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Abstract: Understanding the fatigue behaviors of weld joints is significant in engineering practice.
Rotary friction welding (RFW) can join the additively manufactured polymer components. Until
now, no research has focused on the fatigue behavior of polymer components jointed via RFW.
This study investigates the fatigue life of ABS/PC dissimilar components fabricated via RFW and
proposes the fatigue mechanism based on the failure structure. This work uses five different cyclic
loads and rotational speeds to investigate the fatigue life. The fatigue life of the RFW of ABS/PC
dissimilar rods is better compared with the pure ABS and pure PC specimens due to weld and
integrity microstructural changes resulting from the combination of ABS and PC materials. The
number of cycles until the rupture of RFW of ABS/PC dissimilar components (y) can be determined
by the cyclic load (x) according to the prediction equation of y = −838.25x2 − 2035.8x + 67,262. The
fatigue life of the RFW of ABS/PC dissimilar components increase with the increased rotational
speed. The number of cycles until rupture (y) can be determined by the different rotational speeds (x)
according to the prediction equation of y = 315.21x2 + 2710.4x + 32,124.

Keywords: rotary friction welding; fatigue life; fatigue failure mechanism; number of cycles to
rupture; rotational speed; cyclic load

1. Introduction

The rotary friction welding (RFW) [1–3] of dissimilar materials is helpful in current in-
dustries, such as the automotive, aircraft, aerospace, and marine industries. RFW provides a
lower energy consumption and environmental impact compared with fusion welding [4,5].
RFW needs very little heat and friction applied to the components during the welding
process [6]. Therefore, this technology is frequently used to join metals or polymers [7].
Bhukya et al. [8] investigated its effect on the mechanical properties, downward force, and
temperature profile of an aluminum alloy using friction stir welding. The results revealed
that low force was decreased after introducing the copper donor. The surface hardness was
reduced from the base metal to the center of the weld interface. Zhan et al. [9] predicted the
fatigue life of the welding tool during the friction stir welding of an aluminum alloy. The
results showed that the fatigue life of the welding tools was increased with the increase in
the rotational speed. It was found that the compressive stress on the welding tool was at
the back side and the tensile stress on the welding tool was at the front side. Shi et al. [10]
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employed laser welding to join the additive manufactured parts. The results indicated
that the weld joint of the Al–Cu alloy was nearly free of defects. Liu et al. [11] reviewed
the fatigue behavior of clinched joints, including their life estimation model, influencing
factors, fatigue strength, and failure mechanism. Rayan et al. [12] investigated the fatigue
behavior of maraging steel components. The results indicated that the mechanical prop-
erty of maraging steel components was decreased by the reuse of maraging steel powder.
Ahmed et al. [13] investigated the fatigue properties of aluminum alloys. The results
showed that the weld joint with the 1.4 wt.% Mg filler provided the best fatigue life and
highest fatigue strength. Su et al. [14] studied the fatigue behavior of tube connections
under cyclic pressure. The results showed that the proposed method should be frequently
used in un-welded and welded structures because it is easy to operate, is reliable, and
is safe. Visco et al. [15] analyzed weld joints using static mechanical tests. The results
revealed that the joints had an appreciable resistance to fatigue. Yu et al. [16] investigated
the fatigue behavior of weld joints strengthened with carbon-fiber-reinforced polymer
laminates. It was found that the predicted fatigue life was consistent with the experimental
result. Koller et al. [17] identified an adhesive system suitable for achieving a high fatigue
strength in a carbon-fiber-reinforced polymer patch. The results showed that the compres-
sive nominal stress promoted the crack closure effect. Popescu et al. [18] investigated the
fatigue behavior of polylactic acid orthoses. The results showed that the minimum force
was approximately 95 N, reaching 110 N after 1100–1200 cycles during fatigue tests.

