An Experimental Study on Drilling Behavior of Silane-Treated Cotton/Bamboo Woven Hybrid Fiber Reinforced Epoxy Polymer Composites
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Fabrication of CB Woven Fabric
2.2. Silane Treatment of CB Fabrics
2.3. Fabrication of Composite Laminates
2.4. Drilling Process Parameters and Optimization
3. Results and Discussion
3.1. Thrust Force Analysis
3.2. Response Surface Methodology (RSM)
3.3. Comparison of Experimental and Thrust Force Values
3.4. SEM Observation
4. Conclusions
- From the thrust force analysis, it could be observed that during drilling, three significant phases of thrust force could be obtained. The maximum value of thrust force was during the complete contact of drill bit with the composites.
- The influence of various process parameters on the thrust force on fabric/epoxy composite can be examined by RSM. The optimum cutting parameters are identified at a minimum rate of feed (20 mm/min), maximum spindle speed (2400 rpm), and drill diameter (6 mm). The adequacy of this model is proven to be fitted for finding thrust force on the composite material.
- The size of the hole is one of the main factors and it turns out to be the reason for the increase in thrust force. When the thrust force increases, the size of the hole also increases considerably and the composite laminate thickness plays a vital role in thrust force development.
- From the response plots and 3D surface plots, it can be concluded that the thrust force increases with drill diameter and feed rate and decreases with spindle speed. Hence, lower feed rate and small drill diameter at higher spindle speed produce good-quality holes.
- From the SEM micrograph, the minimum thrust forces developed at a minimum feed rate and high cutting speed along with minimum diameter of the drill is proven. Hence, it can be concluded from the study that the woven cotton/bamboo fabrics can be machined with lower feed rates and drill diameter but at higher speeds. Such composites can be applied in low and medium load-carrying structural applications in automobile, aerospace, and marine industries, where machining of the composites is an integral part of manufacturing.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajeshkumar, L.; Ramesh, M.; Bhuvaneswari, V.; Balaji, D.; Deepa, C. Synthesis and thermomechanical properties of bioplastics and biocomposites: A systematic review. J. Mater. Chem. B 2023, 11, 3307–3337. [Google Scholar] [CrossRef]
- Sumrith, N.; Techawinyutham, L.; Sanjay, M.R.; Dangtungee, R.; Siengchin, S. Characterization of Alkaline and Silane Treated Fibers of ‘Water Hyacinth Plants’ and Reinforcement of ‘Water Hyacinth Fibers’ with Bioepoxy to Develop Fully Biobased Sustainable Ecofriendly Composites. J. Polym. Environ. 2020, 28, 2749–2760. [Google Scholar] [CrossRef]
- Akhil, U.V.; Radhika, N.; Saleh, B.; Aravind Krishna, S.; Noble, N.; Rajeshkumar, L. A comprehensive review on plant-based natural fiber reinforced polymer composites: Fabrication, properties, and applications. Polym. Compos. 2023, 44, 2598–2633. [Google Scholar] [CrossRef]
- Nagappan, S.; Subramani, S.P.; Palaniappan, S.K.; Mylsamy, B. Impact of alkali treatment and fiber length on mechanical properties of new agro waste Lagenaria Siceraria fiber reinforced epoxy composites. J. Nat. Fibers 2021, 19, 6853–6864. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Syamsir, A.; Zahari, N.M.; Supian, A.B.M.; Ishak, M.R.; Sapuan, S.M.; Sharma, S.; Rashedi, A.; Razman, M.R.; Zakaria, S.Z.S.; et al. Product Development of Natural Fibre-Composites for Various Applications: Design for Sustainability. Polymers 2022, 14, 920. [Google Scholar] [CrossRef]
