Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review
Abstract
:1. Introduction
1.1. Approaches Used to Improve Stability and Reusability of Enzymes
1.1.1. Medium Engineering
1.1.2. Protein Engineering
1.1.3. Immobilization of Enzymes
2. Nanoparticle-Polymer Composites
2.1. Polymers Explored in Functionalization of Nanoparticles
2.2. Metal and Metal Oxide Nanoparticles Explored in Nanocomposites for Enzyme Immobilization
2.2.1. Gold Nanoparticles (AuNPs)
2.2.2. Silver Nanoparticles (AgNPs)
2.2.3. Magnetic Nanoparticles (MNPs)
2.2.4. Zinc Oxide Nanoparticles (ZnONPs)
2.2.5. Titanium Oxide Nanoparticles (TiO2NPs)
3. Methods Used to Functionalize Nanoparticles with Polymers on Electrodes for Enzyme Immobilization
3.1. Polymer Grafting
3.2. Self-Assembled Monolayer Deposition
3.3. Electrochemical Deposition
3.4. Electrospinning
4. Application of Enzyme-Nanoparticle-Polymer Composites in Biosensors
4.1. Biosensing of Hydrogen Peroxide
4.2. Biosensing of Glucose
4.3. Biosensing of Other Compounds in Human Blood
4.4. Biosensing of Pesticides and Other Organic Pollutants
Nanocomposite (NC) | Enzyme | Immobilization Method | Electrode Used | Detected Compound | Detection Range (μM) | Limit of Detection (μM) | Response Time (s) | Reusability | Ref. |
---|---|---|---|---|---|---|---|---|---|
AuNPs/PAN membrane | AChE | Sequential layer by layer loading of PAN, AuNPs, and AChE | Platinum | Paraoxon | 3.6 × 10−7–3.6 × 10−4 * | 2.69 × 10−7 * | 5 | 90.2% and 75% (9 assays and 20 days, respectively), RSD of 1.68% and 3.5% (6 assays and 6 biosensors) | [406] |
AuNPs/chitosan | AChE | Electrochemical deposition | Platinum | Malathion and monocrotophos | 0.003–0.3 and 6.1–60.5 * | 0.003 * | 100% and 90% (10 and 30 days respectively), RSD of 3.4% and 2.3% (5 biosensors and assays, respectively) | [415] | |
AuNPs/polyethyleneimine (PEI) | Laccase | Drop-casting of laccase/AuNPs/PEI solution on GCE | GCE | Catechol | 0.36–11.00 | 0.03 | 80% (150 assays over 90 days) | [412] | |
Guaiacol | 0.79–17.42 | 0.03 | |||||||
Pyrogallol | 1.74–19.60 | 0.14 | |||||||
Hydroquinone | 2.90–22.00 | 0.21 | |||||||
AuNPs/fenugreek hydrogel-agarose | AChE | Drop-casting a homogeneous mixture of agarose, fenugreek hydrogel, AChE, and AuNPs solution | - | Carbofuran | 0.002–0.01 | 0.002 | 96% and 94% (20 and 30 days, respectively) | [405] | |
Oxamyl | 0.01–0.1 | 0.021 | |||||||
Methomyl | 0.1–0.5 | 0.113 | |||||||
Carbaryl | 0.2–1 | 0.236 | |||||||
AuNPs/dihexadecylphosphate (DHP) | Tyrosinase | Drop-casting of a mixture of tyrosinase, AuNPs, and DHP | GCE | Catechol | 2.5–950 | 0.17 | 93% (240 assays over 1 month), RSD of 3.8% (3 biosensors) | [413] | |
AgNPs/carboxymethyl cellulose (CMC)/cellulose nanofiber | Laccase | Electrospinning of cellulose nanofiber, adsorption of CMC, immersion in AgNO3 solution, incubation in laccase solution | GCE | Catechol | 4.98–3650 | 1.64 | 97.6% (3 weeks), RSD of 3.41%, and 1.57% (4 assays and 5 biosensors, respectively) | [324] | |
MNPs/PGMA | HRP | Self-assembled deposition of cysteamine-modified electrode with MNPs/PGMA solution followed by HRP solution | Gold | p-Cresol | 500–700 | 26 | 4 | 87% and 85% (50 days and 12 assays, respectively) | [411] |
Aminophenol | 500–3500 | 13 | 3 | ||||||
Catechol | 500–11,000 | 46 | 7 | ||||||
Phenol | 500–8500 | 28 | 3 | ||||||
Pyrogallol | 500–15,000 | 48 | 5 | ||||||
MNPs/Pin5COOH | AChE | Grafting-from of NC by CV followed by drop-casting of AChE solution on modified electrode | GCE | Malathion | −0.06 | 0.0015 | 50% (70 days) | [404] | |
Chlorpyrifos | 0.0015–0.07 | 0.0001 | |||||||
MNP/chitosan | AChE | Drop-casting a mixture of MNPs and chitosan solution followed by AChE | GCE | Carbofuran | 0.005–0.09 | 0.0036 | 900 | RSD 4.3% and 5.4% (5 assays and biosensors, respectively) | [409] |
MNPs/chitosan | AChE | Drop-casting a mixture of MNPs, chitosan, AChE, and glutaraldehyde | Screen-printed electrode | Malathion | 0.0005–0.02 | 0.0003 | [408] | ||
AuNPs/PPy | Phenol oxidase | Sequential deposition of HAuCl4, enzyme, and pyrrole | GCE | Phenol | 0.05–70 | 0.03 | 10 | 100% and 68% (25 and 100 assays, respectively), RSD of 1.36% (6 biosensors) | [193] |
AuNPs/PA6-poly(allylamine hydrochloride) (PAH) | Tyrosinase | Electrospun PA6-PAH on FTO, immersion in AuNPs solution, drop-casted tyrosinase solution on modified electrode | Fluorine-doped tin oxide (FTO) | Bisphenol A | 0.05–20 | 0.011 | [414] | ||
PtNPs/PPy | Sulfite oxidase | Sequential electropolymerization of K2PtCl6 and pyrrole and immersion in enzyme solution | Platinum | Sulfite | 0.75–65 | 0.012 | 5 | 96.5%, 92.5%, and 88.2% (10, 11 and 12 weeks, respectively). RSD of 3.2% (9 assays) | [410] |
4.5. Perspectives on Enzyme-Nanoparticle-Polymer Composite Electrodes
5. Application of Enzyme-Nanoparticle-Polymer Composites in Wastewater Treatment
5.1. Laccase-Based Nanocomposite Biocatalysts for Degradation of Pollutants
5.2. Horse Radish Peroxidase (HRP)-Based Nanocomposite Biocatalysts for Degradation of Pollutants
5.3. Other Oxidase and Peroxidase-Based Nanocomposite Biocatalysts for Degradation of Pollutants
5.4. Current Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Roy Choudhury, A.K. Introduction to enzymes. In Sustainable Technologies for Fashion and Textiles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 75–90. [Google Scholar] [CrossRef]
- Kornbrust, B.A.; Forman, T.; Matveeva, I. Applications of enzymes in breadmaking. In Breadmaking; Elsevier: Amsterdam, The Netherlands, 2012; pp. 470–498. [Google Scholar] [CrossRef]
- Copeland, R.A. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis, 2nd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Auld, D.S. Zinc coordination sphere in biochemical zinc sites. In Zinc Biochemistry, Physiology, and Homeostasis: Recent Insights and Current Trends; Maret, W., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 85–127. [Google Scholar] [CrossRef]
- Bjerre, J.; Rousseau, C.; Marinescu, L.; Bols, M. Artificial enzymes, “Chemzymes”: Current state and perspectives. Appl. Microbiol. Biotechnol. 2008, 81, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.K. Enzymes: Principles and biotechnological applications. Essays Biochem. 2015, 59, 1–41. [Google Scholar] [CrossRef]
- Copeland, R.A. Enzymes; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef]
- Parkin, G. Synthetic Analogues Relevant to the Structure and Function of Zinc Enzymes. Chem. Rev. 2004, 104, 699–768. [Google Scholar] [CrossRef]
- Glusker, J.P. Structural Aspects of Metal Liganding to Functional Groups in Proteins. In Advances in Protein Chemistry; Anfinsen, C.B., Edsall, J.T., Richards, F.M., Eisenberg, D.S., Eds.; Academic Press: Cambridge, MA, USA, 1991; Volume 42, pp. 1–76. [Google Scholar] [CrossRef]
- Anandan, A.; Vrielink, A. Structure and function of lipid A–modifying enzymes. Ann. N. Y. Acad. Sci. 2020, 1459, 19–37. [Google Scholar] [CrossRef]
- Whitaker, J.R.; Voragen, A.G.J.; Wong, D.W.S. (Eds.) Handbook of Food Enzymology; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Stroppolo, M.E.; Falconi, M.; Caccuri, A.M.; Desideri, A. Superefficient enzymes. Cell. Mol. Life Sci. 2001, 58, 1451–1460. [Google Scholar] [CrossRef]
- Martínez, A.T.; Ruiz-Dueñas, F.J.; Camarero, S.; Serrano, A.; Linde, D.; Vind, J.; Tovborg, M.; Herold-Majumdar, O.M.; Hofrichter, M. Oxidoreductases on their way to industrial biotransformations. Biotechnol. Adv. 2017, 35, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Poulos, T.L. Thirty years of heme peroxidase structural biology. Arch. Biochem. Biophys. 2010, 500, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, M.R.; Bredeweg, E.L.; Magnuson, J.K.; Baker, S.E.; de Vries, R.P.; Hildén, K. Fungal Ligninolytic Enzymes and Their Applications. Microbiol. Spectr. 2016, 4, 10–1128. [Google Scholar] [CrossRef]
- Poulos, T.L. Heme Enzyme Structure and Function. Chem. Rev. 2014, 114, 3919–3962. [Google Scholar] [CrossRef]
- Chen, C.; Li, T. Bacterial dye-decolorizing peroxidases: Biochemical properties and biotechnological opportunities. Phys. Sci. Rev. 2016, 1, 20160051. [Google Scholar] [CrossRef]
- Dubrovskaya, E.; Pozdnyakova, N.; Golubev, S.; Muratova, A.; Grinev, V.; Bondarenkova, A.; Turkovskaya, O. Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation. Chemosphere 2017, 169, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Lüthje, S.; Meisrimler, C.-N.; Hopff, D.; Möller, B. Phylogeny, topology, structure and functions of membrane-bound class III peroxidases in vascular plants. Phytochemistry 2011, 72, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- Hooda, V.; Gundala, P.B.; Chinthala, P. Sequence analysis and homology modeling of peroxidase from Medicago sativa. Bioinformation 2012, 8, 974. [Google Scholar] [CrossRef]
- Gumiero, A.; Murphy, E.J.; Metcalfe, C.L.; Moody, P.C.E.; Raven, E.L. An analysis of substrate binding interactions in the heme peroxidase enzymes: A structural perspective. Arch. Biochem. Biophys. 2010, 500, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Taranto, F.; Pasqualone, A.; Mangini, G.; Tripodi, P.; Miazzi, M.M.; Pavan, S.; Montemurro, C. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects. Int. J. Mol. Sci. 2017, 18, 377. [Google Scholar] [CrossRef]
- Plácido, J.; Capareda, S. Ligninolytic enzymes: A biotechnological alternative for bioethanol production. Bioresour. Bioprocess. 2015, 2, 23. [Google Scholar] [CrossRef]
- Xu, S.; Huang, X.; Chen, Y.; Liu, Y.; Zhao, W.; Sun, Z.; Zhu, Y.; Liu, X.; Wong, C.-P. Silver Nanoparticle-Enzyme Composite Films for Hydrogen Peroxide Detection. ACS Appl. Nano Mater. 2019, 2, 5910–5921. [Google Scholar] [CrossRef]
- Meunier, B. 8.11—Heme-peroxidases. In Comprehensive Coordination Chemistry II; McCleverty, J.A., Meyer, T.J., Eds.; Pergamon: Oxford, UK, 2003; pp. 261–280. [Google Scholar] [CrossRef]