In the consumer electronics industry, acrylonitrile butadiene styrene (ABS) [19] and
polycarbonate (PC) [20] are extensively employed in some critical components because
they are more lightweight than metal. ABS has a high tensile strength and physical impacts.
ABS plastic is suitable for making consumer products that withstand heavy use. PC plastic
is also an engineering thermoplastic because it has excellent heat resistance. Therefore, both
PC and ABS are widely used in the consumer electronics industry. However, few studies
focus on the fatigue life of ABS/PC polymer rods jointed via RFW. According to practical
experience, the welded parts’ reliability [21,22] is related to the fatigue life [23]. The main
objective of this study was to investigate the fatigue life [24] of the polymer rods with five
different cyclic loads. The fracture surfaces after the fatigue test were examined using an
optical microscope (OM). Both fatigue life and fatigue behaviors were analyzed. Finally,
the fatigue mechanism of the ABS/PC polymer rods was proposed.

2. Experimental Details

Figure 1 shows the flowchart of the research process used in this study. The objective
was to study the fatigue behavior of the polymers. Figure 2 shows the size and geometry
of the fatigue test specimen. The fatigue test specimen was also a cylindrical rod with
a diameter of 15 mm and a length of 150 mm. The specimens were printed using a
three-dimensional printing apparatus called fused deposition modeling (FDM) (Teklink
smart solution Inc., New Taipei City, Taiwan) with two different kinds of thermoplastic
filaments, i.e., ABS (Thunder 3D Inc., New Taipei City, Taiwan) and PC (Thunder 3D Inc.,
New Taipei City, Taiwan) [25–27]. The printing parameters for the ABS specimens involved
a printing bed temperature of 100 ◦C, a printing speed of 80 mm/s, a printing temperature
of 230 ◦C, and a layer thickness of 0.4 mm [28]. The printing parameters for manufacturing
the PC specimens included a printing bed temperature of 100 ◦C, a printing speed of
80 mm/s, a printing temperature of 245 ◦C, and a layer thickness of 0.4 mm [29].
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Figure 2. The size and geometry of the fatigue test specimen.

In this work, a turning machine was used for RFW. The welding parameters included
an axial load of 17 N, a feed rate of 0.1 mm/min, a friction time of 20 s, a welding time of
20 s, and a burn-off length of 2 mm. To investigate the effects of the rotational speed of
RFW on the fatigue life of welded parts, five different rotational speeds were assessed in
this study, i.e., 330, 490, 650, 950, and 1350 rpm. During RFW, the temperature history in the
weld joint was recorded using an infrared thermal imager [30] (BI-TM-F01P, Panrico trading
Inc., New Taipei City, Taiwan). Significantly, the temperature history in the weld joint
was also predicted using COMSOL Multiphysics software. Figure 3 shows the schematic
illustration of the RFW process used to make a fatigue test sample. After RFW, the fatigue
tests were performed on pure ABS, pure PC, the RFW of ABS/ABS, the RFW of PC/ABS,
as well as the RFW of ABS/PC rods using a rotating-beam fatigue test (3LMF03U801,
Taiwan Nakazawa Co., Ltd., Taichung, Taiwan). Figure 4 shows the experimental setup
for the fatigue life of the welded parts. To investigate the effects of loads on the fatigue
life of the welded parts, five different loads were assessed in this work, i.e., 1, 2, 3, 4, and
5 kg. After the fatigue tests, the fatigue fracture surfaces were investigated comprehen-
sively using an optical microscope. A fatigue mechanism was proposed according to the
fatigue fracture surfaces. After the fatigue test, the fracture surface was analyzed using
a stereo OM (Quick Vision 404, Mitutoyo Inc., Tokyo, Japan) and FE-SEM (JEC3000-FC,
JEOL Inc., Tokyo, Japan).
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Figure 4. Experimental setup for the fatigue life of the welded parts.

