Human Serum Albumin Based Nanodrug Delivery Systems: Recent Advances and Future Perspective
Abstract
:1. Introduction
2. Structure and Properties of HSA
3. HSA-Based Multifunctional Nanocarrier
3.1. Small-Molecule Drugs
3.1.1. Covalent Binding
3.1.2. Non-Covalent Binding
3.2. Inorganic Materials
3.3. Bioactive Ingredients
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABPs | Albumin binding proteins. |
AD | Alzheimer’s disease. |
Ag2S | Silver sulfide. |
AML | Acute myeloid leukemia. |
AT1 | Angiotensin II type 1. |
AzMMMan | Azidomethyl-methylmaleic anhydride. |
Aβ | Amyloid-beta. |
Bcl-2 | B-cell lymphoma-2. |
CAT | Catalase. |
Ce6 | Chlorine e6. |
CIA | Collagen-induced arthritis. |
CDs | Carbon dots. |
CDT | Chemodynamic therapy. |
CESAR | Copper peroxide-based tumor pH-responsive autocatalytic nanoreactor. |
CU | Curcumin. |
CuS | Copper sulfide. |
Cy5.5 | Cyanine 5.5. |
cys34 | Cysteine 34. |
DBCO | Dibenzocyclooctyne. |
DBCO-Ce6 | DBCO coupled Ce6. |
DC | Dibenzocyclooctyne/chlorin. |
DOX | Doxorubicin. |
DSP | Dexamethasone sodium phosphate. |
EPR | Enhanced permeability and retention. |
EZH2 | Enhancer of Zeste Homolog 2. |
FcRn | Fc receptor. |
FDA | Food and Drug Administration. |
G-CSF | Granulocyte colony-stimulating factor. |
Gd2O3 | Gadolinium oxide. |
GOD | Glucose oxidase. |
gp60 | Glycoprotein 60 kDa. |
GSH | Glutathione. |
HSA | Human serum albumin. |
HBNDSs | HSA-based nanodrug delivery systems. |
HC | HSA conjugated with Ce6. |
HO | HSA conjugated with oxaliplatin. |
HCHOA | A nanoplatform by crosslinking azobenzene group between HC and HO. |
HPTX | HSA conjugated with PTX-SS-C10-COOH. |
HSA-BFP | A multifunctional nanoparticle based on basified HSA (HSA-B) by incorporating an Aβ fluorescent probe (F) and a cell-penetrating peptide (Penetratin, Pen). |
HSAP | HSA-Pt (IV). |
IL-10 | Interleukin-10. |
INH | Isoniazid. |
IR780 | IR780 iodide. |
LDL-C | Low-density lipoprotein cholesterol. |
MBS-A | Metal binding sites-A. |
MBS-B | Metal binding sites-B. |
MCP-1 | Monocyte chemotactic protein-1. |
MI | Maleimide. |
MMP | Matrix metalloproteinase. |
MnO2 | Manganese dioxide. |
MRN | Milrinone. |
MTX | Methotrexate. |
NCs | Nanocarriers. |
NIR | Near-infrared. |
NP(s) | Nanoparticle(s). |
NTS | N-terminal binding site. |
PA | Palmitic acid. |
PCSK9 | Proprotein convertase subtilisin/kexin type 9. |
PD | Prednisolone. |
PD-L1 | Programmed cell death-ligand 1. |
pDNA | Plasmid DNA. |
PDT | Photodynamic therapy. |
PDX | Patient-derived xenograft. |
PEI | Polyethylenimine. |
PEP | Albumin-binding peptide. |
PFN | Photothermal Fenton nanocatalyst. |
pHis | Polyhistidine. |
PIC | Piceatannol. |
PTT | Photothermal therapy. |
Pt (IV)SA | Succinic acid-derivatized cisplatin prodrug. |
PTX | Paclitaxel. |
pVax | Peptide vaccine. |
RA | Rheumatoid arthritis. |
RB | Rose bengal. |
RANTES | Regulated on activation, normal T cell expressed and secreted. |
RGD | Arg-Gly-Asp. |
RIF | Rifampicin. |
ROS | Reactive oxygen species. |
SCI | Spinal cord injury. |
siRNA | Small interfering RNA. |
SOD | Superoxide dismutase. |
SPARC | Secreted protein acidic and rich in cysteine. |
SPDP | N-succinimidyl-3-(2-pyridyldithio) propionate. |
TAT | Trans-activator of transcription. |
TME | Tumor microenvironment. |
TMP | Tetramethylpyrazine. |
5-FU | 5-Fluorouracil. |
References
