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Abstract: The optimal process conditions for fabricating carbon nanotube (CNT)/polyvinylidene
fluoride (PVDF) fibers with varying properties using a wet spinning process were experimentally
determined. A dope solution was prepared using multi-walled nanotubes, PVDF, and dimethylac-
etamide, and appropriate materials were selected. Design parameters affecting the chemical and
physical properties of CNT/PVDF fibers, such as bath concentration, bath temperature, drying
temperature, and elongation, were determined using a response surface method. The wet-spinning
conditions were analyzed based on the tensile strength and electrical conductivity of the fibers using
an analysis of variance and interaction analysis. The optimized process conditions for fabricating
CNT/PVDF fibers with different properties were derived and verified through fabrication using the
determined design parameters.

Keywords: analysis of variance; CNT/PVDF fiber; carbon nanotube; central composite design (CCD);
electrical conductivity; multiple properties; polyvinylidene fluoride; response surface method (RSM);
tensile strength; wet spinning

1. Introduction

Carbon nanotubes (CNTs) have attracted significant research interest, owing in part to
their high mechanical strength and electrical conductivity. They have been widely used in
various fields to overcome the limitations of composite materials and provide enhanced
functionality [1–5]. Recently, CNTs have been added to polymers to create fibers that can
reinforce strength and function as sensors. Due to the benefits of these CNT composite
fibers, including superior strength compared to conventional fibers, high electrical con-
ductivity, and ease of handling, numerous studies have been conducted to characterize
their properties. Su et al. [6] fabricated CNT composite fibers by wet-spinning multiwalled
nanotube (MWNT)/polyvinyl alcohol/gelatin. A remarkable increase in tensile strength of
the PVA/gelatin fibers was achieved by adding a small amount of CNTs. Mukai et al. [7]
presented a manufacturing method for polymer-free CNT fibers, which exhibited high elec-
trical conductivity (14,284 ± 169 S/cm) and tensile strength (887 ± 37 MPa). The method
involved the utilization of an organic coagulating solvent and subsequent stretching to align
the CNTs within the fiber. Glauß et al. [8] fabricated CNT composite fibers with a specific
resistivity of 0.6 Ωm by melt spinning MWNT/PVDF/polypropylene. Mirbaha et al. [9]
studied wet spinning of PAN and PAN/CNT fibers and the effect of different shear and
stretching conditions on the structural, mechanical, and electrical properties of as-spun
fibers. The results showed that at different shear rates, the mechanical strength, Young’s
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modulus, and strain at break of freely spun PAN/CNT fibers improved up to 20% com-
pared to PAN fibers due to possible formation of an interface between the polymer and
CNTs. Kang et al. [10] proposed a performance stabilization process aimed at maintaining
the reliability of CNT/PVDF fibers. They applied this process to wet spinning to manu-
facture and evaluate CNT/PVDF fibers with enhanced reliability. In this study, the bath
concentration, bath temperature, drying temperature, and elongation during wet spinning
were identified as key process parameters that impact the performance of the CNT/PVDF
fibers. Alexopoulos et al. [11,12] synthesized CNT fibers by the wet spinning method and
embedded them in glass-fiber-reinforced plastic (GFRP) composites, and reported their
piezoresistive sensitivity and damage detection characteristics. Similar to previous studies,
these investigations focused on fiber fabrication, with an emphasis on the properties of the
CNT composite fibers, such as tensile strength and electrical conductivity. The technology
of CNT composite fibers is expected to advance numerous industries and create new mar-
kets. To realize this objective, composite fibers must be fabricated with specific properties,
depending on their intended application [13–17].

To fabricate fibers with the desired properties, numerous studies have investigated
their mechanical and electrical properties. Eun et al. [18] fabricated multiwalled carbon
nanotube (MWCNT)/PVDF fibers using electrospinning and investigated the effects of
experimental parameters on the mechanical properties. They confirmed that the tensile
strength increased by approximately 60% compared to the initial condition when the
MWCNT content was 0.008 wt%. Chinnappan et al. [19] fabricated PAN/MWCNT/Cu
fibers using electrospinning and evaluated their electrical conductivity for MWNT contents
of 0, 0.1, 0.3, and 0.5 wt%. Based on this investigation, they identified the relationship
between the MWNT content and electrical conductivity. Mercader et al. [20] produced
PVA/MWNT fibers using wet spinning and examined Young’s modulus for fiber elonga-
tions of 0%, 75%, 160%, and 200% in a hot elongation process. Based on this investigation,
they established a relationship between the elongation of PVA/MWNT fibers and Young’s
modulus. In general, most studies aim to improve the mechanical and electrical prop-
erties of CNT composite fibers by adjusting the content of the materials that constitute
the fibers or the post-treatment process. CNT composite fibers are mainly used for struc-
tural reinforcement or as sensors. Thus, although it is important to fabricate fibers with
predetermined properties, few relevant studies have investigated this aspect.

The response surface method (RSM) is a useful approach for minimizing repetitive
analyses, evaluating interactions between process variables, and optimizing process condi-
tions when there are several variables that affect mechanical and electrical properties, such
as in the wet spinning process. RSM was first developed in the field of statistics by Box
and Wilson in the 1950s and has since been widely applied in various fields to construct
response surfaces and optimize process conditions [21]. For example, Rigotti et al. applied
RSM to optimize the process parameters affecting elastic modulus and strain at break in the
drawing process of bio-derived polylactide/poly(dodecylene furanoate) fibers using wet
spinning [22]. Oroume et al. used RSM to optimize spinning conditions and wet spinning
to improve the tensile strength of lignin/polyacrylonitrile carbon fiber precursors [23].
Although RSM is widely used in various fields, studies applying this method to optimize
the mechanical and electrical properties of CNT composite fibers are still lacking.