3. Results and Discussion

The fatigue behavior of the RFW joints was evaluated using a rotating-beam fatigue-
testing machine. In this study, three different fatigue samples were used to investigate
the fatigue behavior. Two fatigue samples were 3D printed in PC and ABS using a fused
deposition modeling apparatus. The other fatigue sample comprised 3D-printed PC and
3D-printed ABS joined using RFW. Figure 5 shows the test specimens for the fatigue test.
After the fatigue tests, the fatigue fracture surfaces of solid ABS, solid PC, and the RFW
of ABS/PC were investigated comprehensively using an optical microscope. Figure 6
shows the fatigue test results. For the welded part of the RFW of ABS/PC, the fractured
location appears in the ABS polymer rod. For the welded part of the RFW of PC/PC,
the fractured location appears in the weld interface. For the welded part of the RFW of
ABS/ABS, the fractured location appears in the weld interface. Figure 7 shows the fatigue
failure surface of pure PC. Figure 8 shows the fatigue failure surface of pure ABS. Figure 9
shows the fatigue failure surface of the RFW of ABS/PC. As can be seen, two distinct zones
were found, i.e., a slow fracture zone and fast fracture zone. The original stands for the
crack started during the fatigue test. In the fatigue zone, the crack grew gradually. The
progression marks indicate the trend observed in the growth of the crack. In the overload
zone, the crack grew quickly. Two different results were found. One is that the fatigue
failure mechanism of polymers is the same as that of metals [31]. The other one is that the
fatigue failure mechanism of welded parts produced via the RFW of PC and ABS dissimilar
rods is the same as that of pure ABS or pure PC rods. This result shows that the welding
quality of the RFW of PC and ABS dissimilar rods is robust. It should be noted that the
fractured location appears in the ABS rods after the fatigue test, which is same as the
bending test [32].



Polymers 2023, 15, 3424 7 of 19Polymers 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 5. Test specimens for the fatigue test. Figure 5. Test specimens for the fatigue test.



Polymers 2023, 15, 3424 8 of 19Polymers 2023, 15, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 6. Fatigue test results. 

Figure 6. Fatigue test results.



Polymers 2023, 15, 3424 9 of 19Polymers 2023, 15, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 7. Fatigue failure surface of pure PC. Figure 7. Fatigue failure surface of pure PC.



Polymers 2023, 15, 3424 10 of 19Polymers 2023, 15, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 8. Fatigue failure surface of pure ABS. 

Figure 8. Fatigue failure surface of pure ABS.



Polymers 2023, 15, 3424 11 of 19Polymers 2023, 15, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 9. Fatigue failure surface of the RFW of ABS/PC. 

In this study, five specimens were assessed. Figure 10 shows the fatigue test results 
of the pure PC rods under five different cyclic loads. The results showed that the average 
number of cycles until rupture was about 29,706, 20,140, 18,024, 14,796, and 13,796 when 
the pure PC fatigue test specimens were subjected to five different loads of 1, 2, 3, 4, and 
5 kg. As can be seen, the fatigue life of the pure PC fatigue test piece was shorter under a 
higher load. Based on the experimental results obtained for a cyclic load of 1 kg, the re-
duction ratios of the cycles until rupture for four different loads of 2, 3, 4, and 5 kg were 
about 32.20, 39.33, 50.19, and 53.56%, respectively. It should be pointed out that the aver-
age number of cycles until rupture (y) can be determined by the cyclic load (x) according 
to the prediction equation of 1144.3 x2 − 10,582 x + 38,452, with a correlation coefficient (R2) 
of 0.9705. Figure 11 shows the fatigue test results of the pure ABS rods under five different 
loads. The results showed that the average number of cycles until rupture was about 
25,400, 17,370, 14,372, 10,718, and 9502 when the pure ABS fatigue test specimens were 
subjected to five different loads of 1, 2, 3, 4, and 5 kg. 

Figure 9. Fatigue failure surface of the RFW of ABS/PC.