- Turner, N.J. 7.12 Oxidation: Oxidases. In Comprehensive Chirality; Carreira, E.M., Yamamoto, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 256–274. [Google Scholar] [CrossRef]
- Wahart, A.J.C.; Staniland, J.; Miller, G.J.; Cosgrove, S.C. Oxidase enzymes as sustainable oxidation catalysts. R. Soc. Open Sci. 2022, 9, 211572. [Google Scholar] [CrossRef]
- Dijkman, W.P.; de Gonzalo, G.; Mattevi, A.; Fraaije, M.W. Flavoprotein oxidases: Classification and applications. Appl. Microbiol. Biotechnol. 2013, 97, 5177–5188. [Google Scholar] [CrossRef]
- Phale, P.S.; Sharma, A.; Gautam, K. 11—Microbial degradation of xenobiotics like aromatic pollutants from the terrestrial environments. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Prasad, M.N.V., Vithanage, M., Kapley, A., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 259–278. [Google Scholar] [CrossRef]
- Jabłońska, J.; Tawfik, D.S. Innovation and tinkering in the evolution of oxidases. Protein Sci. 2022, 31, e4310. [Google Scholar] [CrossRef] [PubMed]
- Fetzner, S.; Steiner, R.A. Cofactor-independent oxidases and oxygenases. Appl. Microbiol. Biotechnol. 2010, 86, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-M.; Han, S.-S.; Kim, H.-S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol. Adv. 2015, 33, 1443–1454. [Google Scholar] [CrossRef]
- Gardimalla, H.M.R.; Mandal, D.; Stevens, P.D.; Yen, M.; Gao, Y. Superparamagnetic nanoparticle -supported enzymatic resolution of racemic carboxylates. Chem. Commun. 2005, 4432–4434. [Google Scholar] [CrossRef]
- Kelly, S.A.; Pohle, S.; Wharry, S.; Mix, S.; Allen, C.C.R.; Moody, T.S.; Gilmore, B.F. Application of ω-Transaminases in the Pharmaceutical Industry. Chem. Rev. 2018, 118, 349–367. [Google Scholar] [CrossRef]
- Akin, D.E. Linen Most Useful: Perspectives on Structure, Chemistry, and Enzymes for Retting Flax. Int. Sch. Res. Not. 2013, 2013, 186534. [Google Scholar] [CrossRef] [PubMed]
- Madhu, A.; Chakraborty, J.N. Developments in application of enzymes for textile processing. J. Clean. Prod. 2017, 145, 114–133. [Google Scholar] [CrossRef]
- Chatha, S.A.S.; Asgher, M.; Iqbal, H.M.N. Enzyme-based solutions for textile processing and dye contaminant biodegradation—A review. Environ. Sci. Pollut. Res. 2017, 24, 14005–14018. [Google Scholar] [CrossRef] [PubMed]
- Ugliano, M. Enzymes in Winemaking. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer: New York, NY, USA, 2009; pp. 103–126. [Google Scholar] [CrossRef]
- Claus, H.; Mojsov, K. Enzymes for Wine Fermentation: Current and Perspective Applications. Fermentation 2018, 4, 52. [Google Scholar] [CrossRef]
- Espejo, F. Role of commercial enzymes in wine production: A critical review of recent research. J. Food Sci. Technol. 2021, 58, 9–21. [Google Scholar] [CrossRef]
- Yang, S.; Yang, B.; Duan, C.; Fuller, D.A.; Wang, X.; Chowdhury, S.P.; Stavik, J.; Zhang, H.; Ni, Y. Applications of enzymatic technologies to the production of high-quality dissolving pulp: A review. Bioresour. Technol. 2019, 281, 440–448. [Google Scholar] [CrossRef]
- Walia, A.; Guleria, S.; Mehta, P.; Chauhan, A.; Parkash, J. Microbial xylanases and their industrial application in pulp and paper biobleaching: A review. 3 Biotech 2017, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Marín-Navarro, J.; Shukla, P. Thermostable microbial xylanases for pulp and paper industries: Trends, applications and further perspectives. World J. Microbiol. Biotechnol. 2016, 32, 34. [Google Scholar] [CrossRef] [PubMed]
- Kües, U. Fungal enzymes for environmental management. Curr. Opin. Biotechnol. 2015, 33, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Mohamad, Z. Enzymes immobilized polymeric supports for wastewater treatment application: A short review. Mater. Today Proc. 2022, 65, 2946–2952. [Google Scholar] [CrossRef]
- Jun, L.Y.; Yon, L.S.; Mubarak, N.M.; Bing, C.H.; Pan, S.; Danquah, M.K.; Abdullah, E.C.; Khalid, M. An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater. J. Environ. Chem. Eng. 2019, 7, 102961. [Google Scholar] [CrossRef]
- Kurbanoglu, S.; Ozkan, S.A.; Merkoçi, A. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosens. Bioelectron. 2017, 89, 886–898. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.J.; Baik, S.; Hyeon, T.; Kim, D.-H. Enzyme-Based Glucose Sensor: From Invasive to Wearable Device. Adv. Healthc. Mater. 2018, 7, 1701150. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef]
- Li, G.; Wang, J.; Reetz, M.T. Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereoselective enzymes. Bioorganic Med. Chem. 2018, 26, 1241–1251. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Na, H.B.; Kim, B.C.; Youn, J.K.; Kwak, J.H.; Moon, K.; Lee, E.; Kim, J.; Park, J.; et al. A Magnetically Separable, Highly Stable Enzyme System Based on Nanocomposites of Enzymes and Magnetic Nanoparticles Shipped in Hierarchically Ordered, Mesocellular, Mesoporous Silica. Small 2005, 1, 1203–1207. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Grate, J.W. Single-Enzyme Nanoparticles Armored by a Nanometer-Scale Organic/Inorganic Network. Nano Lett. 2003, 3, 1219–1222. [Google Scholar] [CrossRef]
- Fernandez-Lafuente, R. Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzym. Microb. Technol. 2009, 45, 405–418. [Google Scholar] [CrossRef]
- Kim, J.; Grate, J.W.; Wang, P. Nanostructures for enzyme stabilization. Chem. Eng. Sci. 2006, 61, 1017–1026. [Google Scholar] [CrossRef]
- Gupta, M.N.; Roy, I. Enzymes in organic media. Eur. J. Biochem. 2004, 271, 2575–2583. [Google Scholar] [CrossRef]
- Hari Krishna, S. Developments and trends in enzyme catalysis in nonconventional media. Biotechnol. Adv. 2002, 20, 239–267. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Pereira, P.C. Biocatalysis engineering: The big picture. Chem. Soc. Rev. 2017, 46, 2678–2691. [Google Scholar] [CrossRef]
- Silva, C.; Martins, M.; Jing, S.; Fu, J.; Cavaco-Paulo, A. Practical insights on enzyme stabilization. Crit. Rev. Biotechnol. 2018, 38, 335–350. [Google Scholar] [CrossRef]
- Steiner, K.; Schwab, H. Recent advances in rational approaches for enzyme engineering. Comput. Struct. Biotechnol. J. 2012, 2, e201209010. [Google Scholar] [CrossRef]
- Mazurenko, S.; Prokop, Z.; Damborsky, J. Machine Learning in Enzyme Engineering. ACS Catal. 2020, 10, 1210–1223. [Google Scholar] [CrossRef]
- Bloom, J.; Meyer, M.; Meinhold, P.; Otey, C.; Macmillan, D.; Arnold, F. Evolving strategies for enzyme engineering. Curr. Opin. Struct. Biol. 2005, 15, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Chen, R. Enzyme engineering: Rational redesign versus directed evolution. Trends Biotechnol. 2001, 19, 13–14. [Google Scholar] [CrossRef] [PubMed]
- Otte, K.B.; Hauer, B. Enzyme engineering in the context of novel pathways and products. Curr. Opin. Biotechnol. 2015, 35, 16–22. [Google Scholar] [CrossRef]
- Ding, S. Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr. Opin. Biotechnol. 2015, 34, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gupta, G.; Ahmad, T.; Mansoor, S.; Kaur, B. Enzyme Engineering: Current Trends and Future Perspectives. Food Rev. Int. 2021, 37, 121–154. [Google Scholar] [CrossRef]
- Longwell, C.K.; Labanieh, L.; Cochran, J.R. High-throughput screening technologies for enzyme engineering. Curr. Opin. Biotechnol. 2017, 48, 196–202. [Google Scholar] [CrossRef]
- Chowdhury, R.; Maranas, C.D. From directed evolution to computational enzyme engineering—A review. AIChE J. 2020, 66, e16847. [Google Scholar] [CrossRef]
- Ali, M.; Ishqi, H.M.; Husain, Q. Enzyme engineering: Reshaping the biocatalytic functions. Biotechnol. Bioeng. 2020, 117, 1877–1894. [Google Scholar] [CrossRef]
- Smutok, O.; Kavetskyy, T.; Katz, E. Recent trends in enzyme engineering aiming to improve bioelectrocatalysis proceeding with direct electron transfer. Curr. Opin. Electrochem. 2022, 31, 100856. [Google Scholar] [CrossRef]
- Plagemann, R.; Jonas, L.; Kragl, U. Ceramic honeycomb as support for covalent immobilization of laccase from Trametes versicolor and transformation of nuclear fast red. Appl. Microbiol. Biotechnol. 2011, 90, 313–320. [Google Scholar] [CrossRef]
- Homaei, A.A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme immobilization: An update. J. Chem. Biol. 2013, 6, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A. Enzyme Immobilization: The Quest for Optimum Performance. Adv. Synth. Catal. 2007, 349, 1289–1307. [Google Scholar] [CrossRef]
- Gole, A.; Vyas, S.; Sainkar, S.R.; Lachke, A.; Sastry, M. Enhanced Temperature and pH Stability of Fatty Amine−Endoglucanase Composites: Fabrication, Substrate Protection, and Biological Activity. Langmuir 2001, 17, 5964–5970. [Google Scholar] [CrossRef]
- Vera, M.; Rivas, B.L. Immobilization of Trametes versicolor laccase on different PGMA-based polymeric microspheres using response surface methodology: Optimization of conditions. J. Appl. Polym. Sci. 2017, 134, 45249. [Google Scholar] [CrossRef]
- Makas, Y.G.; Kalkan, N.A.; Aksoy, S.; Altinok, H.; Hasirci, N. Immobilization of laccase in κ-carrageenan based semi-interpenetrating polymer networks. J. Biotechnol. 2010, 148, 216–220. [Google Scholar] [CrossRef]
- Cao, L. Immobilised enzymes: Science or art? Curr. Opin. Chem. Biol. 2005, 9, 217–226. [Google Scholar] [CrossRef]
- Bornscheuer, U.T. Immobilizing Enzymes: How to Create More Suitable Biocatalysts. Angew. Chem. Int. Ed. 2003, 42, 3336–3337. [Google Scholar] [CrossRef]
- Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym. Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Kim, M.I.; Ham, H.O.; Oh, S.-D.; Park, H.G.; Chang, H.N.; Choi, S.-H. Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles. J. Mol. Catal. B Enzym. 2006, 39, 62–68. [Google Scholar] [CrossRef]
- Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, H.; Yang, W.; Li, Y.; Sun, C. Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sens. Actuators B Chem. 2007, 124, 179–186. [Google Scholar] [CrossRef]
