] [CrossRef]
- Liu, G.; Labreche, Y.; Li, N.; Liu, Y.; Zhang, C.; Miller, S.J.; Babu, V.P.; Bhuwania, N.; Koros, W.J. Simultaneously tuning dense skin and porous substrate of asymmetric hollow fiber membranes for efficient purification of aggressive natural gas. AIChE J. 2019, 65, 1269–1280. [Google Scholar] [CrossRef]
- Liu, G.; Li, N.; Miller, S.J.; Kim, D.; Yi, S.; Labreche, Y.; Koros, W.J. Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation. Angew. Chem. Int. Ed. Engl. 2016, 55, 13754–13758. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Kita, H.; Okamoto, K.-I. Gas permeation properties of hyperbranched polyimide membranes. J. Membr. Sci. 2001, 182, 245–256. [Google Scholar] [CrossRef]
- Lanč, M.; Sysel, P.; Šoltys, M.; Štěpánek, F.; Fónod, K.; Klepić, M.; Vopička, O.; Lhotka, M.; Ulbrich, P.; Friess, K. Synthesis, preparation and characterization of novel hyperbranched 6FDA-TTM based polyimide membranes for effective CO2 separation: Effect of embedded mesoporous silica particles and siloxane linkages. Polymer 2018, 144, 33–42. [Google Scholar] [CrossRef]
- Liu, S.; Luo, J.; Deng, G.; Wang, Y.; Liu, X.; Wu, Q.; Xue, S. From a hyperbranched polyimide to a microporous network polyimide via reaction temperature change and its application in gas separation membranes. Polym. Adv. Technol. 2021, 32, 1866–1876. [Google Scholar] [CrossRef]
- Peter, J.; Khalyavina, A.; Kříž, J.; Bleha, M. Synthesis and gas transport properties of ODPA–TAP–ODA hyperbranched polyimides with various comonomer ratios. Eur. Polym. J. 2009, 45, 1716–1727. [Google Scholar] [CrossRef]
- Peter, J.; Kosmala, B.; Bleha, M. Synthesis of hyperbranched copolyimides and their application as selective layers in composite membranes. Desalination 2009, 245, 516–526. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamada, Y. Synthesis and gas transport properties of novel hyperbranched polyimide-silica hybrid membranes. J. Appl. Polym. Sci. 2013, 127, 316–322. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamada, Y.; Tsujita, Y. Gas transport properties of 6FDA-TAPOB hyperbranched polyimide membrane. Polymer 2004, 45, 7167–7171. [Google Scholar] [CrossRef]
- Deng, G.; Luo, J.; Liu, S.; Wang, Y.; Zong, X.; Wu, Q.; Xue, S. Low-temperature synthesis and gas transport properties of novel contorted hyperbranched polyimides containing binaphthyl structures. Sep. Purif. Technol. 2020, 248, 117088. [Google Scholar] [CrossRef]
- Deng, G.; Luo, J.; Liu, X.; Zhang, X.; Wang, Y.; Zong, X.; Xue, S. Tailor the gas transport properties of network polyimide membranes via crosslinking center structure variation. Sep. Purif. Technol. 2022, 282, 119993. [Google Scholar] [CrossRef]
- Miki, M.; Horiuchi, H.; Yamada, Y. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes. Polymers 2013, 5, 1362–1379. [Google Scholar] [CrossRef]