In this study, five specimens were assessed. Figure 10 shows the fatigue test results
of the pure PC rods under five different cyclic loads. The results showed that the average
number of cycles until rupture was about 29,706, 20,140, 18,024, 14,796, and 13,796 when
the pure PC fatigue test specimens were subjected to five different loads of 1, 2, 3, 4, and
5 kg. As can be seen, the fatigue life of the pure PC fatigue test piece was shorter under
a higher load. Based on the experimental results obtained for a cyclic load of 1 kg, the
reduction ratios of the cycles until rupture for four different loads of 2, 3, 4, and 5 kg were
about 32.20, 39.33, 50.19, and 53.56%, respectively. It should be pointed out that the average
number of cycles until rupture (y) can be determined by the cyclic load (x) according to
the prediction equation of 1144.3x2 − 10,582x + 38,452, with a correlation coefficient (R2) of
0.9705. Figure 11 shows the fatigue test results of the pure ABS rods under five different
loads. The results showed that the average number of cycles until rupture was about 25,400,
17,370, 14,372, 10,718, and 9502 when the pure ABS fatigue test specimens were subjected
to five different loads of 1, 2, 3, 4, and 5 kg.
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As a result, the average number of cycles until rupture (y) can be determined by the
cyclic load (x) according to the prediction equation of y = 926.57x2 − 9404.2x + 33,493, with
a correlation coefficient of 0.989.

Figure 12 shows the fatigue test results of the RFW of PC and PC similar rods under
five different cyclic loads. The results showed that the average number of cycles until
rupture was about 76,027, 66,185, 59,234, 48,950, and 39,205 when the fatigue test specimens
were subjected to five different loads of 1 kg, 2 kg, 3 kg, 4 kg, and 5 kg. As a result, the
number of cycles until rupture (y) can be determined by the cyclic load (x) according to
the prediction equation of −195.98x3 + 1539.7x2 − 12,368x + 86,907, with a correlation
coefficient of 0.9982. Figure 13 shows the fatigue test results of the RFW of ABS and ABS
similar rods under five different cyclic loads. The results showed that the average number
of cycles until rupture was about 52,569, 45,059, 40,758, 30,127, and 27,634 when the fatigue
test specimens were subjected to five different loads of 1 kg, 2 kg, 3 kg, 4 kg, and 5 kg.
As a result, the number of cycles until rupture (y) can be determined by the cyclic load
(x) according to the prediction equation of 410.63x3 − 3431.1x2 + 1623.3x + 53,623, with a
correlation coefficient of 0.9809.

Figure 14 shows the fatigue test results of the RFW of ABS/PC dissimilar rods under
five different cyclic loads. The results showed that the average number of cycles until
rupture was about 63,850, 60,701, 54,254, 43,988, and 36,880 when the fatigue test specimens
were subjected to five different loads of 1, 2, 3, 4, and 5 kg. The number of cycles until
rupture (y) can be determined by the cyclic load (x) according to the prediction equation
of −838.25x2 − 2035.8x + 67,262, with a correlation coefficient of 0.9903. Figure 15 shows
the fatigue test results of the five different fatigue test specimens under five different cyclic
loads. It should be noted that the fatigue life of the RFW of PC/PC dissimilar rods is the
best due to the weld integrity resulting from the combination of PC and PC materials after
RFW [33]. The fatigue life of the RFW of ABS/ABS similar rods is the worst. The fatigue
life of the RFW of ABS/PC dissimilar rods is in between. These results are consistent with
the mechanical properties of the welding base metal [34–36].
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Figure 16 shows the fatigue test results of the RFW of ABS and PC dissimilar rods
under five different rotational speeds. The results showed that the average number of
cycles until rupture of the RFW of ABS and PC using a rotational speed of 330 rpm,
490 rpm, 650 rpm, 950 rpm, and 1350 rpm was about 35,150, 39,120, 42,145, 48,957, and
53,240, respectively. It was found that the fatigue life of the RFW of ABS and PC increased
with the increase in the rotational speed. This result shows that the weld strength in the
weld interface was enhanced by increasing the rotational speed [37] due to the high peak
temperature in the weld interface, resulting in high material flow during RFW. The average
number of cycles until rupture (y) can be determined by the rotational speed (x) according
to the prediction equation of 315.21x2 + 2710.4x + 32,124, with a correlation coefficient of
0.9907. It is interesting to note that the fatigue life of the RFW of ABS/PC is better than
both the pure ABS and pure PC materials.

