Incorporating Variable Porosity into the Determination of Effective Permeability in Interchanging Double Cloth Woven Fabrics Using Darcy’s Law
Abstract
:1. Introduction
2. Properties Affecting the Protective and Comfort Properties of Multilayered Woven Fabrics
2.1. Fabric Thickness
2.2. Fabric Porosity
- The porosity between the fibers;
- The porosity between the yarns;
- The effective porosity of the airflow, which is described as the function of fiber porosity and the porosity of the yarn itself.
2.3. Air Permeability
3. Applicability of Darcy’s Law in Textiles
3.1. Darcy’s Theory
3.2. Literature Review
3.3. Applicability of Darcy’s Law in Determining Air Permeability Characteristics for Multilayered Woven Fabrics
4. Experimental Part
4.1. Development of Woven Fabric with an Increased Proportion of Pores with Improved Thermal Protection Properties and Comfort—Theoretical Assumptions
4.2. Materials and Methods
- Testing area: 100 cm²
- Air volume: 10 L
- Pressure drop: 5, 10, 15, 20, and 25 Pa
5. Results and Discussion
5.1. Basic Parameters
5.2. Fabric Volume Porosity
5.3. Air Permeability of the Layer Interchanging Double Cloth
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kiš, A.; Brnada, S.; Kovačević, S. Influence of Fabric Weave on Thermal Radiation Resistance and Water Vapor Permeability. Polymers 2020, 12, 525. [Google Scholar] [CrossRef] [Green Version]
- Hursa Šajatović, A.; Dragčević, Z.; Pavlinić, D.Z.; Čupić, M. Istraživanje stanja zaštitne odjeće za vatrogasce putem ankete. Tekstil 2016, 65, 378–387. [Google Scholar]
- Perera, Y.S.; Muwanwella, R.M.H.W.; Fernando, P.R.; Fernando, S.K.; Jayawardana, T.S.S. Evolution of 3D weaving and 3D woven fabric structures. Fash. Text. 2021, 8, 11. [Google Scholar] [CrossRef]
- Galuszynskia, S. Structure and Tightness of Woven Fabrics. Indian J. Text. Res. 2014, 12, 71–77. [Google Scholar]
- Havlová, M. Model of Vertical Porosity Occurring in Woven Fabrics and its Effect on Air Permeability. Fibres Text. East. Eur. 2014, 22, 58–63. [Google Scholar]
- Elnashar, E. Volume porosity and permeability in double-layer woven fabrics. Autex Res. J. 2005, 5, 207–218. [Google Scholar]
- Büyükbayraktar, R.; Okur, A. Investigation of pore parameters of woven fabrics by theoretical and image analysis methods. J. Text. Inst. 2012, 103, 875–884. [Google Scholar]
- Dubrovski, P.D. Woven fabrics and ultraviolet protection. In Woven Fabric Engineering; IntechOpen: London, UK, 2010; pp. 273–296. [Google Scholar]
- Kalazić, A.; Brnada, S.; Kiš, A. Thermal Protective Properties and Breathability of Multilayer Protective Woven Fabrics for Wildland Firefighting. Polymers 2022, 14, 2967. [Google Scholar] [CrossRef]
- Gray, W.G.; O’Neill, K. On the general equations for flow in porous media and their reduction to Darcy’s law. Water Resour. Res. 1976, 12, 148–154. [Google Scholar] [CrossRef]
- Thusyanthan, N.I.; Madabhushi, S.P. Scaling of seepage flow velocity in centrifuge models. Acta Gastroenterol. Latinoam. 2003, 38, 105–115. [Google Scholar]
- Govindarajan, S.K. An overview on extension and limitations of macroscopic Darcy’s law for a single and multi-phase fluid flow through a porous medium. Int. J. Min. Sci. 2019, 5, 1–21. [Google Scholar]
- Dagan, G. The generalization of Darcy’s law for nonuniform flows. Water Resour. Res. 1979, 15, 1–7. [Google Scholar] [CrossRef]