- Wang, Y.; Iqbal, H.; Ur-Rehman, U.; Zhai, L.; Yuan, Z.; Razzaq, A.; Lv, M.; Wei, H.; Ning, X.; Xin, J.; et al. Albumin-based nanodevices for breast cancer diagnosis and therapy. J. Drug Delivery Sci. Technol. 2023, 79, 104072. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Song, H.; Deng, S.; Li, W.; Li, J.; Sun, J. Current multifunctional albumin-based nanoplatforms for cancer multi-mode therapy. Asian J. Pharm. Sci. 2020, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Meng, R.; Zhu, H.; Wang, Z.; Hao, S.; Wang, B. Preparation of Drug-Loaded Albumin Nanoparticles and Its Application in Cancer Therapy. J. Nanomater. 2022, 2022, 3052175. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, L.; Ge, G.; Hu, K. Emerging Epigenetic-Based Nanotechnology for Cancer Therapy: Modulating the Tumor Microenvironment. Adv. Sci. 2023, 10, e2206169. [Google Scholar] [CrossRef] [PubMed]
- Hoogenboezem, E.N.; Duvall, C.L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Delivery Rev. 2018, 130, 73–89. [Google Scholar] [CrossRef]
- Tao, H.Y.; Wang, R.Q.; Sheng, W.J.; Zhen, Y.S. The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int. J. Biol. Macromol. 2021, 187, 24–34. [Google Scholar] [CrossRef]
- Hornok, V. Serum Albumin Nanoparticles: Problems and Prospects. Polymers 2021, 13, 3759. [Google Scholar] [CrossRef]
- Iqbal, H.; Yang, T.; Li, T.; Zhang, M.; Ke, H.; Ding, D.; Deng, Y.; Chen, H. Serum protein-based nanoparticles for cancer diagnosis and treatment. J. Control. Release 2021, 329, 997–1022. [Google Scholar] [CrossRef]
- Han, Y.; Pang, X.; Pi, G. Biomimetic and Bioinspired Intervention Strategies for the Treatment of Rheumatoid Arthritis. Adv. Funct. Mater. 2021, 31, 2104640. [Google Scholar] [CrossRef]
- Shen, X.; Liu, X.; Li, T.; Chen, Y.; Chen, Y.; Wang, P.; Zheng, L.; Yang, H.; Wu, C.; Deng, S.; et al. Recent Advancements in Serum Albumin-Based Nanovehicles Toward Potential Cancer Diagnosis and Therapy. Front. Chem. 2021, 9, 746646. [Google Scholar] [CrossRef]
- Bhushan, B.; Khanadeev, V.; Khlebtsov, B.; Khlebtsov, N.; Gopinath, P. Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Adv. Colloid Interface Sci. 2017, 246, 13–39. [Google Scholar] [CrossRef] [PubMed]
- Steinhardt, J.; Krijn, J.; Leidy, J.G. Differences between bovine and human serum albumins: Binding isotherms, optical rotatory dispersion, viscosity, hydrogen ion titration, and fluorescence effects. Biochemistry 1971, 10, 4005–4015. [Google Scholar] [CrossRef] [PubMed]
- Elsadek, B.; Kratz, F. Impact of albumin on drug delivery-New applications on the horizon. J. Control. Release 2012, 157, 4–28. [Google Scholar] [CrossRef] [PubMed]
- Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 2012, 157, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.C.; He, X.M.; Munson, S.H.; Twigg, P.D.; Gernert, K.M.; Broom, M.B.; Miller, T.Y. Three-dimensional structure of human serum albumin. Science 1989, 244, 1195–1198. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chen, X. Simple bioconjugate chemistry serves great clinical advances: Albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev. 2016, 45, 1432–1456. [Google Scholar] [CrossRef] [Green Version]
- Kunde, S.S.; Wairkar, S. Targeted delivery of albumin nanoparticles for breast cancer: A review. Colloids Surf. B 2022, 213, 112422. [Google Scholar] [CrossRef]
- Kudarha, R.R.; Sawant, K.K. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches. Mater. Sci. Eng. C 2017, 81, 607–626. [Google Scholar] [CrossRef]