- Liese, A.; Hilterhaus, L. Evaluation of immobilized enzymes for industrial applications. Chem. Soc. Rev. 2013, 42, 6236–6249. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Guo, C.; Xia, H.; Mahmood, I.; Liu, C.; Liu, H. Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. J. Mol. Catal. B Enzym. 2009, 58, 103–109. [Google Scholar] [CrossRef]
- Luo, X.-L.; Xu, J.-J.; Du, Y.; Chen, H.-Y. A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition. Anal. Biochem. 2004, 334, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Wang, A.; Huang, L.; Li, H.; Chen, Z.; Wang, Q.; Yin, X. Recent advance in the support and technology used in enzyme immobilization. Afr. J. Biotechnol. 2009, 8, 4724–4733. [Google Scholar]
- Roy, J.J.; Abraham, T.E. Preparation and characterization of cross-linked enzyme crystals of laccase. J. Mol. Catal. B Enzym. 2006, 38, 31–36. [Google Scholar] [CrossRef]
- Patel, I.; Ludwig, R.; Mueangtoom, K.; Haltrich, D.; Rosenau, T.; Potthast, A. Comparing soluble Trametes pubescens laccase and cross-linked enzyme crystals (CLECs) for enzymatic modification of cellulose. In Proceedings of the 10th EWLP, Stockholm, Sweden, 25–28 August 2008; De Gruyter: Berlin, Germany, 2009; Volume 63, pp. 715–720. [Google Scholar] [CrossRef]
- Sheldon, R.A. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl. Microbiol. Biotechnol. 2011, 92, 467–477. [Google Scholar] [CrossRef]
- Hartmann, M.; Jung, D. Biocatalysis with enzymes immobilized on mesoporous hosts: The status quo and future trends. J. Mater. Chem. 2010, 20, 844–857. [Google Scholar] [CrossRef]
- Talekar, S.; Joshi, A.; Joshi, G.; Kamat, P.; Haripurkar, R.; Kambale, S. Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Adv. 2013, 3, 12485–12511. [Google Scholar] [CrossRef]
- Sheldon, R.A. Cross-Linked Enzyme Aggregates as Industrial Biocatalysts. Org. Process Res. Dev. 2011, 15, 213–223. [Google Scholar] [CrossRef]
- Cui, J.D.; Jia, S.R. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: Current development and future challenges. Crit. Rev. Biotechnol. 2015, 35, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-Q.; Wang, S.-S.; Li, L.-N.; Gao, J.; Zhang, Y.-W. Combined Cross-Linked Enzyme Aggregates as Biocatalysts. Catalysts 2018, 8, 460. [Google Scholar] [CrossRef]
- Perveen, S.; Noreen, S.; Shahid, S.; Mehboob, H.; Aslam, S.; Iqbal, H.M.N.; Bilal, M. Carrier-Free Cross-linked Laccase Crystals for Biocatalytic Degradation of Textile Industrial Effluents. Appl. Biochem. Biotechnol. 2022, 194, 1775–1789. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Lozano, S.; López-Gallego, F.; Mateos-Díaz, J.C.; Favela-Torres, E. Cross-linked enzyme aggregates (CLEA) in enzyme improvement—A review. Biocatalysis 2016, 1, 166–177. [Google Scholar] [CrossRef]
- Khoshnevisan, K.; Bordbar, A.-K.; Zare, D.; Davoodi, D.; Noruzi, M.; Barkhi, M.; Tabatabaei, M. Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 2011, 171, 669–673. [Google Scholar] [CrossRef]
- Ren, X.; Meng, X.; Chen, D.; Tang, F.; Jiao, J. Using silver nanoparticle to enhance current response of biosensor. Biosens. Bioelectron. 2005, 21, 433–437. [Google Scholar] [CrossRef]
- Vaghari, H. Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol. Lett. 2016, 38, 223–233. [Google Scholar] [CrossRef]
- You, C.-C.; De, M.; Han, G.; Rotello, V.M. Tunable Inhibition and Denaturation of α-Chymotrypsin with Amino Acid-Functionalized Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127, 12873–12881. [Google Scholar] [CrossRef]
- Talbert, J.N.; Goddard, J.M. Enzymes on material surfaces. Colloids Surf. B Biointerfaces 2012, 93, 8–19. [Google Scholar] [CrossRef]
- Norde, W.; Zoungrana, T. Surface-induced changes in the structure and activity of enzymes physically immobilized at solid/liquid interfaces. Biotechnol. Appl. Biochem. 1998, 28, 133–143. [Google Scholar]
- Johnson, A.K.; Zawadzka, A.M.; Deobald, L.A.; Crawford, R.L.; Paszczynski, A.J. Novel method for immobilization of enzymes to magnetic nanoparticles. J. Nanoparticle Res. 2008, 10, 1009–1025. [Google Scholar] [CrossRef]
- Miletić, N.; Abetz, V.; Ebert, K.; Loos, K. Immobilization of Candida antarctica lipase B on Polystyrene Nanoparticles. Macromol. Rapid Commun. 2010, 31, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Ma, N. Immobilized Lipase on Fe3O4 Nanoparticles as Biocatalyst for Biodiesel Production. Energy Fuels 2009, 23, 1347–1353. [Google Scholar] [CrossRef]
- Can, K.; Ozmen, M.; Ersoz, M. Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization. Colloids Surf. B Biointerfaces 2009, 71, 154–159. [Google Scholar] [CrossRef]
- Xu, J.; Sun, J.; Wang, Y.; Sheng, J.; Wang, F.; Sun, M. Application of Iron Magnetic Nanoparticles in Protein Immobilization. Molecules 2014, 19, 11465–11486. [Google Scholar] [CrossRef]
- Dyal, A.; Loos, K.; Noto, M.; Chang, S.W.; Spagnoli, C.; Shafi, K.V.P.M.; Ulman, A.; Cowman, M.; Gross, R.A. Activity of Candida rugosa Lipase Immobilized on γ-Fe2O3 Magnetic Nanoparticles. J. Am. Chem. Soc. 2003, 125, 1684–1685. [Google Scholar] [CrossRef]
- Arıca, M.Y.; Altıntas, B.; Bayramoğlu, G. Immobilization of laccase onto spacer-arm attached non-porous poly(GMA/EGDMA) beads: Application for textile dye degradation. Bioresour. Technol. 2009, 100, 665–669. [Google Scholar] [CrossRef]
- Kim, J.; Jia, H.; Lee, C.; Chung, S.; Kwak, J.H.; Shin, Y.; Dohnalkova, A.; Kim, B.-G.; Wang, P.; Grate, J.W. Single enzyme nanoparticles in nanoporous silica: A hierarchical approach to enzyme stabilization and immobilization. Enzym. Microb. Technol. 2006, 39, 474–480. [Google Scholar] [CrossRef]
- Jia, H.; Zhu, G.; Wang, P. Catalytic behaviors of enzymes attached to nanoparticles: The effect of particle mobility. Biotechnol. Bioeng. 2003, 84, 406–414. [Google Scholar] [CrossRef]
- Karagoz, B.; Bayramoglu, G.; Altintas, B.; Bicak, N.; Yakup Arica, M. Amine functional monodisperse microbeads via precipitation polymerization of N-vinyl formamide: Immobilized laccase for benzidine based dyes degradation. Bioresour. Technol. 2011, 102, 6783–6790. [Google Scholar] [CrossRef]
- Betancor, L.; Fuentes, M.; Dellamora-Ortiz, G.; López-Gallego, F.; Hidalgo, A.; Alonso-Morales, N.; Mateo, C.; Guisán, J.M.; Fernández-Lafuente, R. Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. J. Mol. Catal. B Enzym. 2005, 32, 97–101. [Google Scholar] [CrossRef]
- Kyomuhimbo, H.D.; Brink, H.G. Applications and immobilization strategies of the copper-centred laccase enzyme; A review. Heliyon 2023, 9, e13156. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Javed, M.R.; Ibrahim, M.; Sajid, A.; Hussain, K.; Kaleem, M.; Fatima, H.M.; Nadeem, H. Methods of Enzyme Immobilization on Various Supports. In Materials Research Foundations, 1st ed.; Materials Research Forum LLC: Millersville PA, USA, 2019; Volume 44, pp. 1–28. [Google Scholar] [CrossRef]
- Bolivar, J.M.; Woodley, J.M.; Fernandez-Lafuente, R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem. Soc. Rev. 2022, 51, 6251–6290. [Google Scholar] [CrossRef] [PubMed]
- Guisan, J.M.; Fernandez-Lorente, G.; Rocha-Martin, J.; Moreno-Gamero, D. Enzyme immobilization strategies for the design of robust and efficient biocatalysts. Curr. Opin. Green Sustain. Chem. 2022, 35, 100593. [Google Scholar] [CrossRef]
- Alvarado-Ramírez, L.; Rostro-Alanis, M.; Rodríguez-Rodríguez, J.; Castillo-Zacarías, C.; Sosa-Hernández, J.E.; Barceló, D.; Iqbal, H.M.N.; Parra-Saldívar, R. Exploring current tendencies in techniques and materials for immobilization of laccases—A review. Int. J. Biol. Macromol. 2021, 181, 683–696. [Google Scholar] [CrossRef]
- Kyomuhimbo, H.D.; Feleni, U. Electroconductive Green Metal-polyaniline Nanocomposites: Synthesis and Application in Sensors. Electroanalysis 2023, 35, e202100636. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, W.; Li, J.; Han, R.; Lu, C. Mechanism and Performance Analysis of Nanoparticle-Polymer Fluid for Enhanced Oil Recovery: A Review. Molecules 2023, 28, 4331. [Google Scholar] [CrossRef]
- Ahmad, R.; Sardar, M. Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix. Biochem. Anal. Biochem. 2015, 4, 1000178. [Google Scholar] [CrossRef]
- Lee, C.-K.; Au-Duong, A.-N. Enzyme Immobilization on Nanoparticles: Recent Applications. In Emerging Areas in Bioengineering; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2018; pp. 67–80. [Google Scholar] [CrossRef]
- Paul, W.; Sharma, C.P. 13—Inorganic nanoparticles for targeted drug delivery. In Biointegration of Medical Implant Materials, 2nd ed.; Sharma, C.P., Ed.; Woodhead Publishing: Sawston, UK, 2020; pp. 333–373. [Google Scholar] [CrossRef]
- Kianfar, E. Magnetic Nanoparticles in Targeted Drug Delivery: A Review. J. Supercond. Nov. Magn. 2021, 34, 1709–1735. [Google Scholar] [CrossRef]
- Yang, Q.; Dong, Y.; Qiu, Y.; Yang, X.; Cao, H.; Wu, Y. Design of Functional Magnetic Nanocomposites for Bioseparation. Colloids Surf. B Biointerfaces 2020, 191, 111014. [Google Scholar] [CrossRef]
- Tang, D.; Cui, Y.; Chen, G. Nanoparticle -based immunoassays in the biomedical field. Analyst 2013, 138, 981–990. [Google Scholar] [CrossRef]
- Urusov, A.E.; Petrakova, A.V.; Zherdev, A.V.; Dzantiev, B.B. Application of Magnetic Nanoparticles in Immunoassay. Nanotechnol. Russ. 2017, 12, 471–479. [Google Scholar] [CrossRef]
- Sahoo, B.; Sahu, S.K.; Pramanik, P. A novel method for the immobilization of urease on phosphonate grafted iron oxide nanoparticle. J. Mol. Catal. B Enzym. 2011, 69, 95–102. [Google Scholar] [CrossRef]
- Rassaei, L.; Marken, F.; Sillanpää, M.; Amiri, M.; Cirtiu, C.M.; Sillanpää, M. Nanoparticles in electrochemical sensors for environmental monitoring. TrAC Trends Anal. Chem. 2011, 30, 1704–1715. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, N.; Niu, Y.; Sun, C. Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor. Sens. Actuators B Chem. 2005, 109, 367–374. [Google Scholar] [CrossRef]