In this study, our objective was to optimize the wet spinning process to achieve
multiple properties, including tensile strength and electrical conductivity, in CNT/PVDF
fibers. In our previous study [10] on CNT/PVDF fibers, we employed a specific fabrication
method and evaluation method. To prepare the fibers, a dope solution was created using
MWNT (3 wt%) and PVDF, dissolved in dimethylacetamide (DMAC). The bath concen-
tration, bath temperature, drying temperature, and elongation were selected as the four
design parameters influencing the fibers’ tensile strength and electrical conductivity. We
determined the experimental conditions using the response surface method (RSM), with
tensile strength and electrical conductivity set as the objective functions. We evaluated the
fibers’ properties under these conditions, and confirmed their significance through analysis
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of variance. We derived regression equations for the tensile strength and electrical conduc-
tivity based on the four design parameters and conducted surface analysis to define their
interactions. Finally, we improved the fibers’ tensile strength and electrical conductivity
using the regression equations and established optimized wet spinning process conditions
that could achieve multiple physical properties.

2. Fabrication of CNT/PVDF Composite Fibers Using Wet Spinning
2.1. Material Selection and Fabrication Process

In our previous study [10] on CNT/PVDF fibers, we employed specific material
selection and manufacturing process methods. Specifically, to produce highly reliable
CNT/PVDF fibers, we utilized three processes: dope solution stabilization, cylinder pres-
sure application, and room temperature drying of CNT/PVDF fibers. These processes were
implemented to minimize the presence of voids within the fibers. To produce CNT/PVDF
fibers through wet spinning, a dope solution comprising MWNT (K-Nanos 100) (Table 1),
PVDF powder (Kynar® 761, Arkema, Colombes, France) (Table 2), and N, N-DMAC (SAM-
CHUN Chemical Co., Seoul, Republic of Korea) (Table 3) was utilized. The ratio of the
dope solution components was MWNT:PVDF:DMAC = 0.6:20:79.4. Figure 1 illustrates
the wet spinning system (Dissol, Jeonju, Republic of Korea) used in the study. The dope
solution was extruded into a coagulation bath via a gear pump and mono-hole nozzle. It
was subsequently passed through washing and elongation baths to enhance the orientation
and mechanical properties of the CNTs. The fibers were then dried using a heating roller to
remove moisture from both the inside and outside of the fibers.

Table 1. Specifications of MWNT.

Type Value

Density (g/cm3) 2.6
Young’s modulus (GPa) 940

Poisson’s ratio 0.20
Bundle length (µm) Ave. 40~50

Diameter (nm) Ave. 11~13
Carbon purity (%) ~95

Ref. General MWCNT

Table 2. Specifications of PVDF.

Type Value

Density (g/cm3) 1.78
Young’s modulus (GPa) 2

Poisson’s ratio 0.34
Tensile strength, yield (MPa) 35

Elongation at break (%) 20~100
Melting point (◦C) 170

Molecular weight (g/mol) 441,000

Table 3. Specifications of DMAC.

Type Value

Linear formula CH3CON(CH3)2; C4H9NO
Density (g/cm3) 0.937

Melting point (◦C) −20
Boiling point (◦C) 164~166
Flash point (◦C) 66

Assay (%) 99.5
Molecular weight (g/mol) 87.12
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2.2. Determination of Design Parameters Using RSM

Process conditions play a crucial role in the fabrication of CNT/PVDF fibers using
wet spinning. In a previous study on the selection of appropriate wet spinning process
conditions for specific design parameters, Baojun et al. [24] investigated the effect of
voids inside the fibers caused by the diffusion rate of the solvent and the firming agent
on the mechanical properties. They found that solidification conditions, such as bath
concentration and temperature, can affect the diffusion rate. Kun et al. [25] produced PVDF
fibers using a wet spinning process and investigated the influence of design parameters,
such as elongation and thermal curing temperature, on the tensile strength of the fibers in
a continuous wet spinning system. Based on these studies, the bath concentration, bath
temperature, drying temperature, and elongation were selected as process parameters that
can affect the properties of continuous fibers.

As multiple design parameters were expected to affect the mechanical and electrical
properties of the fibers fabricated via the wet spinning process, the issue of exploring
multiple variables in as few experiments is possible and was addressed by means of proper
central composite design (CCD) [26]. ANOVA was used to detect the significance of
the variables, and multivariate quadratic regression was used to quantitatively optimize
the fiber fabrication. To optimize the objective functions, namely, the tensile strength
and electrical conductivity of the wet spinning process, a commercial software program,
MINITAB 17.3.1ver [27], was used. Table 4 presents the design matrix of the CCD for
the four parameters. The results indicate that the total number of experiments for the
process conditions was 31, of which seven experiments were repeated to improve the
reliability of the results. Based on the determined wet spinning conditions, CNT/PVDF
fibers were fabricated.

Table 4. Wet spinning conditions for CNT/PVDF fibers using CCD.

Case Bath Concentration
x1, (%)

Bath Temperature
x2, (◦C)

Drying Temperature
x3, (◦C)

Elongation
x4, (%)

1 10 40 100 200
2 30 40 100 200
3 10 60 100 200
4 30 60 100 200
5 10 40 120 200
6 30 40 120 200
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Table 4. Cont.