- Kianfar, E. Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles. J. Nanobiotechnol. 2021, 19, 159. [Google Scholar] [CrossRef]
- Rudnik-Jansen, I.; Howard, K.A. FcRn expression in cancer: Mechanistic basis and therapeutic opportunities. J. Control. Release 2021, 337, 248–257. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, L.; Dong, Z.; Xin, X.; Yang, Z.; Deng, D.; Wagner, E.; Liu, Z.; Liu, X. Protein-drug conjugate programmed by pH-reversible linker for tumor hypoxia relief and enhanced cancer combination therapy. Int. J. Pharm. 2020, 582, 119321. [Google Scholar] [CrossRef]
- Lu, Y.; Gong, Y.; Zhu, X.; Dong, X.; Zhu, D.; Ma, G. Design of Light-Activated Nanoplatform through Boosting “Eat Me” Signals for Improved CD47-Blocking Immunotherapy. Adv. Healthc. Mater. 2022, 11, e2102712. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Phua, S.Z.F.; Lim, W.Q.; Zhang, R.; Feng, L.; Liu, G.; Wu, H.; Bindra, A.K.; Jana, D.; Liu, Z.; et al. A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater. 2019, 31, 1901513. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Wang, S.; Yang, H.; Luo, T.; Zhao, F.; Han, J.; Zhang, J. An albumin-based nanosystem for cocktail therapy of breast cancer amplifies the therapeutic efficacy of combination chemotherapy with photodynamic therapy. J. Mater. Sci. 2023, 58, 8952–8968. [Google Scholar] [CrossRef]
- Chen, H.; Huang, S.; Wang, H.; Chen, X.; Zhang, H.; Xu, Y.; Fan, W.; Pan, Y.; Wen, Q.; Lin, Z.; et al. Preparation and characterization of paclitaxel palmitate albumin nanoparticles with high loading efficacy: An in vitro and in vivo anti-tumor study in mouse models. Drug Deliv. 2021, 28, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Li, H.; Zhong, Z.; Zhou, M.; Lin, Y.; Tang, C.; Li, C. Co-Delivery of Prednisolone and Curcumin in Human Serum Albumin Nanoparticles for Effective Treatment of Rheumatoid Arthritis. Int. J. Nanomed. 2019, 14, 9113–9125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Mu, W.; Wei, D.; Zhang, Y.; Duan, Y.; Gao, J.X.; Gong, X.Q.; Wang, H.J.; Wu, X.L.; Tao, H.; et al. A Novel Targeted and High-Efficiency Nanosystem for Combinational Therapy for Alzheimer’s Disease. Adv. Sci. 2020, 7, 1902906. [Google Scholar] [CrossRef]
- Shojania, H.R.; Momeni-Moghaddam, M.; Hossini, S.E.; Armin, M.; Bidi, J.O. MicroRNA 155 downregulation by vitamin C-Loaded human serum albumin nanoparticles during cutaneous wound healing in mice. Int. J. Low. Extrem. Wounds 2019, 18, 143–152. [Google Scholar] [CrossRef]
- Zhang, D.G.; Chen, B.Q.; Pan, Y.J.; Liu, H.; Shi, Y.H.; Chen, L.F.; Kankala, R.K.; Wang, S.B.; Chen, A.Z. Albumin-based smart nanoplatform for ultrasound-mediated enhanced chemo-sonodynamic combination therapy. Mater. Des. 2023, 227, 111794. [Google Scholar] [CrossRef]
- Galiyeva, A.; Daribay, A.; Zhumagaliyeva, T.; Zhaparova, L.; Sadyrbekov, D.; Tazhbayev, Y. Human serum albumin nanoparticles: Synthesis, optimization and immobilization with antituberculosis drugs. Polymers 2023, 15, 2774. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Xing, H.; Liu, C.; Li, X. Redox-responsive paclitaxel-pentadecanoic acid conjugate encapsulated human serum albumin nanoparticles for cancer therapy. Int. J. Pharm. 2023, 635, 122761. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, L.; Cai, Y.; Yang, Y.; Qu, L.; Shen, Y.; Jin, J.; Zhou, J.; Chen, J. Bioengineered Human Serum Albumin Fusion Protein as Target/Enzyme/pH Three-Stage Propulsive Drug Vehicle for Tumor Therapy. ACS Nano 2020, 14, 17405–17418. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, L.; Zhang, Y.; Yue, C.W.; Lin, J.; Wang, H.; Fang, Z.J.; Wu, J. Smart albumin-loaded Rose Bengal and doxorubicin nanoparticles for breast cancer therapy. J. Microencapsul. 2019, 36, 728–737. [Google Scholar] [CrossRef]