- Luo, X.-L.; Xu, J.-J.; Zhao, W.; Chen, H.-Y. Glucose biosensor based on ENFET doped with SiO2 nanoparticles. Sens. Actuators B Chem. 2004, 97, 249–255. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, W.; Xiao, H.; Li, G. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens. Bioelectron. 2005, 21, 817–821. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Y.; Ostatná, V.; Wang, J. Enzyme nanoparticles -based electronic biosensor. Chem. Commun. 2005, 27, 3481–3483. [Google Scholar] [CrossRef]
- Ashtari, K.; Khajeh, K.; Fasihi, J.; Ashtari, P.; Ramazani, A.; Vali, H. Silica-encapsulated magnetic nanoparticles: Enzyme immobilization and cytotoxic study. Int. J. Biol. Macromol. 2012, 50, 1063–1069. [Google Scholar] [CrossRef]
- Petkova, G.A.; Záruba, K.; Žvátora, P.; Král, V. Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis. Nanoscale Res. Lett. 2012, 7, 287. [Google Scholar] [CrossRef]
- Gole, A.; Dash, C.; Ramakrishnan, V.; Sainkar, S.R.; Mandale, A.B.; Rao, M.; Sastry, M. Pepsin−Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity. Langmuir 2001, 17, 1674–1679. [Google Scholar] [CrossRef]
- Husain, Q.; Ansari, S.A.; Alam, F.; Azam, A. Immobilization of Aspergillus oryzae β galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Int. J. Biol. Macromol. 2011, 49, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-H.; Lee, W.-C. Immobilization of proteins on magnetic nanoparticles. Biotechnol. Bioprocess. Eng. 2003, 8, 263–267. [Google Scholar] [CrossRef]
- Georgelin, T.; Maurice, V.; Malezieux, B.; Siaugue, J.-M.; Cabuil, V. Design of multifunctionalized γ-Fe2O3@SiO2 core–shell nanoparticles for enzymes immobilization. J. Nanoparticle Res. 2010, 12, 675–680. [Google Scholar] [CrossRef]
- Palocci, C.; Chronopoulou, L.; Venditti, I.; Cernia, E.; Diociaiuti, M.; Fratoddi, I.; Russo, M.V. Lipolytic Enzymes with Improved Activity and Selectivity upon Adsorption on Polymeric Nanoparticles. Biomacromolecules 2007, 8, 3047–3053. [Google Scholar] [CrossRef] [PubMed]
- Wang, P. Multi-scale Features in Recent Development of Enzymic Biocatalyst Systems. Appl. Biochem. Biotechnol. 2009, 152, 343–352. [Google Scholar] [CrossRef]
- Crespilho, F.N.; Iost, R.M.; Travain, S.A.; Oliveira, O.N.; Zucolotto, V. Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosens. Bioelectron. 2009, 24, 3073–3077. [Google Scholar] [CrossRef]
- Liu, S.; Dai, Z.; Chen, H.; Ju, H. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosens. Bioelectron. 2004, 19, 963–969. [Google Scholar] [CrossRef]
- Mandal, S.; Phadtare, S.; Sastry, M. Interfacing biology with nanoparticles. Curr. Appl. Phys. 2005, 5, 118–127. [Google Scholar] [CrossRef]
- Shukoor, M.I.; Natalio, F.; Therese, H.A.; Tahir, M.N.; Ksenofontov, V.; Panthöfer, M.; Eberhardt, M.; Theato, P.; Schröder, H.C.; Müller, W.E.G.; et al. Fabrication of a Silica Coating on Magnetic γ-Fe2O3 Nanoparticles by an Immobilized Enzyme. Chem. Mater. 2008, 20, 3567–3573. [Google Scholar] [CrossRef]
- Ponvel, K.M.; Lee, D.-G.; Woo, E.-J.; Ahn, I.-S.; Lee, C.-H. Immobilization of lipase on surface modified magnetic nanoparticles using alkyl benzenesulfonate. Korean J. Chem. Eng. 2009, 26, 127–130. [Google Scholar] [CrossRef]
- Arsalan, A.; Alam, M.F.; Farheen Zofair, S.F.; Ahmad, S.; Younus, H. Immobilization of β-galactosidase on tannic acid stabilized silver nanoparticles: A safer way towards its industrial application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 226, 117637. [Google Scholar] [CrossRef]
- Solanki, K.; Gupta, M.N. Simultaneous purification and immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for catalyzing transesterification reactions. New J. Chem. 2011, 35, 2551–2556. [Google Scholar] [CrossRef]
- Yu, C.-C.; Kuo, Y.-Y.; Liang, C.-F.; Chien, W.-T.; Wu, H.-T.; Chang, T.-C.; Jan, F.-D.; Lin, C.-C. Site-Specific Immobilization of Enzymes on Magnetic Nanoparticles and Their Use in Organic Synthesis. Bioconjugate Chem. 2012, 23, 714–724. [Google Scholar] [CrossRef]
- Wu, W.; He, Q.; Jiang, C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008, 3, 397. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Yang, C.T.; Ching, C.B.; Xu, R. Immobilization of Lipases on Hydrophobilized Zirconia Nanoparticles: Highly Enantioselective and Reusable Biocatalysts. Langmuir 2008, 24, 8877–8884. [Google Scholar] [CrossRef]
- Pan, C.; Hu, B.; Li, W.; Sun, Y.; Ye, H.; Zeng, X. Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J. Mol. Catal. B Enzym. 2009, 61, 208–215. [Google Scholar] [CrossRef]
- Ren, Y.; Rivera, J.G.; He, L.; Kulkarni, H.; Lee, D.-K.; Messersmith, P.B. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol. 2011, 11, 63. [Google Scholar] [CrossRef]
- Phadtare, S.; Kumar, A.; Vinod, V.P.; Dash, C.; Palaskar, D.V.; Rao, M.; Shukla, P.G.; Sivaram, S.; Sastry, M. Direct Assembly of Gold Nanoparticle “Shells” on Polyurethane Microsphere “Cores” and Their Application as Enzyme Immobilization Templates. Chem. Mater. 2003, 15, 1944–1949. [Google Scholar] [CrossRef]
- Mazeiko, V.; Kausaite-Minkstimiene, A.; Ramanaviciene, A.; Balevicius, Z.; Ramanavicius, A. Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design. Sens. Actuators B Chem. 2013, 189, 187–193. [Google Scholar] [CrossRef]
- Kaushik, A.; Khan, R.; Solanki, P.R.; Pandey, P.; Alam, J.; Ahmad, S.; Malhotra, B.D. Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens. Bioelectron. 2008, 24, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Nunes, Y.L.; de Menezes, F.L.; de Sousa, I.G.; Cavalcante, A.L.G.; Cavalcante, F.T.T.; da Silva Moreira, K.; de Oliveira, A.L.B.; Mota, G.F.; da Silva Souza, J.E.; de Aguiar Falcão, I.R.; et al. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int. J. Biol. Macromol. 2021, 181, 1124–1170. [Google Scholar] [CrossRef]
- Ma, S.; Mu, J.; Jiang, L. Chitosan-Based Glucose Oxidase Electrodes Enhanced by Silver Nanoparticles. J. Dispers. Sci. Technol. 2008, 29, 682–686. [Google Scholar] [CrossRef]
- Rafiee, F.; Rezaee, M. Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int. J. Biol. Macromol. 2021, 179, 170–195. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Ribeiro, E.S.; de Farias, B.S.; Sant’Anna Cadaval, T.R., Jr.; de Almeida Pinto, L.A.; Diaz, P.S. Chitosan–based nanofibers for enzyme immobilization. Int. J. Biol. Macromol. 2021, 183, 1959–1970. [Google Scholar] [CrossRef]
- Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2018, 16, 101–112. [Google Scholar] [CrossRef]
- Verma, M.L.; Kumar, S.; Das, A.; Randhawa, J.S.; Chamundeeswari, M. Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ. Chem. Lett. 2020, 18, 315–323. [Google Scholar] [CrossRef]
- Du, Y.; Luo, X.-L.; Xu, J.-J.; Chen, H.-Y. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry 2007, 70, 342–347. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, H.; Yang, X.; Xu, L.; Li, C. Sensitive Biosensors Based on (Dendrimer Encapsulated Pt Nanoparticles)/Enzyme Multilayers. Electroanalysis 2007, 19, 698–703. [Google Scholar] [CrossRef]
- Krajewska, B. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzym. Microb. Technol. 2004, 35, 126–139. [Google Scholar] [CrossRef]
- Chouhan, D.; Mandal, P. Applications of chitosan and chitosan based metallic nanoparticles in agrosciences—A review. Int. J. Biol. Macromol. 2021, 166, 1554–1569. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wu, J. Recent development in chitosan nanocomposites for surface-based biosensor applications. Electrophoresis 2019, 40, 2084–2097. [Google Scholar] [CrossRef]
- Negm, N.A.; Abubshait, H.A.; Abubshait, S.A.; Abou Kana, M.T.H.; Mohamed, E.A.; Betiha, M.M. Performance of chitosan polymer as platform during sensors fabrication and sensing applications. Int. J. Biol. Macromol. 2020, 165, 402–435. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Maity, C.; Das, N. Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives. Top. Curr. Chem. (Z) 2021, 380, 3. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system. Biocatal. Agric. Biotechnol. 2019, 20, 101205. [Google Scholar] [CrossRef]
- Gheorghita Puscaselu, R.; Lobiuc, A.; Dimian, M.; Covasa, M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers 2020, 12, 2417. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Lee, W.; Han, E.J.; Ahn, G. Alginate-based nanomaterials: Fabrication techniques, properties, and applications. Chem. Eng. J. 2020, 391, 123823. [Google Scholar] [CrossRef]
- Taemeh, M.A.; Shiravandi, A.; Korayem, M.A.; Daemi, H. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydr. Polym. 2020, 228, 115419. [Google Scholar] [CrossRef] [PubMed]
- Simó, G.; Fernández-Fernández, E.; Vila-Crespo, J.; Ruipérez, V.; Rodríguez-Nogales, J.M. Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydr. Polym. 2017, 170, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Haq, I.; Prakash, J.; Raj, A. Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis. Int. J. Biol. Macromol. 2017, 98, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Leong, J.-Y.; Lam, W.-H.; Ho, K.-W.; Voo, W.-P.; Lee, M.F.-X.; Lim, H.-P.; Lim, S.-L.; Tey, B.-T.; Poncelet, D.; Chan, E.-S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology 2016, 24, 44–60. [Google Scholar] [CrossRef]
- Martín, M.C.; López, O.V.; Ciolino, A.E.; Morata, V.I.; Villar, M.A.; Ninago, M.D. Immobilization of enological pectinase in calcium alginate hydrogels: A potential biocatalyst for winemaking. Biocatal. Agric. Biotechnol. 2019, 18, 101091. [Google Scholar] [CrossRef]
- Gür, S.D.; İdil, N.; Aksöz, N. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads. Appl. Biochem. Biotechnol. 2018, 184, 538–552. [Google Scholar] [CrossRef]
- Damayanti, A.; Kumoro, A.C.; Bahlawan, Z.A.S. Review Calcium Alginate Beads as Immobilizing Matrix of Functional Cells: Extrusion Dripping Method, Characteristics, and Application. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1053, 012017. [Google Scholar] [CrossRef]
- Chaudhari, S.; Kar, J.; Singhal, R. Immobilization of Proteins in Alginate: Functional Properties and Applications. Curr. Org. Chem. 2015, 19, 1732–1754. [Google Scholar] [CrossRef]