- Chen, W.; Yan, W.; Wu, S.; Xu, Z.; Yeung, K.W.K.; Yi, C. Preparation and Properties of Novel Triphenylpyridine-Containing Hyperbranched Polyimides Derived from 2,4,6-Tris(4-aminophenyl)pyridine under Microwave Irradiation. Macromol. Chem. Phys. 2010, 211, 1803–1813. [Google Scholar] [CrossRef]
- Chen, W.; Li, Q.; Zhang, Q.; Xu, Z.; Wang, X.; Yi, C. Fabrication and characterization of novel hyperbranched polyimides with excellent organosolubility, thermal and mechanical properties. J. Appl. Polym. Sci. 2014, 132, 41544. [Google Scholar] [CrossRef]
- Eguchi, H.; Kim, D.J.; Koros, W.J. Chemically cross-linkable polyimide membranes for improved transport plasticization resistance for natural gas separation. Polymer 2015, 58, 121–129. [Google Scholar] [CrossRef]
- Abdulhamid, M.A.; Lai, H.W.H.; Wang, Y.; Jin, Z.; Teo, Y.C.; Ma, X.; Pinnau, I.; Xia, Y. Microporous Polyimides from Ladder Diamines Synthesized by Facile Catalytic Arene–Norbornene Annulation as High-Performance Membranes for Gas Separation. Chem. Mater. 2019, 31, 1767–1774. [Google Scholar] [CrossRef] [Green Version]
- Carta, M.; Croad, M.; Malpass-Evans, R.; Jansen, J.C.; Bernardo, P.; Clarizia, G.; Friess, K.; Lanc, M.; McKeown, N.B. Triptycene induced enhancement of membrane gas selectivity for microporous Troger’s base polymers. Adv. Mater. 2014, 26, 3526–3531. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Zhu, Z.; Shi, W.; Ji, W.; Li, J.; Wang, Y.; Pinnau, I. Unprecedented gas separation performance of a difluoro-functionalized triptycene-based ladder PIM membrane at low temperature. J. Mater. Chem. A 2021, 9, 5404–5414. [Google Scholar] [CrossRef]
- Puleo, A.C.; Paul, D.R.; Kelley, S.S. The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate. J. Membr. Sci. 1989, 47, 301–332. [Google Scholar] [CrossRef]
- Aitken, C.L.; Koros, W.J.; Paul, D.R. Effect of structural symmetry on gas transport properties of polysulfones. Macromolecules 2002, 25, 3424–3434. [Google Scholar] [CrossRef]
- McKeown, N.B.; Budd, P.M. Polymers of intrinsic microporosity (PIMs): Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2006, 35, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Ghanem, B.; Salines, O.; Litwiller, E.; Pinnau, I. Synthesis and Effect of Physical Aging on Gas Transport Properties of a Microporous Polyimide Derived from a Novel Spirobifluorene-Based Dianhydride. ACS Macro Lett. 2015, 4, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Chiou, J.S.; Barlow, J.W.; Paul, D.R. Plasticization of glassy polymers by CO2. J. Appl. Polym. Sci. 1985, 30, 2633–2642. [Google Scholar] [CrossRef]
- Wessling, M.; Schoeman, S.; van der Boomgaard, T.; Smolders, C.A. Plasticization of gas separation membranes. Gas Sep. Purif. 1991, 5, 222–228. [Google Scholar] [CrossRef] [Green Version]
Membrane | Tensile Strength (MPa) | Elongation at Break (%) | Td,5% (°C) | Td,10% (°C) | Char Yield (%) |
---|---|---|---|---|---|