- Xiong, F.; Ling, X.; Chen, X.; Chen, J.; Tan, J.; Cao, W.; Ge, L.; Ma, M.; Wu, J. Pursuing specific chemotherapy of orthotopic breast cancer with lung metastasis from docking nanoparticles driven by bioinspired exosomes. Nano Lett. 2019, 19, 3256–3266. [Google Scholar] [CrossRef]
- Liu, F.; Mu, J.; Xing, B. Recent Advances on the Development of Pharmacotherapeutic Agents on the Basis of Human Serum Albumin. Curr. Pharm. Des. 2015, 21, 1866–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamichhane, S.; Lee, S. Albumin nanoscience: Homing nanotechnology enabling targeted drug delivery and therapy. Arch. Pharm. Res. 2020, 43, 118–133. [Google Scholar] [CrossRef]
- Bruelisauer, L.; Valentino, G.; Morinaga, S.; Cam, K.; Bukrinski, J.T.; Gauthier, M.A.; Leroux, J.-C. Bio-reduction of redox-sensitive albumin conjugates in FcRn-expressing cells. Angew. Chem. Int. Ed. 2014, 53, 8392–8396. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, X.; Wang, C.; Feng, L.; Li, Y.; Liu, Z. Drug-induced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS Nano 2015, 9, 5223–5233. [Google Scholar] [CrossRef]
- Kuan, S.L.; Stoeckle, B.; Reichenwallner, J.; Ng, D.Y.W.; Wu, Y.; Doroshenko, M.; Koynov, K.; Hinderberger, D.; Muellen, K.; Weil, T. Dendronized albumin core-shell transporters with high drug loading capacity. Biomacromolecules 2013, 14, 367–376. [Google Scholar] [CrossRef]
- de Palma, M.; Biziato, D.; Petrova, T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 2017, 17, 457–474. [Google Scholar] [CrossRef]
- Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 2015, 3, 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; Fu, L.; Li, C.; Lin, J.; Huang, P. Conquering the hypoxia limitation for photodynamic therapy. Adv. Mater. 2021, 33, 2103978. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Ni, D.; Cheng, W.; Ji, C.; Wang, Y.; Muellen, K.; Su, Z.; Liu, Y.; Chen, C.; Yin, M. Enzyme-triggered disassembly of perylene monoimide-based nanoclusters for activatable and deep photodynamic therapy. Angew. Chem. Int. Ed. 2020, 59, 14014–14018. [Google Scholar] [CrossRef] [PubMed]
- Piao, W.; Tsuda, S.; Tanaka, Y.; Maeda, S.; Liu, F.; Takahashi, S.; Kushida, Y.; Komatsu, T.; Ueno, T.; Terai, T.; et al. Development of azo-based fluorescent probes to detect different levels of hypoxia. Angew. Chem. Int. Ed. 2013, 52, 13028–13032. [Google Scholar] [CrossRef]
- Yuan, P.; Zhang, H.; Qian, L.; Mao, X.; Du, S.; Yu, C.; Peng, B.; Yao, S.Q. Intracellular delivery of functional native antibodies under hypoxic conditions by using a biodegradable silica nanoquencher. Angew. Chem. Int. Ed. 2017, 56, 12481–12485. [Google Scholar] [CrossRef]