In general, RFW is a green manufacturing process that can reduce energy consumption
compared with conventional arc welding. As a result, RFW meets the sustainable devel-
opment goal 12 [38]. RFW is a practical method in various industries [39–41]. However, a
lathe was used for the RFW in the current work. To reduce experimental error, the computer
numerical control turning machine [42–45] was recommended to perform the RFW because
the feed rate of RFW can be controlled precisely. In addition, the rotational speed [46] can
be changed during the process of RFW. In addition, the rate of growth of a fatigue crack
was not investigated using the Paris law [47–49]. Carbon dioxide laser [50–52] or fiber
laser [52–55] have also been recommended as methods with which to join polymer rods.
These topics are interesting research topics and are currently being investigated.



Polymers 2023, 15, 3424 16 of 19

Polymers 2023, 15, x FOR PEER REVIEW 16 of 19 
 

 

Figure 16 shows the fatigue test results of the RFW of ABS and PC dissimilar rods 
under five different rotational speeds. The results showed that the average number of cy-
cles until rupture of the RFW of ABS and PC using a rotational speed of 330 rpm, 490 rpm, 
650 rpm, 950 rpm, and 1350 rpm was about 35,150, 39,120, 42,145, 48,957, and 53,240, re-
spectively. It was found that the fatigue life of the RFW of ABS and PC increased with the 
increase in the rotational speed. This result shows that the weld strength in the weld in-
terface was enhanced by increasing the rotational speed [37] due to the high peak temper-
ature in the weld interface, resulting in high material flow during RFW. The average num-
ber of cycles until rupture (y) can be determined by the rotational speed (x) according to 
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In general, RFW is a green manufacturing process that can reduce energy consump-
tion compared with conventional arc welding. As a result, RFW meets the sustainable de-
velopment goal 12 [38]. RFW is a practical method in various industries [39–41]. However, 
a lathe was used for the RFW in the current work. To reduce experimental error, the com-
puter numerical control turning machine [42–45] was recommended to perform the RFW 
because the feed rate of RFW can be controlled precisely. In addition, the rotational speed 
[46] can be changed during the process of RFW. In addition, the rate of growth of a fatigue 
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Figure 16. Fatigue test results of the RFW of ABS and PC dissimilar rods under five different
rotational speeds.

4. Conclusions

The main aim of this study was to investigate the fatigue life of polymer parts fabri-
cated using RFW. Five different cyclic loads were used to study the effects of loads on the
fatigue life. The main conclusions from the experimental work in this study are as follows:

1. The fatigue failure mechanism of polymers is the same as that of metals.
2. The fatigue life of the RFW of PC/PC dissimilar rods is the best due to weld and

integrity microstructural changes resulting from the combination of PC and PC mate-
rials. This result shows that the welding quality of the RFW of PC/PC dissimilar rods
is robust for application in various industries.

3. The fatigue life of the RFW of ABS/PC is shorter under higher loads. The number of
cycles until failure (y) can be determined by the cyclic load (x) according to the prediction
equation of y = −838.25x2 − 2035.8x + 67,262, with a correlation coefficient of 0.9903.

4. The fatigue life of the RFW of ABS/PC dissimilar components increases with an increased
rotational speed. The number of cycles until rupture (y) can be determined by the
rotational speed (x) according to the prediction equation of 315.21x2 + 2710.4x + 32,124,
with a correlation coefficient of 0.9907.
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