Case Bath Concentration
x1, (%)

Bath Temperature
x2, (◦C)

Drying Temperature
x3, (◦C)

Elongation
x4, (%)

7 10 60 120 200
8 30 60 120 200
9 10 40 100 400
10 30 40 100 400
11 10 60 100 400
12 30 60 100 400
13 10 40 120 400
14 30 40 120 400
15 10 60 120 400
16 30 60 120 400
17 0 50 110 300
18 40 50 110 300
19 20 30 110 300
20 20 70 110 300
21 20 50 90 300
22 20 50 130 300
23 20 50 110 100
24 20 50 110 500
25 20 50 110 300
26 20 50 110 300
27 20 50 110 300
28 20 50 110 300
29 20 50 110 300
30 20 50 110 300
31 20 50 110 300

3. CNT/PVDF Fibers
3.1. Characterization

The CNT/PVDF fibers were characterized using the three techniques proposed by
Kang [10]. First, scanning electron microscopy (SU8220, Hitachi, Japan) was used to image
the cross-sectional area inside the CNT/PVDF fibers that affects their mechanical properties.
Additionally, the mechanical strength of the fibers was calculated using ASTM D3379 [28].
For each wet spinning condition, 30 specimens were taken from the 30 m, 60 m, and 90 m
sections. Both ends of each fiber were fixed with adhesive to a paper guide, with a gauge
length of 25 mm, to prepare a tensile specimen of CNT/PVDF fiber. The tensile test was
performed at a speed of 2 mm/min.

Finally, the electrical conductivity of the CNT/PVDF fibers was measured following
the guidelines outlined in IEC 60093 [29] to verify their electrical characteristics. The
electrical conductivity of the CNT/PVDF fibers was measured to determine their electrical
properties. Each fiber was mounted on a fixing jig to maintain a gauge length of 1 cm under
room temperature atmospheric conditions. A voltage of 10 V was applied for 10 s, and then
the resistance was measured after the voltage was cut off. The calculated resistance was
then converted into electrical conductivity.

3.2. Evaluation via RSM under Different Wet Spinning Conditions

The CNT/PVDF fibers were spun according to the wet spinning conditions obtained
using RSM. Thirty specimens were collected from each section of the fibers (30, 60, and 90 m)
to perform tensile and electrical conductivity measurements. Before conducting the tensile
test, the fiber’s cross section was captured using FE-SEM (field emission scanning electron
microscopy). Representative results of case 7 (x1:x2:x3:x4 = 10:60:120:200) are presented
in Figure 2. SEM fiber samples were obtained at 30 m, 60 m, and 90 m positions, and the
fiber’s shape and void location remained consistent regardless of the length variation. Next,
the cross-sectional area of the fibers was measured before conducting the tensile test, and
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representative results are shown in Figure 3. ImageJ 1.53ver [30] was utilized for the analysis
of the cross-sectional area. The cross-sectional area was measured using one specimen for
each measurement section, and it was confirmed that the diameter of the cross-sectional
area differed depending on the spinning conditions. Table 5 summarizes the tensile test
results of 90 specimens according to the spinning conditions. The average tensile strength
for cases 1 to 31 ranged from 18.94 to 63.78 MPa, indicating that the deviation of the tensile
strength was constant for each case. The maximum tensile strength was determined to be
63.78 MPa for the conditions used in case 22 (x1:x2:x3:x4 = 20:50:130:300), and the minimum
tensile strength was 18.94 MPa for the conditions used in case 2 (x1:x2:x3:x4 = 30:40:100:200).
The tensile test results demonstrated that the tensile strength differed by more than three
times depending on the design parameters.
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Table 5. Results of tensile test for RSM conditions.

Case
Tensile Strength

Max (MPa) Min (MPa) Average (MPa) Std. dev (MPa) COV

1 21.50 15.05 19.15 0.94 0.05
2 19.88 15.10 18.94 0.79 0.04
3 24.63 17.57 22.67 1.24 0.05
4 21.73 18.70 21.26 0.49 0.02
5 26.54 18.88 23.55 1.69 0.07
6 31.23 25.16 28.32 1.37 0.05
7 40.25 20.22 29.03 4.08 0.14
8 61.51 52.91 58.11 1.77 0.03
9 25.47 21.12 23.91 0.87 0.04
10 36.76 21.40 26.51 3.57 0.13
11 38.95 31.24 34.71 1.71 0.05
12 38.32 26.78 33.02 2.14 0.06
13 37.15 27.95 32.81 2.06 0.06
14 48.83 41.66 45.24 1.98 0.04
15 49.71 35.36 42.61 3.03 0.07
16 55.84 36.82 47.46 4.50 0.09
17 22.58 19.32 21.03 0.82 0.04
18 37.95 29.56 34.77 2.00 0.06
19 25.40 19.76 22.88 1.30 0.06
20 46.95 34.31 41.34 2.42 0.06
21 39.46 32.25 35.99 1.63 0.05
22 67.41 50.01 63.78 3.08 0.05
23 40.49 32.43 38.44 1.20 0.03
24 52.39 42.31 47.36 2.25 0.05
25 52.17 45.17 49.50 1.65 0.03
26 50.38 35.60 47.29 1.77 0.04
27 51.91 46.28 48.47 1.44 0.03
28 48.41 42.92 45.35 1.32 0.03
29 50.00 44.51 46.57 1.32 0.03
30 50.88 45.61 47.75 1.35 0.03
31 48.65 42.76 44.91 1.35 0.03