- Aljabali, A.A.A.; Bakshi, H.A.; Hakkim, F.L.; Haggag, Y.A.; Al-Batanyeh, K.M.; Al Zoubi, M.S.; Al-Trad, B.; Nasef, M.M.; Satija, S.; Mehta, M.; et al. Albumin Nano-Encapsulation of Piceatannol Enhances Its Anticancer Potential in Colon Cancer Via Downregulation of Nuclear p65 and HIF-1 alpha. Cancers 2020, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Ng, T.S.C.; Wang, S.J.; Prytyskach, M.; Rodell, C.B.; Mikula, H.; Kohler, R.H.; Garlin, M.A.; Lauffenburger, D.A.; Parangi, S.; et al. Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer. Nat. Nanotechnol. 2021, 16, 830–839. [Google Scholar] [CrossRef]
- Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132, 171–183. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, H.; Li, Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics 2018, 8, 1059–1074. [Google Scholar] [CrossRef]
- Um, W.; Park, J.; Youn, A.; Cho, H.; Lim, S.; Lee, J.W.; Yoon, H.Y.; Lim, D.-K.; Park, J.H.; Kim, K. A comparative study on albumin-binding molecules for targeted tumor delivery through covalent and noncovalent approach. Bioconjug. Chem. 2019, 30, 3107–3118. [Google Scholar] [CrossRef]
- Bal, W.; Sokolowska, M.; Kurowska, E.; Faller, P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 5444–5455. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Chen, S.; Wang, R.; Chen, Q.; Li, J.; Luo, Y.; Wang, X.; Chen, H. Photothermal Fenton Nanocatalysts for Synergetic Cancer Therapy in the Second Near-Infrared Window. ACS Appl. Mater. Interfaces 2020, 12, 30145–30154. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; He, T.; Gong, S.; Shen, M.; Ma, S.; Huang, X.; Li, L.; Wang, L.; Wu, Q.; Gong, C. A tumor pH-responsive autocatalytic nanoreactor as a H2O2 and O2 self-supplying depot for enhanced ROS-based chemo/photodynamic therapy. Acta Biomater. 2022, 154, 510–522. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Puli, L.; Patil, C.R. Role of reactive oxygen species in the progression of Alzheimer’s disease. Drug Discov. Today 2021, 26, 794–803. [Google Scholar] [CrossRef]
- Lipiec, E.; Perez-Guaita, D.; Kaderli, J.; Wood, B.R.; Zenobi, R. Direct Nanospectroscopic Verification of the Amyloid Aggregation Pathway. Angew. Chem. Int. Ed. 2018, 57, 8519–8524. [Google Scholar] [CrossRef] [PubMed]
- Blaszczyk, J.W. Pathogenesis of Dementia. Int. J. Mol. Sci. 2023, 24, 543. [Google Scholar] [CrossRef]
- Wang, W.; Lin, X.; Dong, X.; Sun, Y. A multi-target theranostic nano-composite against Alzheimer’s disease fabricated by conjugating carbon dots and triple-functionalized human serum albumin. Acta Biomater. 2022, 148, 298–309. [Google Scholar] [CrossRef]
- Dimitrov, D.S. Therapeutic proteins. In Therapeutic Proteins; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 899, pp. 1–26. [Google Scholar] [CrossRef]
- Wang, Z.; Mei, J.; Ni, D.; Li, S.; Ye, J.; Li, S.; Wang, Y.; Liu, Y. A nanoplatform self-assembled by coordination delivers siRNA for lung cancer therapy. Rare Metals 2023, 42, 1483–1493. [Google Scholar] [CrossRef]
- Zheng, X.; Yu, X.; Wang, C.; Liu, Y.; Jia, M.; Lei, F.; Tian, J.; Li, C. Targeted co-delivery biomimetic nanoparticles reverse macrophage polarization for enhanced rheumatoid arthritis therapy. Drug Delivery 2022, 29, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, A.C.; Mohanbhai, S.J.; Sardoiwala, M.N.; Sood, A.; Karmakar, S.; Choudhury, S.R. Epigenetic Regulation of Bmi1 by Ubiquitination and Proteasomal Degradation Inhibit Bcl-2 in Acute Myeloid Leukemia. ACS Appl. Mater. Interfaces 2020, 12, 25633–25644. [Google Scholar] [CrossRef]