- Van der Sluys, L.; Dierickx, W. The applicability of Darcy’s law in determining the water permeability of geotextiles. Geotext. Geomembr. 1987, 5, 283–299. [Google Scholar] [CrossRef]
- Patanaik, A.; Anandjiwala, R. Some studies on water permeability of nonwoven fabrics. Text. Res. J. 2009, 79, 147–153. [Google Scholar] [CrossRef]
- Bhattacharjee, D.; Ray, A.; Kothari, V.K. Air and water permeability characteristics of nonwoven fabrics. Indian J. Fibre Text. Res. 2004, 29, 122–128. [Google Scholar]
- Chan, A.W.; Morgan, R.J. Tow impregnation during resin transfer molding of bi-directional nonwoven fabrics. Polym. Compos. 1993, 14, 335–340. [Google Scholar] [CrossRef]
- Hong, Y.S.; Wu, C.S. Filtration behaviour of soil-nonwoven geotextile combinations subjected to various loads. Geotext. Geomembr. 2011, 29, 102–115. [Google Scholar] [CrossRef]
- Turtoi, P.; Cicone, T.; Fatu, A. Experimental and theoretical analysis of (water) permeability variation of nonwoven textiles subjected to compression. Mech. Ind. 2017, 18, 307. [Google Scholar] [CrossRef] [Green Version]
- Rozy, M.I.; Ueda, M.; Fukasawa, T.; Ishigami, T.; Fukui, K. Direct numerical simulation and experimental validation of flow resistivity of nonwoven fabric filter. AIChE J. 2020, 66, 16832. [Google Scholar] [CrossRef]
- Yang, T.; Hu, L.; Petrů, M.; Wang, X.; Xiong, X.; Yu, D.; Mishra, R.; Militký, J. Determination of the permeability coefficient and airflow resistivity of nonwoven materials. Text. Res. J. 2022, 92, 126–142. [Google Scholar] [CrossRef]
- Kulichenko, A.V.; Langenhove, L.V. The resistance to flow transmission of porous materials. J. Text. Inst. 1992, 83, 127–132. [Google Scholar] [CrossRef]
- Gooijer, H.; Warmoeskerken, M.M.; Groot Wassink, J. Flow resistance of textile materials: Part I: Monofilament fabrics. Text. Res. J. 2003, 73, 437–443. [Google Scholar] [CrossRef]
- Chen, Z.R.; Ye, L.; Lu, M. Permeability predictions for woven fabric preforms. J. Compos. Mater. 2010, 44, 1569–1586. [Google Scholar] [CrossRef]
- Gebart, B.R. Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 1992, 26, 1100–1133. [Google Scholar] [CrossRef]
- Adams, K.L.; Miller, B.; Rebenfeld, L. Forced in-plane flow of an epoxy resin in fibrous networks. Polym. Eng. Sci. 1986, 26, 1434–1441. [Google Scholar] [CrossRef]
- Dimitrovski, K.; Zupin, Ž.; Kostajnšek, K.; Branca, E. Use of air permeability for determination of equivalent average pore diameter in woven fabrics. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 042009. [Google Scholar] [CrossRef] [Green Version]
- Hu, J. 3-D fibrous assemblies: Properties, applications and modelling of three-dimensional textile structures. In Permeability of Multilayer Woven Fabrics; Elsevier: Amsterdam, The Netherlands, 2008; pp. 194–220. [Google Scholar]
- Alotaibi, H.; Jabbari, M.; Abeykoon, C.; Soutis, C. Numerical Investigation of Multi-scale Characteristics of Single and Multi-layered Woven Structures. Appl. Compos. Mater. 2022, 29, 405–421. [Google Scholar] [CrossRef]
- Thomas, S.; Bongiovanni, C.; Nutt, S.R. In situ estimation of through-thickness resin flow using ultrasound. Compos. Sci. Technol. 2008, 68, 3093–3098. [Google Scholar] [CrossRef]
- Karaki, M. Experimental Study and Modelling of Permeability of Engineering Textiles Used in Composite Materials. Ph.D. Thesis, University of Technology of Troyes, Troyes, France, 2017. [Google Scholar]