The electrical conductivity measurements were conducted using specimens obtained sim-
ilarly to the tensile strength specimens. The results are presented in Table 6. For cases 1–31, the
average electrical conductivity ranged from 4.35 × 10−5 to 2.00 × 10−6 S/cm, indicating that
the deviation of the electrical conductivity was constant for each case. The maximum electrical
conductivity was found to be 4.35 × 10−5 S/cm for case 5 (x1:x2:x3:x4 = 10:40:120:200), and
the minimum was 2.00 × 10−6 S/cm for case 10 (x1:x2:x3:x4 = 30:40:100:400). The coefficient
of variation (COV) values confirmed that the deviation of the electrical conductivity was
very small, ranging from 2.19 × 10−2 to 5.17 × 10−2. In particular, the maximum tensile
strength was calculated for case 22 (x1:x2:x3:x4 = 20:50:130:300), and the maximum electrical
conductivity was calculated for case 5 (x1:x2:x3:x4 = 10:40:120:200). These calculations were
performed under different process conditions. Therefore, it was found that both the tensile
strength and the electrical conductivity were influenced by the design variables.

The FE-SEM imaging results shown in Figure 4 provide insights into the interaction of
the inner geometry of the fibers with their tensile strength and electrical conductivity. It is
observed that the internal structure of the fibers has a significant impact on their properties.
Case 22 (Figure 4a), which had the maximum tensile strength, had a dense internal structure
with a small number of internal voids. In contrast, Case 2 (Figure 4b), which had the lowest
tensile strength, had a decreased tensile strength due to the large number of voids, as
indicated by the yellow circle. This indicates that a dense internal structure with fewer
voids is required to improve the tensile strength of the fibers. Similarly, Case 5 (Figure 4c),
which had the maximum electrical conductivity, had a dense CNT network inside the fibers
due to the dense internal structure with fewer voids. In contrast, Case 10 (Figure 4d), which
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had the lowest electrical conductivity, as indicated by the yellow circle, had voids created
inside the fiber due to the rapid escape of DMAC. Because of this, the CNT network inside
the fiber was destroyed and the electrical conductivity was lowered.

Table 6. Results of electrical conductivity test for RSM conditions.