- Kaundal, B.; Kushwaha, A.C.; Srivastava, A.K.; Karmakar, S.; Choudhury, S.R. A non-viral nano-delivery system targeting epigenetic methyltransferase EZH2 for precise acute myeloid leukemia therapy. J. Mater. Chem. B 2020, 8, 8658–8670. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, Z.; Sun, M.; Li, B.; Pan, F.; Ma, A.; Liao, J.; Yin, T.; Tang, X.; Huang, G.; et al. IL-12 nanochaperone-engineered CAR T cell for robust tumor-immunotherapy. Biomaterials 2022, 281, 121341. [Google Scholar] [CrossRef] [PubMed]
- Pham, L.M.; Poudel, K.; Ou, W.; Phung, C.D.; Nguyen, H.T.; Nguyen, B.L.; Karmacharya, P.; Pandit, M.; Chang, J.-H.; Jeong, J.-H.; et al. Combination chemotherapeutic and immune-therapeutic anticancer approach via anti-PD-L1 antibody conjugated albumin nanoparticles. Int. J. Pharm. 2021, 605, 120816. [Google Scholar] [CrossRef]
- Ji, H.; Wu, G.; Li, Y.; Wang, K.; Xue, X.; You, S.; Wu, S.; Ren, T.; He, B.; Shi, X. Self-albumin camouflage of carrier protein prevents nontarget antibody production for enhanced LDL-C immunotherapy. Adv. Healthc. Mater. 2020, 9, 1901203. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Ko, E.J.; Park, Y.-Y.; Park, S.S.; Ju, E.J.; Park, J.; Shin, S.H.; Suh, Y.-A.; Hong, S.-M.; Park, I.J.; et al. A novel nanoparticle-based theranostic agent targeting LRP-1 enhances the efficacy of neoadjuvant radiotherapy in colorectal cancer. Biomaterials 2020, 255, 120151. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cen, L.; Liu, Q.; Chu, Y.; Feng, X.; Ke, Y.; Zhang, Z.; Dai, H.; Huang, S.; Liu, B.; et al. A dual-adjuvant neoantigen nanovaccine loaded with imiquimod and magnesium enhances anti-tumor immune responses of melanoma. Biomater. Sci. 2022, 10, 6740–6748. [Google Scholar] [CrossRef]
- Lomis, N.; Westfall, S.; Shum-Tim, D.; Prakash, S. Synthesis and characterization of peptide conjugated human serum albumin nanoparticles for targeted cardiac uptake and drug delivery. PLoS ONE 2021, 16, e0254305. [Google Scholar] [CrossRef]
- Li, J.; Wei, J.; Wan, Y.; Du, X.; Bai, X.; Li, C.; Lin, Y.; Liu, Z.; Zhou, M.; Zhong, Z. TAT-modified tetramethylpyrazine-loaded nanoparticles for targeted treatment of spinal cord injury. J. Control. Release 2021, 335, 103–116. [Google Scholar] [CrossRef]
- Chen, J.; Liang, C.; Song, X.; Yi, X.; Yang, K.; Feng, L.; Liu, Z. Hybrid protein nano-reactors enable simultaneous increments of tumor oxygenation and iodine-131 delivery for enhanced radionuclide therapy. Small 2019, 15, 1903628. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, Q.; Zhang, Z.; Shi, K.; Sun, Y.; Liu, T.; Lin, J.; Yang, K. Albumin mediated reactive oxygen species scavenging and targeted delivery of methotrexate for rheumatoid arthritis therapy. Nano Res. 2022, 15, 153–161. [Google Scholar] [CrossRef]
- Yang, G.; Wang, D.; Phua, S.Z.F.; Bindra, A.K.; Qian, C.; Zhang, R.; Cheng, L.; Liu, G.; Wu, H.; Liu, Z.; et al. Albumin-based therapeutics capable of glutathione consumption and hydrogen peroxide generation for synergetic chemodynamic and chemotherapy of cancer. ACS Nano 2022, 16, 2319–2329. [Google Scholar] [CrossRef] [PubMed]