6FDA−DAM/TPDA(1:1) | 141.6 | 13.5 | 525 | 541 | 56 |
6FDA−DAM/TPDA(2:1) | 117.2 | 7.9 | 515 | 536 | 57 |
6FDA−DAM/TPDA(5:1) | 87.8 | 3.5 | 517 | 538 | 57 |
Membrane | Density (g/cm3) | FFV(%) | 2θ(◦) | d Spacing (Ǻ) | BET (m2/g) |
---|---|---|---|---|---|
6FDA−DAM/TPDA(1:1) | 1.319 | 20.1 | 14.9 | 5.93 | 205 |
6FDA−DAM/TPDA(2:1) | 1.311 | 20.6 | 14.7 | 6.02 | 223 |
6FDA−DAM/TPDA(5:1) | 1.274 | 22.8 | 14.4 | 6.16 | 227 |
Membrane | Permeability (Barrer) a | Ideal Selectivity (α) | Ref. | |||
---|---|---|---|---|---|---|
N2 | O2 | CO2 | O2/N2 | CO2/N2 | ||
6FDA−DAM/TPDA(1:1) | 4.4 | 19.0 | 96.2 | 4.3 | 21.9 | This work |
6FDA−DAM/TPDA(2:1) | 5.9 | 25.0 | 123.6 | 4.2 | 20.8 | This work |
6FDA−DAM/TPDA(5:1) | 9.8 | 40.8 | 190.2 | 4.2 | 19.5 | This work |
MN-PI-XS24 | 1.14 | 6.41 | 37.4 | 5.6 | 32.8 | [21] |
6FDA-TAPB | 1.2 | 7.0 | 47.0 | 5.8 | 39.2 | [19] |
6FDA-TAPA-TPA | 2.16 | 11 | 65.0 | 5.1 | 30.1 | [14] |
Cellulose | 0.15 | 0.82 | 4.8 | 5.5 | 32.0 | [30] |
Matrimid® | 0.32 | 2.1 | 10 | 6.6 | 31.3 | [5] |
Polysulfone | 0.25 | 1.4 | 5.6 | 5.6 | 22.4 | [31] |
Membrane | D (10−8 cm2/s) | Ideal Selectivity (α) | Ref. | |||
---|---|---|---|---|---|---|
N2 | O2 | CO2 | O2/N2 | CO2/N2 | ||
6FDA−DAM/TPDA(1:1) | 3.13 | 4.18 | 8.82 | 1.33 | 2.62 | This work |
6FDA−DAM/TPDA(2:1) | 4.04 | 5.41 | 11.1 | 1.34 | 2.76 | This work |
6FDA−DAM/TPDA(5:1) | 5.77 | 7.94 | 16.0 | 1.37 | 2.78 | This work |
MN-PI-XS24 | 1.10 | 4.64 | 4.29 | 4.22 | 3.90 | [21] |
Membrane | S (10−2 cm3/(cm3cmHg)) | Ideal Selectivity (α) | Ref. | |||
---|---|---|---|---|---|---|
N2 | O2 | CO2 | O2/N2 | CO2/N2 | ||
6FDA−DAM/TPDA(1:1) | 1.41 | 4.54 | 10.9 | 3.22 | 7.73 | This work |
6FDA−DAM/TPDA(2:1) | 1.47 | 4.62 | 11.1 | 3.14 | 7.55 | This work |
6FDA−DAM/TPDA(5:1) | 1.69 | 5.14 | 11.9 | 3.04 | 7.04 | This work |
MN-PI-XS24 | 1.03 | 1.38 | 8.71 | 1.34 | 8.46 | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Ling, H.; Luo, J.; Zong, X.; Xue, S. Tetramine-Based Hyperbranched Polyimide Membranes with Rigid Crosslinker for Improved Gas Permeability and Stability. Polymers 2023, 15, 3017. https://doi.org/10.3390/polym15143017
Liu X, Ling H, Luo J, Zong X, Xue S. Tetramine-Based Hyperbranched Polyimide Membranes with Rigid Crosslinker for Improved Gas Permeability and Stability. Polymers. 2023; 15(14):3017. https://doi.org/10.3390/polym15143017
Chicago/Turabian StyleLiu, Xiangyun, Honglei Ling, Jiangzhou Luo, Xueping Zong, and Song Xue. 2023. "Tetramine-Based Hyperbranched Polyimide Membranes with Rigid Crosslinker for Improved Gas Permeability and Stability" Polymers 15, no. 14: 3017. https://doi.org/10.3390/polym15143017
APA StyleLiu, X., Ling, H., Luo, J., Zong, X., & Xue, S. (2023). Tetramine-Based Hyperbranched Polyimide Membranes with Rigid Crosslinker for Improved Gas Permeability and Stability. Polymers, 15(14), 3017. https://doi.org/10.3390/polym15143017