Case
Electrical Conductivity

Max (S/cm) Min (S/cm) Average (S/cm) Std. dev (S/cm) COV

1 2.31 × 10−5 1.94 × 10−5 2.13 × 10−5 1.08 × 10−6 5.09 × 10−2

2 2.63 × 10−5 2.29 × 10−5 2.46 × 10−5 9.61 × 10−7 3.90 × 10−2

3 4.48 × 10−5 3.98 × 10−5 4.23 × 10−5 1.49 × 10−6 3.54 × 10−2

4 2.58 × 10−5 2.34 × 10−5 2.46 × 10−5 6.49 × 10−7 2.63 × 10−2

5 4.69 × 10−5 4.03 × 10−5 4.35 × 10−5 2.05 × 10−6 4.71 × 10−2

6 3.97 × 10−5 3.53 × 10−5 3.75 × 10−5 1.31 × 10−6 3.50 × 10−2

7 3.96 × 10−5 3.46 × 10−5 3.72 × 10−5 1.46 × 10−6 3.94 × 10−2

8 5.05 × 10−6 4.57 × 10−6 4.81 × 10−6 1.45 × 10−7 3.02 × 10−2

9 2.67 × 10−6 2.33 × 10−6 2.50 × 10−6 1.06 × 10−7 4.23 × 10−2

10 2.12 × 10−6 1.88 × 10−6 2.00 × 10−6 7.00 × 10−8 3.50 × 10−2

11 5.40 × 10−6 4.61 × 10−6 5.00 × 10−6 2.39 × 10−7 4.78 × 10−2

12 8.23 × 10−6 7.12 × 10−6 7.68 × 10−6 3.19 × 10−7 4.15 × 10−2

13 6.29 × 10−6 5.28 × 10−6 5.78 × 10−6 2.92 × 10−7 5.04 × 10−2

14 9.68 × 10−6 8.19 × 10−6 8.94 × 10−6 4.62 × 10−7 5.17 × 10−2

15 1.73 × 10−5 1.51 × 10−5 1.62 × 10−5 6.28 × 10−7 3.87 × 10−2

16 1.26 × 10−5 1.16 × 10−5 1.21 × 10−5 3.19 × 10−7 2.64 × 10−2

17 2.40 × 10−6 2.14 × 10−6 2.27 × 10−6 8.10 × 10−8 3.57 × 10−2

18 7.04 × 10−6 6.12 × 10−6 6.58 × 10−6 2.76 × 10−7 4.19 × 10−2

19 1.08 × 10−5 9.86 × 10−6 1.03 × 10−5 2.59 × 10−7 2.52 × 10−2

20 2.27 × 10−5 1.92 × 10−5 2.09 × 10−5 1.00 × 10−6 4.79 × 10−2

21 4.37 × 10−6 3.75 × 10−6 4.06 × 10−6 1.78 × 10−7 4.38 × 10−2

22 9.75 × 10−6 8.44 × 10−6 9.09 × 10−6 3.80 × 10−7 4.18 × 10−2

23 3.64 × 10−5 3.16 × 10−5 3.40 × 10−5 1.43 × 10−6 4.20 × 10−2

24 2.18 × 10−6 2.00 × 10−6 2.09 × 10−6 5.65 × 10−8 2.70 × 10−2

25 1.07 × 10−5 9.89 × 10−6 1.03 × 10−5 2.25 × 10−7 2.19 × 10−2

26 1.09 × 10−5 9.76 × 10−6 1.03 × 10−5 3.20 × 10−7 3.12 × 10−2

27 1.10 × 10−5 9.61 × 10−6 1.03 × 10−5 4.13 × 10−7 4.00 × 10−2

28 1.12 × 10−5 9.47 × 10−6 1.03 × 10−5 4.76 × 10−7 4.60 × 10−2

29 1.10 × 10−5 9.37 × 10−6 1.02 × 10−5 4.57 × 10−7 4.47 × 10−2

30 1.10 × 10−5 9.72 × 10−6 1.04 × 10−5 3.94 × 10−7 3.77 × 10−2

31 1.09 × 10−5 9.64 × 10−6 1.03 × 10−5 3.95 × 10−7 3.84 × 10−2
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Figure 4. SEM images of CNT/PVDF fibers for the RSM conditions: (a) Case
22 (x1:x2:x3:x4 = 20:50:130:300), (b) Case 2 (x1:x2:x3:x4 = 30:40:100:200), (c) Case 5
(x1:x2:x3:x4 = 10:40:120:200), and (d) Case 10 (x1:x2:x3:x4 = 30:40:100:400).
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Therefore, the internal density and number of voids significantly affect the tensile
strength and electrical conductivity of the CNT/PVDF fibers. These results demonstrate
that adjusting the design parameters can reduce voids and improve the electrical and
physical properties of the fibers. By optimizing the spinning conditions to achieve a dense
internal structure with fewer voids, the tensile strength and electrical conductivity of the
CNT/PVDF fibers can be improved.

4. Optimization of Multiple Properties of CNT/PVDF Fibers
4.1. Analysis of Variance (ANOVA)

ANOVA was carried out to assess the significance of both tensile strength and electrical
conductivity of the CNT/PVDF fibers. Table 7 presents the ANOVA results, which confirm
the significance of the second-order regression model for the tensile strength with respect
to four design parameters.

Table 7. ANOVA results of tensile strength.

DF Adj SS Adj MS F p

x1 1 252.89 252.89 7.82 0.013
x2 1 480.16 480.16 14.84 0.001
x3 1 1100.49 1100.49 34.02 0
x4 1 287.7 287.7 8.89 0.009
x1

2 1 991 991 30.63 0
x2

2 1 668.51 668.51 20.67 0
x3

2 1 4.35 4.35 0.13 0.719
x4

2 1 130.65 130.65 4.04 0.062
x1x2 1 7.9 7.9 0.24 0.628
x1x3 1 168.02 168.02 5.19 0.037
x1x4 1 12.32 12.32 0.38 0.546
x2x3 1 36.44 36.44 1.13 0.304
x2x4 1 8.69 8.69 0.27 0.611
x3x4 1 3.08 3.08 0.1 0.762

Error term 16 517.59 32.35 - -

The p-value represents the probability of obtaining a difference between the observed
value and the hypothesized value due to random error, with a value lower than 0.05
indicating the significance of the corresponding parameter. Upon examining the coefficients
of the estimated regression model, the values of the first-order terms were found to be 0.05
or less, confirming their significance. Additionally, for the second-order and interaction
terms, non-significant coefficients with a p-value greater than 0.05 were combined as
error terms. The coefficient of determination of the estimated regression equation was
87.50%, making it suitable for estimating the tensile strength of the CNT/PVDF fibers.
Therefore, a second-order regression Equation (1) for estimating tensile strength using the
four parameters was derived.

yTensilestrength = −(7.48 × 10)−
(
9.00 × 10−1)x1 + 3.58x2 −

(
7.25 × 10−1)x3 +

(
1.60 × 10−1)x4

−
(
5.85 × 10−2)x1

2 −
(
4.79 × 10−2)x2

2 −
(
2.10 × 10−4)x4

2 +
(
3.24 × 10−2)x1x3

+
(
1.51 × 10−2)x2x3

(1)

Table 8 presents the ANOVA results for the second-order regression model that used
electrical conductivity as the objective function for the four parameters. Additionally, for the
first-order, second-order, and interaction terms, non-significant coefficients with a p-value
greater than 0.05 were combined as error terms. It was confirmed that an error occurred in
the case of the error term since seven repeated experiments were conducted for cases 25 to
31, and their results are shown in Table 8. In this case, the coefficient of determination of
the estimated regression equation was 80.12%, which is suitable for estimating the electrical



Polymers 2023, 15, 3090 10 of 17

conductivity of the CNT/PVDF fibers. Therefore, a second-order regression Equation (2)
was derived for estimating electrical conductivity using the four parameters.

yElectricalconductivity = −
(
4.56 × 10−6)+ (

5.32 × 10−8)x1 +
(
2.48 × 10−7)x2

+
(
2.41 × 10−7)x3 −

(
4.52 × 10−8)x4 +

(
3.04 × 10−9)x2

2

−
(
5.70 × 10−9)x1x2 +

(
3.80 × 10−10)x1x4 −

(
3.04 × 10−9)x2x3

(2)

Table 8. ANOVA results of electrical conductivity.

DF Adj SS Adj MS F p

x1 1 7.7 × 10−5 7.7 × 10−5 1.36 0.026
x2 1 2.6 × 10−5 2.6 × 10−5 0.46 0.049
x3 1 8.9 × 10−5 8.9 × 10−5 1.58 0.023
x4 1 2.4 × 10−3 2.4 × 10−3 42.54 0
x1

2 1 1.8 × 10−6 1.8 × 10−6 0.03 0.086
x2

2 1 1.9 × 10−4 1.9 × 10−4 3.30 0.009
x3

2 1 2.4 × 10−6 2.4 × 10−6 0.04 0.084
x4

2 1 2.9 × 10−4 2.9 × 10−4 5.09 0.004
x1x2 1 1.7 × 10−4 1.7 × 10−4 2.96 0.010
x1x3 1 4.6 × 10−5 4.6 × 10−5 0.82 0.038
x1x4 1 1.8 × 10−4 1.8 × 10−4 3.22 0.009
x2x3 1 1.9 × 10−4 1.9 × 10−4 3.32 0.009
x2x4 1 9.9 × 10−5 9.9 × 10−5 1.76 0.020
x3x4 1 1.5 × 10−5 1.5 × 10−5 0.27 0.061

Error term 16 9.0 × 10−4 5.6 × 10−5 - -

The derived second-order regression equations can be used to estimate tensile strength
and electrical conductivity.