- Bibi, A.; Rehman, S.; Yaseen, A. Alginate-nanoparticles composites: Kinds, reactions and applications. Mater. Res. Express 2019, 6, 092001. [Google Scholar] [CrossRef]
- Wang, B.; Wan, Y.; Zheng, Y.; Lee, X.; Liu, T.; Yu, Z.; Huang, J.; Ok, Y.S.; Chen, J.; Gao, B. Alginate-based composites for environmental applications: A critical review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 318–356. [Google Scholar] [CrossRef]
- Li, J.; Xiao, L.-T.; Liu, X.-M.; Zeng, G.-M.; Huang, G.-H.; Shen, G.-L.; Yu, R.-Q. Amperometric biosensor with HRP immobilized on a sandwiched nano-Au /polymerized m-phenylenediamine film and ferrocene mediator. Anal. Bioanal. Chem. 2003, 376, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Tavahodi, M.; Ortiz, R.; Schulz, C.; Ekhtiari, A.; Ludwig, R.; Haghighi, B.; Gorton, L. Direct Electron Transfer of Cellobiose Dehydrogenase on Positively Charged Polyethyleneimine Gold Nanoparticles. ChemPlusChem 2017, 82, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, Z.; Zhu, J.; Xu, C.; Yan, W.; Yao, C. A novel H2O2 amperometric biosensor based on gold nanoparticles/self-doped polyaniline nanofibers. Bioelectrochemistry 2011, 82, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Xian, Y.; Hu, Y.; Liu, F.; Xian, Y.; Wang, H.; Jin, L. Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite. Biosens. Bioelectron. 2006, 21, 1996–2000. [Google Scholar] [CrossRef]
- Cheng, H.; Hu, M.; Zhai, Q.; Li, S.; Jiang, Y. Polydopamine tethered CPO/HRP-TiO2 nano-composites with high bio-catalytic activity, stability and reusability: Enzyme-photo bifunctional synergistic catalysis in water treatment. Chem. Eng. J. 2018, 347, 703–710. [Google Scholar] [CrossRef]
- Chen, C.; Sun, W.; Lv, H.; Li, H.; Wang, Y.; Wang, P. Spacer arm-facilitated tethering of laccase on magnetic polydopamine nanoparticles for efficient biocatalytic water treatment. Chem. Eng. J. 2018, 350, 949–959. [Google Scholar] [CrossRef]
- German, N.; Ramanavicius, A.; Ramanaviciene, A. Amperometric Glucose Biosensor Based on Electrochemically Deposited Gold Nanoparticles Covered by Polypyrrole. Electroanalysis 2017, 29, 1267–1277. [Google Scholar] [CrossRef]
- Njagi, J.; Andreescu, S. Stable enzyme biosensors based on chemically synthesized Au–polypyrrole nanocomposites. Biosens. Bioelectron. 2007, 23, 168–175. [Google Scholar] [CrossRef]
- Xu, G.; Adeloju, S.B.; Wu, Y.; Zhang, X. Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor. Anal. Chim. Acta 2012, 755, 100–107. [Google Scholar] [CrossRef]
- Yuan, R.; Liu, Y.; Li, Q.-F.; Chai, Y.-Q.; Mo, C.-L.; Zhong, X.; Tang, D.-P.; Dai, J.-Y. Electrochemical characteristics of a platinum electrode modified with a matrix of polyvinyl butyral and colloidal Ag containing immobilized horseradish peroxidase. Anal. Bioanal. Chem. 2005, 381, 762–768. [Google Scholar] [CrossRef]
- Xiang, C.; Zou, Y.; Sun, L.-X.; Xu, F. Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO–gold nanoparticle–Nafion nanocomposite. Sens. Actuators B Chem. 2009, 136, 158–162. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, K.; Bai, Y.; Yang, W.; Sun, C. Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: Direct electron transfer and electrocatalysis. Bioelectrochemistry 2006, 69, 158–163. [Google Scholar] [CrossRef]
- Nor, N.M.; Lockman, Z.; Razak, K.A. Study of ITO Glass Electrode Modified with Iron Oxide Nanoparticles and Nafion for Glucose Biosensor Application. Procedia Chem. 2016, 19, 50–56. [Google Scholar] [CrossRef]
- Ul Haque, S.; Inamuddin; Nasar, A.; Asiri, A.M. Fabrication and characterization of electrochemically prepared bioanode (polyaniline/ferritin/glucose oxidase) for biofuel cell application. Chem. Phys. Lett. 2018, 692, 277–284. [Google Scholar] [CrossRef]
- Dutta, R.R.; Puzari, P. Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode. Biosens. Bioelectron. 2014, 52, 166–172. [Google Scholar] [CrossRef]
- Sintayehu, Y.D.; Ananda Murthy, H.C. Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system. Adv. Mater. Lett. 2019, 10, 524–532. [Google Scholar] [CrossRef]
- Lai, J.; Yi, Y.; Zhu, P.; Shen, J.; Wu, K.; Zhang, L.; Liu, J. Polyaniline-based glucose biosensor: A review. J. Electroanal. Chem. 2016, 782, 138–153. [Google Scholar] [CrossRef]
- Osuna, V.; Vega-Rios, A.; Zaragoza-Contreras, E.A.; Estrada-Moreno, I.A.; Dominguez, R.B. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. Biosensors 2022, 12, 137. [Google Scholar] [CrossRef]
- Kausaite-Minkstimiene, A.; Mazeiko, V.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of amperometric glucose biosensors based on glucose oxidase encapsulated within enzymatically synthesized polyaniline and polypyrrole. Sens. Actuators B Chem. 2011, 158, 278–285. [Google Scholar] [CrossRef]
- Nemzer, L.R.; Epstein, A.J. A polyaniline-based optical biosensing platform using an entrapped oxidoreductase enzyme. Sens. Actuators B Chem. 2010, 150, 376–383. [Google Scholar] [CrossRef]
- Nemzer, L.R.; Schwartz, A.; Epstein, A.J. Enzyme Entrapment in Reprecipitated Polyaniline Nano- and Microparticles. Macromolecules 2010, 43, 4324–4330. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, M.; Yan, Z.; Chen, J. Highly selective and stable glucose biosensor based on incorporation of platinum nanoparticles into polyaniline-montmorillonite hybrid composites. Microchem. J. 2020, 152, 104266. [Google Scholar] [CrossRef]
- Wahab, R.A.; Elias, N.; Abdullah, F.; Ghoshal, S.K. On the taught new tricks of enzymes immobilization: An all-inclusive overview. React. Funct. Polym. 2020, 152, 104613. [Google Scholar] [CrossRef]
- John, A.; Benny, L.; Cherian, A.R.; Narahari, S.Y.; Varghese, A.; Hegde, G. Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: A review. J. Nanostruct. Chem. 2021, 11, 1–31. [Google Scholar] [CrossRef]
- Shan, D.; Zhu, M.; Xue, H.; Cosnier, S. Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: Calcium carbonate nanoparticles. Biosens. Bioelectron. 2007, 22, 1612–1617. [Google Scholar] [CrossRef]
- Sundar, S.; Kundu, J.; Kundu, S.C. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater. 2010, 11, 014104. [Google Scholar] [CrossRef] [PubMed]
- Arsalan, A.; Younus, H. Enzymes and nanoparticles: Modulation of enzymatic activity via nanoparticles. Int. J. Biol. Macromol. 2018, 118, 1833–1847. [Google Scholar] [CrossRef]
- Chen, M.; Zeng, G.; Xu, P.; Lai, C.; Tang, L. How Do Enzymes ‘Meet’ Nanoparticles and Nanomaterials? Trends Biochem. Sci. 2017, 42, 914–930. [Google Scholar] [CrossRef]
- Qhobosheane, M.; Santra, S.; Zhang, P.; Tan, W. Biochemically functionalized silica nanoparticles. Analyst 2001, 126, 1274–1278. [Google Scholar] [CrossRef]
- Cruz, J.C.; Würges, K.; Kramer, M.; Pfromm, P.H.; Rezac, M.E.; Czermak, P. Immobilization of Enzymes on Fumed Silica Nanoparticles for Applications in Nonaqueous Media. In Nanoscale Biocatalysis: Methods and Protocols; Wang, P., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 147–160. [Google Scholar] [CrossRef]
- Xiao, Q.-G.; Tao, X.; Zou, H.-K.; Chen, J.-F. Comparative study of solid silica nanoparticles and hollow silica nanoparticles for the immobilization of lysozyme. Chem. Eng. J. 2008, 137, 38–44. [Google Scholar] [CrossRef]
- Wang, F.; Guo, C.; Yang, L.; Liu, C.-Z. Magnetic mesoporous silica nanoparticles: Fabrication and their laccase immobilization performance. Bioresour. Technol. 2010, 101, 8931–8935. [Google Scholar] [CrossRef] [PubMed]
- Deepak, V.; Pandian, S.R.b.K.; Kalishwaralal, K.; Gurunathan, S. Purification, immobilization, and characterization of nattokinase on PHB nanoparticles. Bioresour. Technol. 2009, 100, 6644–6646. [Google Scholar] [CrossRef] [PubMed]
- Konno, T.; Watanabe, J.; Ishihara, K. Conjugation of Enzymes on Polymer Nanoparticles Covered with Phosphorylcholine Groups. Biomacromolecules 2004, 5, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.-X.; Qian, J.-Q.; Shi, L.-E. Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Appl. Biochem. Biotechnol. 2007, 136, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Muthurasu, A.; Ganesh, V. Horseradish Peroxidase Enzyme Immobilized Graphene Quantum Dots as Electrochemical Biosensors. Appl. Biochem. Biotechnol. 2014, 174, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Guo, W.; Wang, E. Quantum dots–bienzyme hybrid system for the sensitive determination of glucose. Biosens. Bioelectron. 2008, 23, 1567–1571. [Google Scholar] [CrossRef]
- Agrawal, D.C.; Yadav, A.; Kesarwani, R.; Srivastava, O.N.; Kayastha, A.M. Immobilization of fenugreek β-amylase onto functionalized graphene quantum dots (GQDs) using Box-Behnken design: Its biochemical, thermodynamic and kinetic studies. Int. J. Biol. Macromol. 2020, 144, 170–182. [Google Scholar] [CrossRef]
- Wu, P.; He, Y.; Wang, H.-F.; Yan, X.-P. Conjugation of Glucose Oxidase onto Mn-Doped ZnS Quantum Dots for Phosphorescent Sensing of Glucose in Biological Fluids. Anal. Chem. 2010, 82, 1427–1433. [Google Scholar] [CrossRef]
- Bilal, M.; Anh Nguyen, T.; Iqbal, H.M.N. Multifunctional carbon nanotubes and their derived nano-constructs for enzyme immobilization—A paradigm shift in biocatalyst design. Coord. Chem. Rev. 2020, 422, 213475. [Google Scholar] [CrossRef]
- Ranjan, B.; Pillai, S.; Permaul, K.; Singh, S. Simultaneous removal of heavy metals and cyanate in a wastewater sample using immobilized cyanate hydratase on magnetic-multiwall carbon nanotubes. J. Hazard. Mater. 2019, 363, 73–80. [Google Scholar] [CrossRef]
- Ahmad, R.; Khare, S.K. Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresour. Technol. 2018, 252, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Alagöz, D.; Toprak, A.; Yildirim, D.; Tükel, S.S.; Fernandez-Lafuente, R. Modified silicates and carbon nanotubes for immobilization of lipase from Rhizomucor miehei: Effect of support and immobilization technique on the catalytic performance of the immobilized biocatalysts. Enzym. Microb. Technol. 2021, 144, 109739. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cao, X.; Xiong, J.; Ge, J. Enzyme–Metal Hybrid Catalysts for Chemoenzymatic Reactions. Small 2020, 16, 1902751. [Google Scholar] [CrossRef] [PubMed]