- Ramesh, M.; Rajeshkumar, L.; Bhuvaneswari, V. Leaf fibres as reinforcements in green composites: A review on processing, properties and applications. Emergent Mater. 2021, 5, 833–857. [Google Scholar] [CrossRef]
- Kaliyannan, G.V.; Rathanasamy, R.; Kumar, H.K.M.; Raj, M.K.A.; Chinnasamy, M.; Pal, S.K.; Palaniappan, S.K. Natural fiber-based bio-degradable polymer composite. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, A.M., Altalhi, T., Alrooqi, A., Eds.; Elsevier: San Diego, CA, USA, 2023; pp. 145–165. [Google Scholar]
- Karthik, A.; Jeyakumar, R.; Sampath, P.S.; Soundararajan, R.; Manikandan, G.K. Study and Fabrication of Fan Blade Using Coconut Leaf Sheath Fibre/Epoxy-Reinforced Composite Materials. J. Inst. Eng. (India) Ser. D 2023, 1–8. [Google Scholar] [CrossRef]
- Ramesh, M.; Rajeshkumar, L.N.; Srinivasan, N.; Kumar, D.V.; Balaji, D. Influence of filler material on properties of fiber-reinforced polymer composites: A review. E-Polymers 2022, 22, 898–916. [Google Scholar] [CrossRef]
- Asokan, R.; Rathanasamy, R.; Paramasivam, P.; Chinnasamy, M.; Pal, S.K.; Palaniappan, S.K. Hemp composite. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, A.M., Altalhi, T., Alrooqi, A., Eds.; Elsevier: San Diego, CA, USA, 2023; pp. 89–112. [Google Scholar]
- Ramesh, M. Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Prog. Mater. Sci. 2018, 102, 109–166. [Google Scholar] [CrossRef]
- Sathishkumar, T.P.; De-Prado-Gil, J.; Martínez-García, R.; Rajeshkumar, L.; Rajeshkumar, G.; Rangappa, S.M.; Siengchin, S.; Alosaimi, A.M.; Hussein, M.A. Redeemable environmental damage by recycling of industrial discarded and virgin glass fiber mats in hybrid composites—An exploratory investigation. Polym. Compos. 2023, 44, 318–329. [Google Scholar] [CrossRef]
- Ilyas, R.; Sapuan, S.; Harussani, M.; Hakimi, M.; Haziq, M.; Atikah, M.; Asyraf, M.; Ishak, M.; Razman, M.; Nurazzi, N.; et al. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers 2021, 13, 1326. [Google Scholar] [CrossRef]
- Asmawi, N.; Ilyas, R.A.; Roslim, M.H.M.; Rajeshkumar, L.; Abotbina, W.; Syafri, E.; Jumaidin, R.; Syafiq, R.; Rafiqah, S.A.; Ridwan, R.; et al. Cassava starch nanocomposite films reinforced with nanocellulose. Phys. Sci. Rev. 2023. [Google Scholar] [CrossRef]
- Asyraf, M.; Ishak, M.; Norrrahim, M.; Nurazzi, N.; Shazleen, S.; Ilyas, R.; Rafidah, M.; Razman, M. Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites. Int. J. Biol. Macromol. 2021, 193, 1587–1599. [Google Scholar] [CrossRef]
- Mylsamy, B.; Palaniappan, S.K.; Subramani, S.P.; Pal, S.K.; Aruchamy, K. Impact of nanoclay on mechanical and structural properties of treated Coccinia indica fibre reinforced epoxy composites. J. Mater. Res. Technol. 2019, 8, 6021–6028. [Google Scholar] [CrossRef]
- Asyraf, M.; Ishak, M.; Syamsir, A.; Nurazzi, N.; Sabaruddin, F.; Shazleen, S.; Norrrahim, M.; Rafidah, M.; Ilyas, R.; Rashid, M.Z.A.; et al. Mechanical properties of oil palm fibre-reinforced polymer composites: A review. J. Mater. Res. Technol. 2022, 17, 33–65. [Google Scholar] [CrossRef]
- Sanjeevi, S.; Shanmugam, V.; Kumar, S.; Ganesan, V.; Sas, G.; Johnson, D.J.; Shanmugam, M.; Ayyanar, A.; Naresh, K.; Neisiany, R.E.; et al. Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Sci. Rep. 2021, 11, 13385. [Google Scholar] [CrossRef]