4.2. Response Surface Analysis

To investigate the impact of the wet spinning design parameters on the objective
functions of electrical conductivity and tensile strength, a surface analysis was conducted.
Figure 5a–f present the results of the surface analysis for tensile strength. In Figure 5a, it
is observed that the highest tensile strength was achieved when the bath concentration
was 20% and the bath temperature was 50 ◦C. This is because the bath concentration and
temperature have an influence on the reduction rate of DMAC in the dope solution, which
affects the formation of voids in the fibers.

In Figure 5b, the bath concentration that improved the tensile strength was similar to
that obtained in Figure 5a, but the tensile strength increased as the drying temperature in-
creased. This is because the mechanical properties of the fibers improve as PVDF polymers
are oriented in the fiber direction. Moreover, in Figure 5c, the highest tensile strength was
achieved at a bath concentration of 20% and elongation of 300%. In Figure 5d, the tensile
strength increased as the drying temperature increased at a bath temperature of 50 ◦C. This
is because the internal density of the fibers increased as the drying temperature increased.
In Figure 5e, the maximum tensile strength was achieved at a bath concentration of 20% and
elongation of 300%. In Figure 5f, the tensile strength improved as the drying temperature
and elongation increased. These findings confirm that the design parameters, including the
bath concentration, bath temperature, drying temperature, and elongation, have combined
effects on the tensile strength, and all of them should be considered simultaneously to
enhance this parameter.
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Figure 5. Surface view of tensile strength: (a) bath concentration (%) and bath temperature (◦C),
(b) bath concentration (%) and drying temperature (◦C), (c) bath concentration (%) and elongation
(%), (d) bath temperature (◦C) and drying temperature (◦C), (e) bath temperature (◦C) and elongation
(%), and (f) drying temperature (◦C) and elongation (%).

Figure 6a–f show the surface view of the samples used for investigating electrical
conductivity. Based on the graphs, electrical conductivity was high when there was an
inverse relationship between the bath concentration and bath temperature, as shown in
Figure 6a,b. This is because the cross-sectional area of the CNT/PVDF fibers decreases as
the bath concentration increases, and the solidification rate of the fibers increases as the
bath temperature rises. In Figure 6c, it was confirmed that changes in elongation had a
greater effect on the change in electrical conductivity than changes in the bath concentration.
Electrical conductivity increases as elongation decreases because an increase in elongation
reduces the cross-sectional area of the fibers, which is related to the CNT network inside
the CNT/PVDF fibers. In Figure 6d, the effect of the drying temperature was significant
when the bath concentration was low. The electrical conductivity improved as the initial
cross-sectional area was maintained by the rapid solidification of the CNT/PVDF fibers at
low concentrations, and the density of the fibers increased at high drying temperatures.
Figure 6e shows the changes in the bath concentration and elongation. There was negligible
change in the bath temperature, and the electrical conductivity varied depending on the
elongation. This was associated with the change in the CNT network caused by the
change in the cross-sectional area of the CNT/PVDF fibers. Figure 6f shows the changes
in the drying temperature and elongation. There was almost no change in the drying
temperature, and the electrical conductivity varied depending on the elongation. This is
also attributed to the change in the CNT network caused by the change in the cross-sectional
area of the CNT/PVDF fibers. These results indicate that the design parameters (i.e., bath
concentration, bath temperature, drying temperature, elongation) must be simultaneously
considered to improve electrical conductivity.

4.3. Optimization of Multiple Properties

In order to apply CNT/PVDF fibers in the industry, it is necessary to be able to
fabricate them with a range of different properties, such as tensile strength and electrical
conductivity. Equation (3) represents an optimization equation for the fabrication of
CNT/PVDF fibers with desired properties. Equations (4)–(7) define the ranges of the
design parameters, Equations (8)–(10) define the ranges of weights for the tensile strength
and electrical conductivity, Equation (11) defines the range of the tensile strength, and
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Equation (12) defines the range of the electrical conductivity. The spinning conditions
required to optimize multiple properties based on these equations were calculated, and the
results are shown in Table 9. The tensile strength and electrical conductivity were predicted
using the regression Equations (1) and (2) obtained in Section 4.1, and compared with the
test values (Table 10).
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Table 9. Optimized wet spinning conditions and predicted values.

Optimization Tensile Strength Electrical
Conductivity

Tensile Strength
& Electrical Conductivity

Bath concentration (%) 27.88 20.25 37.03
Bath temperature (◦C) 54.48 39.87 58.27

Drying temperature (◦C) 130 130 128.1
Elongation (%) 382.83 100 100

Predicted value

Tensile strength
(MPa) 68.18 32.78 45.03

Electrical conductivity
(S/cm) 7.31 × 10−6 5.84 × 10−5 7.31 × 10−6

Table 10. Experimental values and error values of optimized wet spinning conditions.