- Solanki, P.R.; Kaushik, A.; Agrawal, V.V.; Malhotra, B.D. Nanostructured metal oxide-based biosensors. NPG Asia Mater. 2011, 3, 17–24. [Google Scholar] [CrossRef]
- Upadhyay, S.; Rao, G.R.; Sharma, M.K.; Bhattacharya, B.K.; Rao, V.K.; Vijayaraghavan, R. Immobilization of acetylcholineesterase–choline oxidase on a gold–platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Biosens. Bioelectron. 2009, 25, 832–838. [Google Scholar] [CrossRef]
- Ansari, A.A.; Sumana, G.; Pandey, M.K.; Malhotra, B.D. Sol-gel-derived titanium oxide–cerium oxide biocompatible nanocomposite film for urea sensor. J. Mater. Res. 2009, 24, 1667–1673. [Google Scholar] [CrossRef]
- Sadjadi, M.S.; Farhadyar, N.; Zare, K. Synthesis of bi-metallic Au–Ag nanoparticles loaded on functionalized MCM-41 for immobilization of alkaline protease and study of its biocatalytic activity. Superlattices Microstruct. 2009, 46, 563–571. [Google Scholar] [CrossRef]
- Turkmen, E.; Bas, S.Z.; Gulce, H.; Yildiz, S. Glucose biosensor based on immobilization of glucose oxidase in electropolymerized poly(o-phenylenediamine) film on platinum nanoparticles-polyvinylferrocenium modified electrode. Electrochim. Acta 2014, 123, 93–102. [Google Scholar] [CrossRef]
- Taurino, I.; Sanzò, G.; Antiochia, R.; Tortolini, C.; Mazzei, F.; Favero, G.; De Micheli, G.; Carrara, S. Recent advances in Third Generation Biosensors based on Au and Pt Nanostructured Electrodes. TrAC Trends Anal. Chem. 2016, 79, 151–159. [Google Scholar] [CrossRef]
- Yu, H.; Yu, J.; Li, L.; Zhang, Y.; Xin, S.; Ni, X.; Sun, Y.; Song, K. Recent Progress of the Practical Applications of the Platinum Nanoparticle-Based Electrochemistry Biosensors. Front. Chem. 2021, 9, 677876. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Y.; Lv, H.; Wang, G.; Hu, X.; Wang, C. Construction of a non-enzymatic glucose sensor based on copper nanoparticles/poly(o-phenylenediamine) nanocomposites. J. Solid State Electrochem. 2015, 19, 731–738. [Google Scholar] [CrossRef]
- Solairaj, D.; Rameshthangam, P.; Muthukumaran, P.; Wilson, J. Studies on electrochemical glucose sensing, antimicrobial activity and cytotoxicity of fabricated copper nanoparticle immobilized chitin nanostructure. Int. J. Biol. Macromol. 2017, 101, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Wei, J.; Lin, J.; Li, Q.; KuaYou, J. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosens. Bioelectron. 2005, 20, 2341–2346. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, X.; Wen, G.; Shuang, S.; Dong, C.; Paau, M.C.; Choi, M.M.F. Application of hydrophobic palladium nanoparticles for the development of electrochemical glucose biosensor. Biosens. Bioelectron. 2011, 26, 4619–4623. [Google Scholar] [CrossRef]
- Ganesana, M.; Istarnboulie, G.; Marty, J.-L.; Noguer, T.; Andreescu, S. Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. Biosens. Bioelectron. 2011, 30, 43–48. [Google Scholar] [CrossRef]
- Bodelón, G.; Mourdikoudis, S.; Yate, L.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M. Nickel Nanoparticle-Doped Paper as a Bioactive Scaffold for Targeted and Robust Immobilization of Functional Proteins. ACS Nano 2014, 8, 6221–6231. [Google Scholar] [CrossRef]
- Salimi, A.; Sharifi, E.; Noorbakhsh, A.; Soltanian, S. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity. Biosens. Bioelectron. 2007, 22, 3146–3153. [Google Scholar] [CrossRef]
- Bayandori Moghaddam, A.; Ganjali, M.R.; Saboury, A.A.; Moosavi-Movahedi, A.A.; Norouzi, P. Electrodeposition of nickel oxide nanoparticles on glassy carbon surfaces: Application to the direct electron transfer of tyrosinase. J. Appl. Electrochem. 2008, 38, 1233–1239. [Google Scholar] [CrossRef]
- Sharifi, E.; Salimi, A.; Shams, E. Electrocatalytic activity of nickel oxide nanoparticles as mediatorless system for NADH and ethanol sensing at physiological pH solution. Biosens. Bioelectron. 2013, 45, 260–266. [Google Scholar] [CrossRef]
- Narang, J.; Chauhan, N.; Pundir, C.S. Construction of triglyceride biosensor based on nickel oxide–chitosan/zinc oxide/zinc hexacyanoferrate film. Int. J. Biol. Macromol. 2013, 60, 45–51. [Google Scholar] [CrossRef]
- Feng, J.-J.; Zhao, G.; Xu, J.-J.; Chen, H.-Y. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Anal. Biochem. 2005, 342, 280–286. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Zhang, X.; Qin, X.; Zhao, Z.; Miao, Z.; Huang, N.; Chen, Q. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens. Bioelectron. 2009, 25, 142–146. [Google Scholar] [CrossRef]
- Pingarrón, J.M.; Yáñez-Sedeño, P.; González-Cortés, A. Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 2008, 53, 5848–5866. [Google Scholar] [CrossRef]
- Luo, X.-L.; Xu, J.-J.; Zhang, Q.; Yang, G.-J.; Chen, H.-Y. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens. Bioelectron. 2005, 21, 190–196. [Google Scholar] [CrossRef]
- Mahmoud, K.A.; Male, K.B.; Hrapovic, S.; Luong, J.H.T. Cellulose Nanocrystal/Gold Nanoparticle Composite as a Matrix for Enzyme Immobilization. ACS Appl. Mater. Interfaces 2009, 1, 1383–1386. [Google Scholar] [CrossRef]
- Gole, A.; Vyas, S.; Phadtare, S.; Lachke, A.; Sastry, M. Studies on the formation of bioconjugates of Endoglucanase with colloidal gold. Colloids Surf. B Biointerfaces 2002, 25, 129–138. [Google Scholar] [CrossRef]
- Phadtare, S.; Vinod, V.p.; Mukhopadhyay, K.; Kumar, A.; Rao, M.; Chaudhari, R.V.; Sastry, M. Immobilization and biocatalytic activity of fungal protease on gold nanoparticle-loaded zeolite microspheres. Biotechnol. Bioeng. 2004, 85, 629–637. [Google Scholar] [CrossRef]
- Kumar-Krishnan, S.; Hernandez-Rangel, A.; Pal, U.; Ceballos-Sanchez, O.; Flores-Ruiz, F.J.; Prokhorov, E.; de Fuentes, O.A.; Esparza, R.; Meyyappan, M. Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing. J. Mater. Chem. B 2016, 4, 2553–2560. [Google Scholar] [CrossRef]
- Hashemifard, N.; Mohsenifar, A.; Ranjbar, B.; Allameh, A.; Lotfi, A.S.; Etemadikia, B. Fabrication and kinetic studies of a novel silver nanoparticles–glucose oxidase bioconjugate. Anal. Chim. Acta 2010, 675, 181–184. [Google Scholar] [CrossRef]
- Ma, S.; Mu, J.; Qu, Y.; Jiang, L. Effect of refluxed silver nanoparticles on inhibition and enhancement of enzymatic activity of glucose oxidase. Colloids Surf. A Physicochem. Eng. Asp. 2009, 345, 101–105. [Google Scholar] [CrossRef]
- Netto, C.G.C.M.; Toma, H.E.; Andrade, L.H. Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J. Mol. Catal. B Enzym. 2013, 85–86, 71–92. [Google Scholar] [CrossRef]
- Govan, J.; Gun’ko, Y.K. Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts. Nanomaterials 2014, 4, 222–241. [Google Scholar] [CrossRef] [PubMed]
- Kouassi, G.K.; Irudayaraj, J.; McCarty, G. Examination of Cholesterol oxidase attachment to magnetic nanoparticles. J. Nanobiotechnol. 2005, 3, 1. [Google Scholar] [CrossRef]
- Johnson, P.A.; Park, H.J.; Driscoll, A.J. Enzyme Nanoparticle Fabrication: Magnetic Nanoparticle Synthesis and Enzyme Immobilization. In Enzyme Stabilization and Immobilization: Methods and Protocols; Minteer, S.D., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 183–191. [Google Scholar] [CrossRef]
- Liao, M.-H.; Chen, D.-H. Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnol. Lett. 2001, 23, 1723–1727. [Google Scholar] [CrossRef]
- Xu, J.; Huo, S.; Yuan, Z.; Zhang, Y.; Xu, H.; Guo, Y.; Liang, C.; Zhuang, X. Characterization of direct cellulase immobilization with superparamagnetic nanoparticles. Biocatal. Biotransform. 2011, 29, 71–76. [Google Scholar] [CrossRef]
- Rossi, L.M.; Quach, A.D.; Rosenzweig, Z. Glucose oxidase–magnetite nanoparticle bioconjugate for glucose sensing. Anal. Bioanal. Chem. 2004, 380, 606–613. [Google Scholar] [CrossRef]
- Bilal, M.; Zhao, Y.; Rasheed, T.; Iqbal, H.M.N. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. Int. J. Biol. Macromol. 2018, 120, 2530–2544. [Google Scholar] [CrossRef]
- Patel, V.; Shah, C.; Deshpande, M.; Madamwar, D. Zinc Oxide Nanoparticles Supported Lipase Immobilization for Biotransformation in Organic Solvents: A Facile Synthesis of Geranyl Acetate, Effect of Operative Variables and Kinetic Study. Appl. Biochem. Biotechnol. 2016, 178, 1630–1651. [Google Scholar] [CrossRef]
- Diyanat, S.; Homaei, A.; Mosaddegh, E. Immobilization of Penaeus vannamei protease on ZnO nanoparticles for long-term use. Int. J. Biol. Macromol. 2018, 118, 92–98. [Google Scholar] [CrossRef]
- Shi, X.; Gu, W.; Li, B.; Chen, N.; Zhao, K.; Xian, Y. Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim. Acta 2014, 181, 1–22. [Google Scholar] [CrossRef]
- Palanisamy, S.; Karuppiah, C.; Chen, S.-M.; Periakaruppan, P. A Highly Sensitive and Selective Enzymatic Biosensor Based on Direct Electrochemistry of Hemoglobin at Zinc Oxide Nanoparticles Modified Activated Screen Printed Carbon Electrode. Electroanalysis 2014, 26, 1984–1993. [Google Scholar] [CrossRef]
- Antony, N.; Balachandran, S.; Mohanan, P.V. Immobilization of diastase α-amylase on nano zinc oxide. Food Chem. 2016, 211, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-F.; Liu, Z.-M.; Liu, Y.-L.; Yang, Y.-H.; Shen, G.-L.; Yu, R.-Q. A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Anal. Biochem. 2006, 349, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.A.; Husain, Q.; Qayyum, S.; Azam, A. Designing and surface modification of zinc oxide nanoparticles for biomedical applications. Food Chem. Toxicol. 2011, 49, 2107–2115. [Google Scholar] [CrossRef]
- Ren, X.; Chen, D.; Meng, X.; Tang, F.; Hou, X.; Han, D.; Zhang, L. Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor. J. Colloid Interface Sci. 2009, 334, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Kumar, N.; Upadhyay, L.S.B.; Sahu, R.; Dutt, A. Fabrication and Characterization of Cysteine-Functionalized Zinc Oxide Nanoparticles for Enzyme Immobilization. Anal. Lett. 2017, 50, 1839–1850. [Google Scholar] [CrossRef]