- Her, Z.; Yong, K.S.M.; Paramasivam, K.; Tan, W.W.S.; Chan, X.Y.; Tan, S.Y.; Liu, M.; Fan, Y.; Linn, Y.C.; Hui, K.M.; et al. An improved pre-clinical patient-derived liquid xenograft mouse model for acute myeloid leukemia. J. Hematol. Oncol. 2017, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Ying, W.; Gray, F.; Yao, Y.; Simes, M.L.; Zhao, Q.; Miao, H.; Cho, H.J.; Gonzalez-Alonso, P.; Winkler, A.; et al. Small-molecule inhibitors targeting Polycomb repressive complex 1 RING domain. Nat. Chem. Biol. 2021, 17, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.L.L.; Pratt, A.G.G.; Dodds, R.; Sayer, A.A.A.; Isaacs, J.D.D. Rheumatoid sarcopenia: Loss of skeletal muscle strength and mass in rheumatoid arthritis. Nat. Rev. Rheumatol. 2023, 19, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.S.; Kim, G.C.; Lee, H.M.; Kim, B.; Kim, H.R.; Chung, S.W.; Chang, H.W.; Ko, Y.G.; Lee, Y.S.; Kim, S.W.; et al. Albumin metabolism targeted peptide-drug conjugate strategy for targeting pan-KRAS mutant cancer. J. Control. Release 2022, 344, 26–38. [Google Scholar] [CrossRef]
- Liu, L.; Hu, F.; Wang, H.; Wu, X.; Eltahan, A.S.; Stanford, S.; Bottini, N.; Xiao, H.; Bottini, M.; Guo, W.; et al. Secreted protein acidic and rich in cysteine mediated biomimetic delivery of methotrexate by albumin-based nanomedicines for rheumatoid arthritis therapy. ACS Nano 2019, 13, 5036–5048. [Google Scholar] [CrossRef]
Material | Method | Size (nm) | Drug | Loading Capacity/ Encapsulation Efficiency (%) | Cell/Animal Model | Target Diseases | Ref. |
---|---|---|---|---|---|---|---|
HSAP-DC-CAT | Covalent binding | 164 | Pt (IV)SA; Ce6 | -/74.2; -/73.2 | 4T1 cells/4T1 tumor-bearing mice | Breast cancer | [21] |
M-IR820/αCD47@NP | Covalent binding | 149.8 ± 11.0 | IR820 | 80.2 ± 2.9 µg/mg/- | 4T1 cells/4T1 tumor-bearing mice | Breast cancer | [22] |
HCHOA | Covalent binding | 100–150 | Oxa(IV)-COOH; Ce6 | 1.82/-; 1.28/- | 4T1 cells/4T1 tumor-bearing mice | Breast cancer | [23] |
HRC@PTX | Covalent binding | 174.1 ± 2.1 | All-trans retinoic acid; Ce6 | - | MCF-7 and MDA-MB-231 cells | Breast cancer | [24] |
Nab-PTX-PA | Nab™ technology | 87.6 ± 1.1 | PTX-palmitate | 18.30 ± 0.31/97.71 ± 0.49 | 4T1 cells/4T1 tumor-bearing mice | Breast cancer | [25] |
N-PD/CU | High-pressure homogenization | 150.4 ± 2.4 | Prednisolone; Curcumin | -/88.75 ± 1.82; -/85.79 ± 1.43 | RAW264.7 cells/Adjuvant- induced arthritis mice | Rheumatoid arthritis | [26] |
dcHGT NPs | Desolvation | 14.6 | Clioquinol; Donepezil | -/41.0; -/35.0 | BV2 cells/APP/PS1 AD mice | Alzheimer’s disease | [27] |
Vitamin C–loaded HSA NPs | Desolvation | 180 ± 6 | Vitamin C | -/52.1 | 3T3 fibroblast cells | Wound healing | [28] |
HIP NPs | Desolvation | 152.6 ± 24.2 | IR780 iodide; Piceatannol | 1.94 ± 0.14/-; 6.39 ± 0.13/- | 4T1 cells/4T1 tumor-bearing mice | Breast cancer | [29] |
HSA-INH-RIF NPs | Desolvation | 216.7 ± 3.7 | Rifampicin (RIF); Isoniazid (INH) | 44/-; 27/- | - | Tuberculosis | [30] |
HPTX NPs | Desolvation and lyophilization | ~120 | PTX-SS-C10-COOH | 29.78/94.16 | MDA-MB-231 cells/MDA-MB-231 tumor-bearing mice | Breast cancer | [31] |
RHMH18 NPs | Self-assembly | ~100 | PTX | 6.59/- | A549 cells and MGC-803 cells/A549 and MGC-80 tumor-bearing mice | Lung cancer; Gastric cancer | [32] |
HSA-RB-DOX NPs | Self-assembly | 42.0 | DOX; Rose bengal | 8.5/-; 7.1/- | MCF-7 cells/MCF-7 tumor-bearing mice | Breast cancer | [33] |
Pt(lau)HSA NPs/Rex | Nanoprecipitation | 120–140 | Laurate- functionalized Pt (IV) prodrug | -/23.15 | 4T1 cells/4T1 tumor-bearing mice | Breast cancer | [34] |
Material | Size (nm) | Bioactive Ingredient | Function | Cell/Animal Model | Target Disease | Ref. |