Optimization Tensile Strength Electrical
Conductivity

Tensile Strength
& Electrical Conductivity

Experimental value

Tensile strength
(MPa) 69.76 33.47 52.53

Electrical conductivity
(S/cm) 5.99 × 10−6 5.23 × 10−5 1.17 × 10−5

Error

Predicted value of
Tensile strength 2.3% 2.1% 14.3%

Experimental value of
Electrical conductivity 22% 11.70% 27.4%
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Find x1, x2, x3, x4
To maximize tensile strength and electrical conductivity
Object function max

α1G1(x1, x2, x3, x4)+α2G2(x1, x2, x3, x4) (3)

Subjected to
0 ≤ x1 ≤ 40 (4)

30 ≤ x2 ≤ 70 (5)

90 ≤ x3 ≤ 130 (6)

100 ≤ x4 ≤ 500 (7)

0 ≤ α1 ≤ 1 (8)

0 ≤ α2 ≤ 1 (9)

α1 + α2 = 1 (10)

G1(x1, x2, x3, x4) > 0 (11)

G2(x1, x2, x3, x4) > 0 (12)

where,
x1: Bath concentration (%)
x2: Bath temperature (◦C)
x3: Drying temperature (◦C)
x4: Elongation (%)
α1: Weight of tensile strength
α2: Weight of electrical conductivity
G1(x1, x2, x3, x4) = Function of tensile strength
G2(x1, x2, x3, x4) = Function of electrical conductivity
The design parameters required to optimize the tensile strength were calculated using

Equations (3)–(12) to optimize multiple properties. In this process, a weight of 1 was
assigned to the tensile strength (α1) in Equation (3). The bath concentration (x1) at 27.88%,
bath temperature (x2) at 54.48 ◦C, drying temperature (x3) at 130 ◦C, and elongation (x4)
at 382.83% were selected as design parameters to minimize voids inside the CNT/PVDF
fibers and increase the internal density. The predicted value of the tensile strength was
calculated using the parameters mentioned above in Equation (1), and it was found to be
68.18 MPa. To verify the predicted tensile strength, CNT/PVDF fibers were fabricated
using the optimized spinning conditions, and tensile tests were conducted. The calculated
value was 69.759 MPa (Figure 7a), taking into account the cross-sectional area of the fibers
(0.018 mm2; Figure 8a). The error ((predicted value − experimental value)/predicted
value × 100) was 2.3%.

The optimized spinning conditions for high tensile strength were established, given
that the coefficient of determination (87.50%) of the tensile strength regression equation
calculated using ANOVA was satisfied. The tensile strength was increased because the
number of voids inside the fibers decreased, as confirmed by the SEM image of the fiber
cross section shown in Figure 9a. This improvement was attributed to the fact that the
exchange rate of DMAc between the dope liquid and the water in the bath was reduced,
resulting in an improved orientation of the MWCNTs inside the fiber and an increased
density of the structure during the elongation process.
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Figure 7. Results of tensile tests for optimization conditions: (a) optimization of ten-
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Polymers 2023, 15, x FOR PEER REVIEW 15 of 17 
 

 

Table 10. Experimental values and error values of optimized wet spinning conditions. 

Optimization 
Tensile 

Strength 

Electrical Con-

ductivity 

Tensile Strength 

& Electrical 

Conductivity 

Experi-

mental 

value 

Tensile strength 

(MPa) 
69.76 33.47 52.53 

Electrical conductivity 

(S/cm) 
5.99 × 10−6 5.23 × 10−5 1.17 × 10−5 

Error 

Predicted value of 

Tensile strength 
2.3% 2.1% 14.3% 

Experimental value of 

Electrical conductivity 
22% 11.70% 27.4% 

 

   

Figure 7. Results of tensile tests for optimization conditions: (a) optimization of tensile strength 

(𝑥1 :𝑥2 :𝑥3 :𝑥4  = 27.88:54.48:130:382.83), (b) optimization of electrical conductivity (𝑥1 :𝑥2 :𝑥3 :𝑥4  = 

20.25:39.87:130:100), and (c) optimization of tensile strength and electrical conductivity (𝑥1:𝑥2:𝑥3:𝑥4 

= 37.03:58.27:128.1:100). 

   

Figure 8. Cross section area of optimization conditions CNT/PVDF fibers: (a) optimization of ten-

sile strength conditions (𝑥1:𝑥2:𝑥3:𝑥4 = 27.88:54.48:130:382.83), (b) optimization of electrical conduc-

tivity conditions (𝑥1:𝑥2:𝑥3:𝑥4 = 20.25:39.87:130:100), and (c) optimization of tensile strength & elec-

trical conductivity (𝑥1:𝑥2:𝑥3:𝑥4 = 37.03:58.27:128.1:100). 

   

Figure 9. SEM cross section image of optimization conditions: (a) optimization of tensile strength 

conditions (𝑥1:𝑥2:𝑥3:𝑥4 = 27.88:54.48:130:382.83), (b) optimization of electrical conductivity condi-

tions (𝑥1 :𝑥2 :𝑥3 :𝑥4  = 20.25:39.87:130:100), and (c) optimization of tensile strength and electrical 

conductivity (𝑥1:𝑥2:𝑥3:𝑥4 = 37.03:58.27:128.1:100). 

Figure 8. Cross section area of optimization conditions CNT/PVDF fibers: (a) optimization of tensile
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conductivity (x1:x2:x3:x4 = 37.03:58.27:128.1:100).

Polymers 2023, 15, x FOR PEER REVIEW 15 of 17 
 

 

Table 10. Experimental values and error values of optimized wet spinning conditions. 