- Karthik, A.; Jeyakumar, R.; Sampath, P.S.; Soundarararajan, R. Mechanical Properties of Twill Weave of Bamboo Fabric Epoxy Composite Materials; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Hamidon, M.H.; Sultan, M.T.; Ariffin, A.H.; Shah, A.U. Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: A review. J. Mater. Res. Technol. 2019, 8, 3327–3337. [Google Scholar] [CrossRef]
- Bhuvaneshwaran, M.; Subramani, S.P.; Palaniappan, S.K.; Pal, S.K.; Balu, S. Natural Cellulosic Fiber from Coccinia Indica Stem for Polymer Composites: Extraction and Characterization. J. Nat. Fibers 2021, 18, 644–652. [Google Scholar] [CrossRef]
- Mohammed, M.; Rahman, R.; Mohammed, A.M.; Adam, T.; Betar, B.O.; Osman, A.F.; Dahham, O.S. Surface treatment to improve water repellence and compatibility of natural fiber with polymer matrix: Recent advancement. Polym. Test. 2022, 115, 107707. [Google Scholar] [CrossRef]
- Van de Weyenberg, I.; Ivens, J.; De Coster, A.; Kino, B.; Baetens, E.; Verpoest, I. Influence of processing and chemical treatment of flax fibres on their composites. Compos. Sci. Technol. 2003, 63, 1241–1246. [Google Scholar] [CrossRef]
- Gohil, P.P.; Chaudhary, V.; Patel, K. Challenges in machining of natural fibre composites. In Manufacturing of Natural Fibre Reinforced Polymer Composites; Springer: Cham, Switzerland, 2015; pp. 139–153. [Google Scholar] [CrossRef]
- Mansingh, B.B.; Binoj, J.S.; Anbazhagan, V.N.; Abu Hassan, S.; Goh, K.L.; Siengchin, S.; Sanjay, M.R.; Jaafar, M.; Liu, Y. Characterization of Cocos nucifera L. peduncle fiber reinforced polymer composites for lightweight sustainable applications. J. Appl. Polym. Sci. 2022, 139, 52245. [Google Scholar] [CrossRef]
- Mercy, J.L.; Sivashankari, P.; Sangeetha, M.; Kavitha, K.; Prakash, S. Genetic Optimization of Machining Parameters Affecting Thrust Force during Drilling of Pineapple Fiber Composite Plates—An Experimental Approach. J. Nat. Fibers 2022, 19, 1729–1740. [Google Scholar] [CrossRef]
- Raj, S.S.; Dhas, J.E.R.; Jesuthanam, C. Challenges on machining characteristics of natural fiber-reinforced composites—A review. J. Reinf. Plast. Compos. 2021, 40, 41–69. [Google Scholar] [CrossRef]
- Krishnasamy, P.; Rajamurugan, G.; Muralidharan, B.; Arbat, A.P.; Kishorkumar, B.P. Effect of S-2304 wire-mesh angle in hemp/flax composite on mechanical and twist drilling surface response analysis. J. Ind. Text. 2021, 51, 2774S–2798S. [Google Scholar] [CrossRef]
- Bajpai, P.K.; Singh, I. Drilling behavior of sisal fiber-reinforced polypropylene composite laminates. J. Reinf. Plast. Compos. 2013, 32, 1569–1576. [Google Scholar] [CrossRef]
- Karthik, A.; Sampath, P.S. Analysis of thrust force in drilling cotton with bamboo blended fibre-reinforced composites using Box-Behnken methodology. Indian J. Fibre Text. Res. 2020, 45, 267–273. [Google Scholar] [CrossRef]
- Aruchamy, K.; Subramani, S.P.; Palaniappan, S.K.; Sethuraman, B.; Kaliyannan, G.V. Study on mechanical characteristics of woven cotton/bamboo hybrid reinforced composite laminates. J. Mater. Res. Technol. 2020, 9, 718–726. [Google Scholar] [CrossRef]
- Srinivasan, T.; Palanikumar, K.; Rajagopal, K. Influence of Thrust Force in Drilling of Glass Fiber Reinforced Polycarbonate (GFR/PC) Thermoplastic Matrix Composites Using Box-behnken Design. Procedia Mater. Sci. 2014, 5, 2152–2158. [Google Scholar] [CrossRef] [Green Version]
- Aruchamy, K.; Subramani, S.P.; Palaniappan, S.K.; Pal, S.K.; Mylsamy, B.; Chinnasamy, V. Effect of Blend Ratio on the Thermal Comfort Characteristics of Cotton/Bamboo Blended Fabrics. J. Nat. Fibers 2022, 19, 105–114. [Google Scholar] [CrossRef]