- Kaur, G.; Negi, P.; Kaur, M.; Sharma, R.; Konwar, R.J.; Mahajan, A. Morpho-structural and opto-electrical properties of chemically tuned nanostructured TiO2. Ceram. Int. 2018, 44, 18484–18490. [Google Scholar] [CrossRef]
- Haghighi, N.; Hallaj, R.; Salimi, A. Immobilization of glucose oxidase onto a novel platform based on modified TiO2 and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity. Mater. Sci. Eng. C 2017, 73, 417–424. [Google Scholar] [CrossRef]
- Romero-Arcos, M.; Garnica-Romo, M.G.; Martinez-Flores, H.E.; Vázquez-Marrufo, G.; Ramírez-Bon, R.; González-Hernández, J.; Barbosa-Cánovas, G.V. Enzyme Immobilization by Amperometric Biosensors with TiO2 Nanoparticles Used to Detect Phenol Compounds. Food Eng. Rev. 2016, 8, 235–250. [Google Scholar] [CrossRef]
- Zhang, Y.; He, P.; Hu, N. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: Direct electrochemistry and bioelectrocatalysis. Electrochim. Acta 2004, 49, 1981–1988. [Google Scholar] [CrossRef]
- Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B Biointerfaces 2019, 178, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Gholivand, M.B.; Shamsipur, M.; Amini, N. Nonenzymatic L-lysine amino acid detection using titanium oxide nanoparticles/multi wall carbon nanotube composite electrodes. Electrochim. Acta 2014, 123, 569–575. [Google Scholar] [CrossRef]
- Ahmad, R.; Sardar, M. Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: A comparative study. Indian J. Biochem. Biophys. 2014, 51, 7. [Google Scholar]
- Yong, Y.; Bai, Y.; Li, Y.; Lin, L.; Cui, Y.; Xia, C. Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization. J. Magn. Magn. Mater. 2008, 320, 2350–2355. [Google Scholar] [CrossRef]
- Hong, R.Y.; Qian, J.Z.; Cao, J.X. Synthesis and characterization of PMMA grafted ZnO nanoparticles. Powder Technol. 2006, 163, 160–168. [Google Scholar] [CrossRef]
- Mahouche-Chergui, S.; Guerrouache, M.; Carbonnier, B.; Chehimi, M.M. Polymer-immobilized nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 43–68. [Google Scholar] [CrossRef]
- Xu, C.; Ohno, K.; Ladmiral, V.; Composto, R.J. Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer 2008, 49, 3568–3577. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Silmore, K.S.; Gupta, C.; Washburn, N.R. Tunable Pickering emulsions with polymer-grafted lignin nanoparticles (PGLNs). J. Colloid Interface Sci. 2016, 466, 91–100. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, H.-Y.; Müller-Plathe, F.; Qian, H.-J.; Sun, Z.-Y.; Lu, Z.-Y. Distribution of the Number of Polymer Chains Grafted on Nanoparticles Fabricated by Grafting-to and Grafting-from Procedures. Macromolecules 2018, 51, 3758–3766. [Google Scholar] [CrossRef]
- Gann, J.P.; Yan, M. A Versatile Method for Grafting Polymers on Nanoparticles. Langmuir 2008, 24, 5319–5323. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Liu, Y.; Xu, J.; Zhu, J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: Synthesis progress and biomedical applications. Nanoscale 2020, 12, 14957–14975. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Parida, S.; Maiti, C.; Banerjee, R.; Mandal, M.; Dhara, D. Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature. J. Colloid Interface Sci. 2016, 467, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Z.; Li, J.; Li, L.; Hu, W. Surface-grafting polymers: From chemistry to organic electronics. Mater. Chem. Front. 2020, 4, 692–714. [Google Scholar] [CrossRef]
- Babu, K.; Dhamodharan, R. Synthesis of Polymer Grafted Magnetite Nanoparticle with the Highest Grafting Density via Controlled Radical Polymerization. Nanoscale Res. Lett. 2009, 4, 1090. [Google Scholar] [CrossRef]
- Liu, C.-H.; Pan, C.-Y. Grafting polystyrene onto silica nanoparticles via RAFT polymerization. Polymer 2007, 48, 3679–3685. [Google Scholar] [CrossRef]
- Tawade, B.V.; Apata, I.E.; Pradhan, N.; Karim, A.; Raghavan, D. Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications. Molecules 2021, 26, 2942. [Google Scholar] [CrossRef]
- Reddy, K.R.; Lee, K.P.; Gopalan, A.I. Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: Effect of dopant on the properties. Colloids Surf. A Physicochem. Eng. Asp. 2008, 320, 49–56. [Google Scholar] [CrossRef]
- Gazit, O.; Cohen, Y.; Tannenbaum, R. Periodic nanocomposites: A simple path for the preferential self-assembly of nanoparticles in block-copolymers. Polymer 2010, 51, 2185–2190. [Google Scholar] [CrossRef]
- Harrison, A.; Vuong, T.T.; Zeevi, M.P.; Hittel, B.J.; Wi, S.; Tang, C. Rapid Self-Assembly of Metal/Polymer Nanocomposite Particles as Nanoreactors and Their Kinetic Characterization. Nanomaterials 2019, 9, 318. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Kofinas, P. Controlled Room Temperature Synthesis of CoFe2O4 Nanoparticles through a Block Copolymer Nanoreactor Route. Macromolecules 2002, 35, 3338–3341. [Google Scholar] [CrossRef]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591–3605. [Google Scholar] [CrossRef] [PubMed]
- Cong, H.-P.; Yu, S.-H. Self-assembly of functionalized inorganic–organic hybrids. Curr. Opin. Colloid Interface Sci. 2009, 14, 71–80. [Google Scholar] [CrossRef]
- Liu, X.; Lei, L.; Li, Y.; Zhu, H.; Cui, Y.; Hu, H. Preparation of carriers based on magnetic nanoparticles grafted polymer and immobilization for lipase. Biochem. Eng. J. 2011, 56, 142–149. [Google Scholar] [CrossRef]
- Kumar, S.K.; Jouault, N.; Benicewicz, B.; Neely, T. Nanocomposites with Polymer Grafted Nanoparticles. Macromolecules 2013, 46, 3199–3214. [Google Scholar] [CrossRef]
- Eskandari, P.; Abousalman-Rezvani, Z.; Roghani-Mamaqani, H.; Salami-Kalajahi, M.; Mardani, H. Polymer grafting on graphene layers by controlled radical polymerization. Adv. Colloid Interface Sci. 2019, 273, 102021. [Google Scholar] [CrossRef]
- Fan, X.; Yang, J.; Loh, X.J.; Li, Z. Polymeric Janus Nanoparticles: Recent Advances in Synthetic Strategies, Materials Properties, and Applications. Macromol. Rapid Commun. 2019, 40, 1800203. [Google Scholar] [CrossRef]
- Messina, M.S.; Messina, K.M.M.; Bhattacharya, A.; Montgomery, H.R.; Maynard, H.D. Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Prog. Polym. Sci. 2020, 100, 101186. [Google Scholar] [CrossRef]
- Crespilho, F.N.; Emilia Ghica, M.; Florescu, M.; Nart, F.C.; Oliveira, O.N.; Brett, C.M.A. A strategy for enzyme immobilization on layer-by-layer dendrimer–gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem. Commun. 2006, 8, 1665–1670. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Yang, M.; Guo, M.; Wu, Z.; Shen, G.; Yu, R. Inhibitive determination of mercury ion using a renewable urea biosensor based on self-assembled gold nanoparticles. Sens. Actuators B Chem. 2006, 114, 1–8. [Google Scholar] [CrossRef]
- Zhong, X.; Yuan, R.; Chai, Y.; Liu, Y.; Dai, J.; Tang, D. Glucose biosensor based on self-assembled gold nanoparticles and double-layer 2d-network (3-mercaptopropyl)-trimethoxysilane polymer onto gold substrate. Sens. Actuators B Chem. 2005, 104, 191–198. [Google Scholar] [CrossRef]
- Bagal-Kestwal, D.; Kestwal, R.M.; Hsieh, B.-C.; Chen, R.L.C.; Cheng, T.-J.; Chiang, B.-H. Electrochemical β(1→3)-d-glucan biosensors fabricated by immobilization of enzymes with gold nanoparticles on platinum electrode. Biosens. Bioelectron. 2010, 26, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Xiang, C.; Sun, L.-X.; Xu, F. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel. Biosens. Bioelectron. 2008, 23, 1010–1016. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, M.; Qu, F.; Shen, G.; Yu, R. Enzyme-functionalized gold nanowires for the fabrication of biosensors. Bioelectrochemistry 2007, 71, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Kesik, M.; Kanik, F.E.; Hızalan, G.; Kozanoglu, D.; Esenturk, E.N.; Timur, S.; Toppare, L. A functional immobilization matrix based on a conducting polymer and functionalized gold nanoparticles: Synthesis and its application as an amperometric glucose biosensor. Polymer 2013, 54, 4463–4471. [Google Scholar] [CrossRef]
- Perveen, R.; Nasar, A.; Inamuddin; Asiri, A.M.; Mishra, A.K. Optimization of MnO2-Graphene/polythioaniline (MnO2-G/PTA) hybrid nanocomposite for the application of biofuel cell bioanode. Int. J. Hydrogen Energy 2018, 43, 15144–15154. [Google Scholar] [CrossRef]
- Tan, Y.; Deng, W.; Chen, C.; Xie, Q.; Lei, L.; Li, Y.; Fang, Z.; Ma, M.; Chen, J.; Yao, S. Immobilization of enzymes at high load/activity by aqueous electrodeposition of enzyme-tethered chitosan for highly sensitive amperometric biosensing. Biosens. Bioelectron. 2010, 25, 2644–2650. [Google Scholar] [CrossRef]
- Inozemtseva, O.A.; Salkovskiy, Y.E.; Severyukhina, A.N.; Vidyasheva, I.V.; Petrova, N.V.; Metwally, H.A.; Stetciura, I.Y.; Gorin, D.A. Electrospinning of functional materials for biomedicine and tissue engineering. Russ. Chem. Rev. 2015, 84, 251–274. [Google Scholar] [CrossRef]
- Sharma, D.; Satapathy, B.K. Polymer Substrate-Based Transition Metal Modified Electrospun Nanofibrous Materials: Current Trends in Functional Applications and Challenges. Polym. Rev. 2022, 62, 439–484. [Google Scholar] [CrossRef]
- Feng, C.; Khulbe, K.C.; Matsuura, T. Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J. Appl. Polym. Sci. 2010, 115, 756–776. [Google Scholar] [CrossRef]
- Razmgar, K.; Nasiraee, M. Polyvinyl alcohol-based membranes for filtration of aqueous solutions: A comprehensive review. Polym. Eng. Sci. 2021, 62, 25–43. [Google Scholar] [CrossRef]
- Golshaei, R.; Karazehir, T.; Ghoreishi, S.M.; Ates, M.; Sarac, A.S. Glucose oxidase immobilization onto Au/poly[anthranilic acid-co-3-carboxy-N-(2-thenylidene)aniline]/PVAc electrospun nanofibers. Polym. Bull. 2017, 74, 1493–1517. [Google Scholar] [CrossRef]