- Xiao, X. Modeling the Structure-Permeability Relationship for Woven Fabrics. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2012. [Google Scholar]
- Xiao, X.; Long, A.; Qian, K.; Zeng, X.; Hua, T. Through-thickness permeability of woven fabric under increasing air pressure: Theoretical framework and simulation. Text. Res. J. 2017, 87, 1631–1642. [Google Scholar] [CrossRef]
- Khan, M.A.A. In-Plane Permeability Measurement of Biaxial Woven Fabrics by 2D-Radial Flow Method. Sci. Eng. Compos. Mater. 2021, 28, 153–159. [Google Scholar] [CrossRef]
- Dei Sommi, A.; Lionetto, F.; Maffezzoli, A. An Overview of the Measurement of Permeability of Composite Reinforcements. Polymers 2023, 15, 728. [Google Scholar] [CrossRef] [PubMed]
- Atangana, A. Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Badrov, T.; Schwarz, I.; Kovačević, S. Multifunctionality of Thermal Protective Layer Interchanging Double Cloth Conditioned by Influential Parameters. Polymers 2022, 14, 4561. [Google Scholar] [CrossRef] [PubMed]
Designation | Composition | Tt (Tex) | T (Twist/m) |
---|---|---|---|
AR | 95% M-aramid Conex NEO; 5% P-aramid Twaron | 20 × 2 | 740 Z; 600 S |
17 × 2 | 840 Z; 660 S | ||
14 × 2 | 940 Z; 710 S | ||
12.5 × 2 | 1030 Z; 760 S | ||
MC | 45% cotton fiber (combed); 55% modacrylic fiber Sevel FRSA/L | 20 × 2 | 970 Z; 670 S |
17 × 2 | 1000 Z; 720 S | ||
14 × 2 | 1170 Z; 800 S | ||
12.5 × 2 | 1200 Z; 760 S |
Sample | Warp | Tt (Tex) | Weft 1 | Tt (Tex) | Weft 2 | Tt (Tex) |
---|---|---|---|---|---|---|
50-50 | AR | 17 × 2 | AR | 20 × 2 | MC | 20 × 2 |
50-60 | AR | 17 × 2 | AR | 20 × 2 | MC | 17 × 2 |
50-70 | AR | 17 × 2 | AR | 20 × 2 | MC | 14 × 2 |
50-80 | AR | 17 × 2 | AR | 20 × 2 | MC | 12.5 × 2 |
80-50 | AR | 17 × 2 | AR | 12.5 × 2 | MC | 20 × 2 |
80-60 | AR | 17 × 2 | AR | 12.5 × 2 | MC | 17 × 2 |
80-70 | AR | 17 × 2 | AR | 12.5 × 2 | MC | 14 × 2 |
80-80 | AR | 17 × 2 | AR | 12.5 × 2 | MC | 12.5 × 2 |
Designation | Warp Density, Thread/cm | Weft Density, Thread/cm | Thickness, mm | Mass, g/m2 |
---|---|---|---|---|
50-50 | 34 | 68 | 1.408 | 418 |
50-60 | 34 | 66 | 1.372 | 382 |
50-70 | 34 | 64 | 1.369 | 367 |
50-80 | 34 | 64 | 1.338 | 345 |
80-50 | 34 | 65 | 1.343 | 323 |
80-60 | 34 | 64 | 1.333 | 300 |
80-70 | 34 | 64 | 1.298 | 282 |
80-80 | 34 | 64 | 1.282 | 261 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalazić, A.; Badrov, T.; Schwarz, I.; Brnada, S. Incorporating Variable Porosity into the Determination of Effective Permeability in Interchanging Double Cloth Woven Fabrics Using Darcy’s Law. Polymers 2023, 15, 3048. https://doi.org/10.3390/polym15143048
Kalazić A, Badrov T, Schwarz I, Brnada S. Incorporating Variable Porosity into the Determination of Effective Permeability in Interchanging Double Cloth Woven Fabrics Using Darcy’s Law. Polymers. 2023; 15(14):3048. https://doi.org/10.3390/polym15143048
Chicago/Turabian StyleKalazić, Ana, Tea Badrov, Ivana Schwarz, and Snježana Brnada. 2023. "Incorporating Variable Porosity into the Determination of Effective Permeability in Interchanging Double Cloth Woven Fabrics Using Darcy’s Law" Polymers 15, no. 14: 3048. https://doi.org/10.3390/polym15143048
APA StyleKalazić, A., Badrov, T., Schwarz, I., & Brnada, S. (2023). Incorporating Variable Porosity into the Determination of Effective Permeability in Interchanging Double Cloth Woven Fabrics Using Darcy’s Law. Polymers, 15(14), 3048. https://doi.org/10.3390/polym15143048