- Liu, D.; Tang, Y.; Cong, W. A review of mechanical drilling for composite laminates. Compos. Struct. 2012, 94, 1265–1279. [Google Scholar] [CrossRef]
- Palanikumar, K.; Srinivasan, T.; Rajagopal, K.; Latha, B. Thrust Force Analysis in Drilling Glass Fiber Reinforced/Polypropylene (GFR/PP) Composites. Mater. Manuf. Process. 2016, 31, 581–586. [Google Scholar] [CrossRef]
- Saravanakumar, A.; Reddy, S.A. Optimization of process parameter in drilling of snake grass fiber reinforced composites. Mater. Today Proc. 2022, 62, 5460–5466. [Google Scholar] [CrossRef]
- Arunachalam, S.; Narasimhan, R.L.; Palaniappan, S.K.; Ross, N.S.; Chandran, A.J.; Rangappa, S.M.; Siengchin, S. Machinability analysis of Typha angustifolia natural fiber reinforced composites through experimental modeling—Influence of fiber orientation. Polym. Compos. 2023, 44, 3808–3823. [Google Scholar] [CrossRef]
- Belaadi, A.; Boumaaza, M.; Alshahrani, H.; Bourchak, M.; Jawaid, M. Drilling performance prediction of HDPE/Washingtonia fiber biocomposite using RSM, ANN, and GA optimization. Int. J. Adv. Manuf. Technol. 2022, 123, 1543–1564. [Google Scholar] [CrossRef]
- Box, G.E.; Draper, N.R. Empirical Model-Building and Response Surfaces; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Dembri, I.; Belaadi, A.; Boumaaza, M.; Alshahrani, H.; Bourchak, M. Drilling performance of short Washingtonia filifera fiber–reinforced epoxy biocomposites: RSM modeling. Int. J. Adv. Manuf. Technol. 2022, 121, 7833–7850. [Google Scholar] [CrossRef]
- Thakre, A.A.; Soni, S. Modeling of burr size in drilling of aluminum silicon carbide composites using response surface methodology. Eng. Sci. Technol. Int. J. 2016, 19, 1199–1205. [Google Scholar] [CrossRef] [Green Version]
- Barreno-Avila, E.; Moya-Moya, E.; Pérez-Salinas, C. Rice-husk fiber reinforced composite (RFRC) drilling parameters optimization using RSM based desirability function approach. Mater. Today Proc. 2022, 49, 167–174. [Google Scholar] [CrossRef]
- Anjinappa, C.; Y. J, M.; Ahmed, O.S.; Abbas, M.; Alahmadi, A.A.; Alwetaishi, M.; Alzaed, A.N. Experimental Study and an RSM Modelling on Drilling Characteristics of the Sheep Horn Particle Reinforced Epoxy Composites for Structural Applications. Processes 2022, 10, 2735. [Google Scholar] [CrossRef]
- Aruchamy, K.; Mylsamy, B.; Palaniappan, S.K.; Subramani, S.P.; Velayutham, T.; Rangappa, S.M.; Siengchin, S. Influence of weave arrangements on mechanical characteristics of cotton and bamboo woven fabric reinforced composite laminates. J. Reinf. Plast. Compos. 2023, 07316844221140350. [Google Scholar] [CrossRef]
- Mahdi, A.; Turki, Y.; Habak, M.; Salem, M.; Bouaziz, Z. Experimental study of thrust force and surface quality when drilling hybrid stacks. Int. J. Adv. Manuf. Technol. 2020, 107, 3981–3994. [Google Scholar] [CrossRef]
- Yallew, T.B.; Kumar, P.; Singh, I. A study about hole making in woven jute fabric-reinforced polymer composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2016, 230, 888–898. [Google Scholar] [CrossRef]
- Nassar, M.M.A.; Arunachalam, R.; Alzebdeh, K.I. Machinability of natural fiber reinforced composites: A review. Int. J. Adv. Manuf. Technol. 2017, 88, 2985–3004. [Google Scholar] [CrossRef]
S. No. | Properties | Cotton Yarn | Bamboo Yarn |
---|---|---|---|
1 | Fiber length (mm) | 40 | 36 |
2 | Fiber fineness (dtex) | 1.35 | 1.52 |
3 | Linear density (tex) | 0.115 | 0.155 |