---|---|---|---|---|---|---|
FeBcl2HD@PEI | ~290 | Bcl-2 siRNA | Silence mRNA of Bcl-2 gene; inhibit the expression of Bcl-2 | A549 cells/- | Lung cancer | [59] |
pDNA/DSP-NPs | 242.5 ± 4.5 | IL-10 pDNA | Express IL-10 efficiently; inhibit pro-inflammatory factors; facilitate macrophage polarization | RAW264.7 cells/Collagen-induced arthritis (CIA) mice | Rheumatoid arthritis | [60] |
si-Bmi1@HSANCs | 175.4 ± 40.4 | Bmi1 siRNA | Degrade mRNA of Bmi1; downregulate the expression of Bmi1 | U937 and HL60 cells/Acute myeloid leukemia (AML) xenograft mice | AML | [61] |
HSANPs-PEI@EZH2siRNA | 90.0 ± 22.2 | EZH2 siRNA | Silence mRNA of EZH2 gene; inhibit the expression of EZH2 | U937 and HL60 cells/AML xenograft mice | AML | [62] |
INS (IL-12@HSA) | ~50 | IL-12 | Recruit cytotoxic T cells; induce the production of antitumor cytokines | Raji cells/Raji tumor-xenografted mice | Lymph cancer | [63] |
PD-L1/PTX@HSA | 200–250 | Anti-PD-L1 antibody | Enable tumor target and enhance antitumor efficacy | EMT-6 cells/EMT-6 tumor-xenografted mice | Breast cancer | [64] |
M-IR820/αCD47@NP | 149.8 ± 11.0 | Anti-CD47 antibody | Block CD47 and activate antitumor immunity | 4T1 cells/4T1 tumor-bearing mice | Breast cancer | [22] |
HSA@NVax | 70–80 | PCSK9 peptide | Reduce circulating levels of LDL-C | DC2.4 and RAW264.7 cells/immunologically naive mice | Atherosclerotic cardiovascular disease | [65] |
Cy7–B5–HSA–5-FU | 208.2 | B5 peptide | Enable active targeting | -/Colorectal cancer PDX mouse model | Colorectal cancer | [66] |
R837-Pep@HM NPs | ~120 | Melanoma peptide | Activate tumor-specific immune responses | B16F10 cells/B16F10 melanoma tumor-bearing mice | Melanoma | [67] |
AT1-HSA-MRN-NPs | 215.2 ± 4.7 | AT1 peptide | Enable active targeting | H9c2 cells/- | Congestive heart failure | [68] |
TAT-TMP-NPs | - | HIV TAT peptide | Improve nanoparticles’ uptake and efficiency of delivery by neutrophils | BV2 and SH-SY5Y cells/Spinal cord injury (SCI) male mice model | SCI | [69] |
131I-HSA-CAT NRs | ~100 | Catalase | Decompose H2O2 to generate oxygen and improve the therapeutic efficacy of radionuclide therapy | 4T1 cells/4T1 tumor-bearing mice | Breast cancer | [70] |
HSA-SOD-MTX | 78.0 ± 12.4 | SOD | Scavenge ROS and decrease the expression levels of pro-inflammatory cytokines | RAW264.7 cells/CIA mice | Rheumatoid arthritis | [71] |
HO-HM/GOD | ~140 | Glucose oxidase | Catalyze glucose to produce H2O2 and enhance CDT efficacy | 4T1 cells/4T1 tumor-bearing mice | Breast cancer | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhang, D.; Pan, Y.; Chen, B. Human Serum Albumin Based Nanodrug Delivery Systems: Recent Advances and Future Perspective. Polymers 2023, 15, 3354. https://doi.org/10.3390/polym15163354
Li C, Zhang D, Pan Y, Chen B. Human Serum Albumin Based Nanodrug Delivery Systems: Recent Advances and Future Perspective. Polymers. 2023; 15(16):3354. https://doi.org/10.3390/polym15163354
Chicago/Turabian StyleLi, Changyong, Dagui Zhang, Yujing Pan, and Biaoqi Chen. 2023. "Human Serum Albumin Based Nanodrug Delivery Systems: Recent Advances and Future Perspective" Polymers 15, no. 16: 3354. https://doi.org/10.3390/polym15163354
APA StyleLi, C., Zhang, D., Pan, Y., & Chen, B. (2023). Human Serum Albumin Based Nanodrug Delivery Systems: Recent Advances and Future Perspective. Polymers, 15(16), 3354. https://doi.org/10.3390/polym15163354