Optimization 
Tensile 

Strength 

Electrical Con-

ductivity 

Tensile Strength 

& Electrical 

Conductivity 

Experi-

mental 

value 

Tensile strength 

(MPa) 
69.76 33.47 52.53 

Electrical conductivity 

(S/cm) 
5.99 × 10−6 5.23 × 10−5 1.17 × 10−5 

Error 

Predicted value of 

Tensile strength 
2.3% 2.1% 14.3% 

Experimental value of 

Electrical conductivity 
22% 11.70% 27.4% 

 

   

Figure 7. Results of tensile tests for optimization conditions: (a) optimization of tensile strength 

(𝑥1 :𝑥2 :𝑥3 :𝑥4  = 27.88:54.48:130:382.83), (b) optimization of electrical conductivity (𝑥1 :𝑥2 :𝑥3 :𝑥4  = 

20.25:39.87:130:100), and (c) optimization of tensile strength and electrical conductivity (𝑥1:𝑥2:𝑥3:𝑥4 

= 37.03:58.27:128.1:100). 

   

Figure 8. Cross section area of optimization conditions CNT/PVDF fibers: (a) optimization of ten-

sile strength conditions (𝑥1:𝑥2:𝑥3:𝑥4 = 27.88:54.48:130:382.83), (b) optimization of electrical conduc-

tivity conditions (𝑥1:𝑥2:𝑥3:𝑥4 = 20.25:39.87:130:100), and (c) optimization of tensile strength & elec-

trical conductivity (𝑥1:𝑥2:𝑥3:𝑥4 = 37.03:58.27:128.1:100). 

   

Figure 9. SEM cross section image of optimization conditions: (a) optimization of tensile strength 

conditions (𝑥1:𝑥2:𝑥3:𝑥4 = 27.88:54.48:130:382.83), (b) optimization of electrical conductivity condi-

tions (𝑥1 :𝑥2 :𝑥3 :𝑥4  = 20.25:39.87:130:100), and (c) optimization of tensile strength and electrical 

conductivity (𝑥1:𝑥2:𝑥3:𝑥4 = 37.03:58.27:128.1:100). 

Figure 9. SEM cross section image of optimization conditions: (a) optimization of tensile strength
conditions (x1:x2:x3:x4 = 27.88:54.48:130:382.83), (b) optimization of electrical conductivity conditions
(x1:x2:x3:x4 = 20.25:39.87:130:100), and (c) optimization of tensile strength and electrical conductivity
(x1:x2:x3:x4 = 37.03:58.27:128.1:100).

Optimizing the weight of electrical conductivity (α2) in Equation (3) resulted in the
selection of the bath concentration x1 (20.25%), bath temperature x2 (39.87 ◦C), drying
temperature x3 (130 ◦C), and elongation x4 (100%) to improve the network between the
CNTs while minimizing the voids inside the CNT/PVDF fibers. Regression Equation (1)
was used with these values to calculate the predicted value of tensile strength, which was



Polymers 2023, 15, 3090 15 of 17

found to be 32.78 MPa. The experimental value was calculated to be 33.47 MPa (Figure 7b)
based on the cross-sectional area of the fibers (0.033 mm2; Figure 8b), with an error of
2.1%. The coefficient of determination for the tensile strength regression equation (87.50%)
calculated using ANOVA was satisfied.

Regression Equation (2) was applied to predict the electrical conductivity based on
the optimized spinning conditions, resulting in a predicted value of 5.84 × 10−5 S/cm.
The experimental value for these conditions was determined to be 5.23 × 10−5 S/cm, with
an error of 11.7%. The electrical conductivity improved mainly because the number of
voids was reduced due to the reduction of DMAC, as shown in the SEM image of the fiber
cross-section in Figure 9b). This was also attributed to the reduction in fiber elongation
owing to the improved network between the CNTs.

The optimization of multiple properties, specifically tensile strength and electrical
conductivity, is an important aspect in the development of advanced materials. In this
study, we optimized the spinning conditions of CNT/PVDF fibers to enhance both proper-
ties simultaneously.

To achieve this, we used a multi-objective optimization approach by assigning weights
to the properties of interest in Equation (3). By varying the bath concentration, bath temper-
ature, drying temperature, and elongation, we were able to obtain optimal conditions that
led to the densification of the internal structure, reduction of voids, and improved network
between the CNTs.

The optimized spinning conditions for the tensile strength and electrical conductivity
were achieved by varying the weight ratio of (α1 : α2) and the values of x1, x2, x3, and x4 The
predicted values for both properties were calculated using regression equations, and the
experimental values were obtained through testing. The errors between the predicted and
experimental values were less than 30% for both properties, indicating prediction accuracy.

The improvement in the properties of interest was attributed to the reduction in DMAC
and the drying temperature, which led to the densification of the internal structure and
reduced voids. The SEM images of the fiber cross-sections showed the reduction in voids
and the improved network between the CNTs. The multi-objective optimization approach
used in this study allowed for the simultaneous enhancement of both tensile strength and
electrical conductivity in CNT/PVDF fibers.

5. Conclusions

In this study, the wet spinning process was optimized using RSM to improve the tensile
strength and electrical conductivity of CNT/PVDF fibers and achieve multi-properties. As
a result, a regression equation was derived that can predict the electrical conductivity and
tensile strength with over 70% accuracy. This research method enables the optimization
of CNT/PVDF fiber properties, reducing the test time and cost of new fiber development.
Therefore, the design parameters required to achieve specific CNT/PVDF fiber properties
can be calculated or predicted using the proposed wet spinning optimization process based
on RSM, enabling the fabrication of fibers with predetermined specifications.
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