4 | Moisture regain value (%) | 7.85 | 11.42 |
5 | Tenacity (g/tex) | 32.22 | 22.84 |
6 | Elongation (%) | 5.8 | 21.2 |
S. No. | Fabric Particulars | Values |
---|---|---|
1 | Fabric GSM (g) | 164 |
2 | End per inch (EPI) | 69 |
3 | Picks per inch (PPI) | 54 |
4 | Thickness (mm) | 0.38 |
S. No. | Process Parameter | Unit | Upper Limit | Lower Limit |
---|---|---|---|---|
1 | Cutting speed (n) | rpm | 3000 | 1000 |
2 | Drill diameter (d) | mm | 12 | 6 |
3 | Feed rate (f) | mm/min | 60 | 20 |
S. No. | Run | Diameter of the Drill (mm) | Feed Rate (mm/min) | Speed of the Spindle (rpm) | Thrust Force of Cutting (N) |
---|---|---|---|---|---|
1 | 2 | 6 | 20 | 1800 | 32.43 |
2 | 16 | 12 | 20 | 1800 | 39.89 |
3 | 11 | 6 | 60 | 1800 | 49.11 |
4 | 12 | 12 | 60 | 1800 | 47.97 |
5 | 14 | 6 | 40 | 1200 | 38.99 |
6 | 10 | 12 | 40 | 1200 | 44.43 |
7 | 7 | 6 | 40 | 2400 | 33.34 |
8 | 4 | 12 | 40 | 2400 | 35.22 |
9 | 15 | 9 | 20 | 1200 | 40.11 |
10 | 1 | 9 | 60 | 1200 | 49.23 |
11 | 8 | 9 | 20 | 2400 | 29.75 |
12 | 17 | 9 | 60 | 2400 | 47.67 |
13 | 3 | 9 | 40 | 1800 | 39.12 |
14 | 13 | 9 | 40 | 1800 | 41.98 |
15 | 9 | 9 | 40 | 1800 | 39.06 |
16 | 5 | 9 | 40 | 1800 | 40.11 |
17 | 6 | 9 | 40 | 1800 | 38.91 |
Source | df | Adj SS | Adj MS | F Value | p-Value Prob > F |
---|---|---|---|---|---|
Regression model | 9 | 535.903 | 59.545 | 49.041 | <0.0001 |
d | 1 | 23.256 | 23.256 | 19.154 | 0.0032 |
f | 1 | 335.405 | 335.405 | 276.236 | <0.0001 |
n | 1 | 89.646 | 89.646 | 73.832 | <0.0001 |
df | 1 | 18.490 | 18.490 | 15.228 | 0.0059 |
dn | 1 | 3.168 | 3.168 | 2.609 | 0.1503 |
nf | 1 | 19.360 | 19.360 | 15.945 | 0.0052 |
d2 | 1 | 1.468 | 1.468 | 1.209 | 0.3079 |
f2 | 1 | 40.581 | 40.581 | 33.422 | 0.0007 |
n2 | 1 | 6.584 | 6.584 | 5.423 | 0.0527 |
Residual | 7 | 8.499 | 1.214 | ||
Lack of fit | 3 | 1.855 | 0.618 | 0.372 | 0.7784 |
Pure error | 4 | 6.644 | 1.661 | ||
Cor. total | 16 | 544.402 | |||
Std. Dev. | 1.102 | R-Squared | 0.984 | ||
Mean | 40.431 | Adj R-Squared | 0.964 | ||
C.V.% | 2.725 | Pred R-Squared | 0.926 | ||
Press | 40.065 | Adeq Precision | 23.245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aruchamy, K.; Palaniappan, S.K.; Lakshminarasimhan, R.; Mylsamy, B.; Dharmalingam, S.K.; Ross, N.S.; Pavayee Subramani, S. An Experimental Study on Drilling Behavior of Silane-Treated Cotton/Bamboo Woven Hybrid Fiber Reinforced Epoxy Polymer Composites. Polymers 2023, 15, 3075. https://doi.org/10.3390/polym15143075
Aruchamy K, Palaniappan SK, Lakshminarasimhan R, Mylsamy B, Dharmalingam SK, Ross NS, Pavayee Subramani S. An Experimental Study on Drilling Behavior of Silane-Treated Cotton/Bamboo Woven Hybrid Fiber Reinforced Epoxy Polymer Composites. Polymers. 2023; 15(14):3075. https://doi.org/10.3390/polym15143075
Chicago/Turabian StyleAruchamy, Karthik, Sathish Kumar Palaniappan, Rajeshkumar Lakshminarasimhan, Bhuvaneshwaran Mylsamy, Satish Kumar Dharmalingam, Nimel Sworna Ross, and Sampath Pavayee Subramani. 2023. "An Experimental Study on Drilling Behavior of Silane-Treated Cotton/Bamboo Woven Hybrid Fiber Reinforced Epoxy Polymer Composites" Polymers 15, no. 14: 3075. https://doi.org/10.3390/polym15143075
APA StyleAruchamy, K., Palaniappan, S. K., Lakshminarasimhan, R., Mylsamy, B., Dharmalingam, S. K., Ross, N. S., & Pavayee Subramani, S. (2023). An Experimental Study on Drilling Behavior of Silane-Treated Cotton/Bamboo Woven Hybrid Fiber Reinforced Epoxy Polymer Composites. Polymers, 15(14), 3075. https://doi.org/10.3390/polym15143075