- Sriwichai, S.; Phanichphant, S. Fabrication and characterization of electrospun poly(3-aminobenzylamine)/functionalized multi-walled carbon nanotubes composite film for electrochemical glucose biosensor. Express Polym. Lett. 2022, 16, 439–450. [Google Scholar] [CrossRef]
- Long, Y.-Z.; Yan, X.; Wang, X.-X.; Zhang, J.; Yu, M. Chapter 2—Electrospinning: The Setup and Procedure. In Electrospinning: Nanofabrication and Applications; Ding, B., Wang, X., Yu, J., Eds.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 21–52. [Google Scholar] [CrossRef]
- Rodriguez-Abetxuko, A.; Sánchez-deAlcázar, D.; Muñumer, P.; Beloqui, A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front. Bioeng. Biotechnol. 2020, 8, 830. [Google Scholar] [CrossRef] [PubMed]
- Son, H.Y.; Ryu, J.H.; Lee, H.; Nam, Y.S. Bioinspired Templating Synthesis of Metal–Polymer Hybrid Nanostructures within 3D Electrospun Nanofibers. ACS Appl. Mater. Interfaces 2013, 5, 6381–6390. [Google Scholar] [CrossRef]
- Fu, J.; Li, D.; Li, G.; Huang, F.; Wei, Q. Carboxymethyl cellulose assisted immobilization of silver nanoparticles onto cellulose nanofibers for the detection of catechol. J. Electroanal. Chem. 2015, 738, 92–99. [Google Scholar] [CrossRef]
- Kang, S.; Zhao, K.; Yu, D.-G.; Zheng, X.; Huang, C. Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers. Adv. Fiber Mater. 2022, 4, 404–435. [Google Scholar] [CrossRef]
- Du, D.; Chen, S.; Cai, J.; Zhang, A. Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol–gel film for amperometric detection of organophosphorous insecticide. Biosens. Bioelectron. 2007, 23, 130–134. [Google Scholar] [CrossRef]
- Wang, B. An amperometric β-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue–chitosan and gold nanoparticles–chitosan nanocomposite films. Biosens. Bioelectron. 2014, 55, 113–119. [Google Scholar] [CrossRef]
- Regina Silva, T.; Cruz Vieira, I. A biosensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride) and decorated with laccase for determination of dopamine. Analyst 2016, 141, 216–224. [Google Scholar] [CrossRef]
- German, N.; Kausaite-Minkstimiene, A.; Ramanavicius, A.; Semashko, T.; Mikhailova, R.; Ramanaviciene, A. The use of different glucose oxidases for the development of an amperometric reagentless glucose biosensor based on gold nanoparticles covered by polypyrrole. Electrochim. Acta 2015, 169, 326–333. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, R.; Chai, Y.; Hu, F. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: A review. Microchim. Acta 2013, 180, 15–32. [Google Scholar] [CrossRef]
- Meier, J.; Hofferber, E.M.; Stapleton, J.A.; Iverson, N.M. Hydrogen Peroxide Sensors for Biomedical Applications. Chemosensors 2019, 7, 64. [Google Scholar] [CrossRef]
- Pundir, C.S.; Deswal, R.; Narwal, V. Quantitative analysis of hydrogen peroxide with special emphasis on biosensors. Bioprocess Biosyst. Eng. 2018, 41, 313–329. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wen, Y.; Zhang, L.; Xu, J.; Wang, Z.; Duan, X. A Stable Sandwich-Type Hydrogen Peroxide Sensor Based on Immobilizing Horseradish Peroxidase to a Silver Nanoparticle Monolayer Supported by PEDOT:PSS-Nafion Composite Electrode. Int. J. Electrochem. Sci. 2013, 8, 12. [Google Scholar] [CrossRef]
- Ansari, A.A.; Sumana, G.; Khan, R.; Malhotra, B.D. Polyaniline-cerium oxide nanocomposite for hydrogen peroxide sensor. J. Nanosci. Nanotechnol. 2009, 9, 4679–4685. [Google Scholar] [CrossRef]
- Ahammad, A.J.S. Hydrogen peroxide biosensors based on horseradish peroxidase and hemoglobin. J. Biosens. Bioelectron. 2013, S9, 001. [Google Scholar] [CrossRef]
- Liu, X.; Luo, L.; Ding, Y.; Xu, Y.; Li, F. Hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on γ-Al2O3 nanoparticles/chitosan film-modified electrode. J. Solid State Electrochem. 2011, 15, 447–453. [Google Scholar] [CrossRef]
- Rad, A.S.; Mirabi, A.; Binaian, E.; Tayebi, H. A Review on Glucose and Hydrogen Peroxide Biosensor Based on Modified Electrode Included Silver Nanoparticles. Int. J. Electrochem. Sci. 2011, 6, 3671–3683. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Zhang, D.; Zhang, X.; Ma, Y.; Zhou, Y.; Qi, L. Biotemplated Synthesis of Gold Nanoparticle–Bacteria Cellulose Nanofiber Nanocomposites and Their Application in Biosensing. Adv. Funct. Mater. 2010, 20, 1152–1160. [Google Scholar] [CrossRef]
- Xiang, C.; Zou, Y.; Sun, L.-X.; Xu, F. Direct Electron Transfer of Horseradish Peroxidase and Its Biosensor Based on Gold Nanoparticles/Chitosan/ITO Modified Electrode. Anal. Lett. 2008, 41, 2224–2236. [Google Scholar] [CrossRef]
- Chico, B.; Camacho, C.; Pérez, M.; Longo, M.A.; Sanromán, M.A.; Pingarrón, J.M.; Villalonga, R. Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction. J. Electroanal. Chem. 2009, 629, 126–132. [Google Scholar] [CrossRef]
- Xu, Q.; Mao, C.; Liu, N.-N.; Zhu, J.-J.; Sheng, J. Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan–gold nanoparticle nanocomposite. Biosens. Bioelectron. 2006, 22, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Qu, W.; Zhang, S. Disposable biosensor based on enzyme immobilized on Au–chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Anal. Biochem. 2007, 360, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Tao, L.; Wang, Y.; Ge, J.; Dong, J.; Qian, W. In-situ synthesis of silver nanoparticles on resin microspheres composed of poly(m-aminophenol), and their application in an enzymatic glucose biosensor. Microchim. Acta 2015, 182, 479–486. [Google Scholar] [CrossRef]
- Khumngern, S.; Jirakunakorn, R.; Thavarungkul, P.; Kanatharana, P.; Numnuam, A. A highly sensitive flow injection amperometric glucose biosensor using a gold nanoparticles/polytyramine/Prussian blue modified screen-printed carbon electrode. Bioelectrochemistry 2021, 138, 107718. [Google Scholar] [CrossRef]
- Anusha, J.R.; Kim, H.-J.; Fleming, A.T.; Das, S.J.; Yu, K.-H.; Kim, B.C.; Raj, C.J. Simple fabrication of ZnO/Pt/chitosan electrode for enzymatic glucose biosensor. Sens. Actuators B Chem. 2014, 202, 827–833. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, Y.; Tang, L.; Yang, X.; Li, C. Dendrimer-encapsulated Pt nanoparticles/polyaniline nanofibers for glucose detection. J. Appl. Polym. Sci. 2008, 109, 1802–1807. [Google Scholar] [CrossRef]
- Sanaeifar, N.; Rabiee, M.; Abdolrahim, M.; Tahriri, M.; Vashaee, D.; Tayebi, L. A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal. Biochem. 2017, 519, 19–26. [Google Scholar] [CrossRef]
- Hassan, M.H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors 2021, 21, 4672. [Google Scholar] [CrossRef]
- Naderi Asrami, P.; Mozaffari, S.A.; Saber Tehrani, M.; Aberoomand Azar, P. A novel impedimetric glucose biosensor based on immobilized glucose oxidase on a CuO-Chitosan nanobiocomposite modified FTO electrode. Int. J. Biol. Macromol. 2018, 118, 649–660. [Google Scholar] [CrossRef]
- Li, J.; Lin, X. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens. Bioelectron. 2007, 22, 2898–2905. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, R.; Chai, Y.; Che, X.; Li, W. Construction of an amperometric glucose biosensor based on the immobilization of glucose oxidase onto electrodeposited Pt nanoparticles-chitosan composite film. Bioprocess Biosyst. Eng. 2012, 35, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Maniruzzaman, M.; Jang, S.-D.; Kim, J. Titanium dioxide–cellulose hybrid nanocomposite and its glucose biosensor application. Mater. Sci. Eng. B 2012, 177, 844–848. [Google Scholar] [CrossRef]
- Fedorenko, V.; Damberga, D.; Grundsteins, K.; Ramanavicius, A.; Ramanavicius, S.; Coy, E.; Iatsunskyi, I.; Viter, R. Application of Polydopamine Functionalized Zinc Oxide for Glucose Biosensor Design. Polymers 2021, 13, 2918. [Google Scholar] [CrossRef]
- Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G. Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano 2013, 7, 3540–3546. [Google Scholar] [CrossRef]
- Shukla, S.K.; Deshpande, S.R.; Shukla, S.K.; Tiwari, A. Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite. Talanta 2012, 99, 283–287. [Google Scholar] [CrossRef]
- Xue, M.-H.; Xu, Q.; Zhou, M.; Zhu, J.-J. In Situ immobilization of glucose oxidase in chitosan–gold nanoparticle hybrid film on Prussian Blue modified electrode for high-sensitivity glucose detection. Electrochem. Commun. 2006, 8, 1468–1474. [Google Scholar] [CrossRef]
- Wang, W.; Li, H.-Y.; Zhang, D.-W.; Jiang, J.; Cui, Y.-R.; Qiu, S.; Zhou, Y.-L.; Zhang, X.-X. Fabrication of Bienzymatic Glucose Biosensor Based on Novel Gold Nanoparticles-Bacteria Cellulose Nanofibers Nanocomposite. Electroanalysis 2010, 22, 2543–2550. [Google Scholar] [CrossRef]
- Luo, L.; Li, Q.; Xu, Y.; Ding, Y.; Wang, X.; Deng, D.; Xu, Y. Amperometric glucose biosensor based on NiFe2O4 nanoparticles and chitosan. Sens. Actuators B Chem. 2010, 145, 293–298. [Google Scholar] [CrossRef]
- Paik, E.-S.; Kim, Y.-R.; Hong, H.-G. Amperometric Glucose Biosensor Utilizing Zinc Oxide-chitosan- glucose Oxidase Hybrid Composite Films on Electrodeposited Pt-Fe(III). Anal. Sci. 2018, 34, 6. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, P.; Manesh, K.M.; Uthayakumar, S.; Komathi, S.; Gopalan, A.I. Fabrication of enzymatic glucose biosensor based on palladium nanoparticles dispersed onto poly(3,4-ethylenedioxythiophene) nanofibers. Bioelectrochemistry 2009, 75, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Chaichi, M.J.; Ehsani, M. A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol–H2O2–gold nanoparticle chemiluminescence detection system. Sens. Actuators B Chem. 2016, 223, 713–722. [Google Scholar] [CrossRef]
- Sapountzi, E.; Braiek, M.; Vocanson, F.; Chateaux, J.-F.; Jaffrezic-Renault, N.; Lagarde, F. Gold nanoparticles assembly on electrospun poly(vinyl alcohol)/poly(ethyleneimine)/glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing. Sens. Actuators B Chem. 2017, 238, 392–401. [Google Scholar] [CrossRef]
- Wu, B.-Y.; Hou, S.-H.; Yin, F.; Li, J.; Zhao, Z.-X.; Huang, J.-D.; Chen, Q. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens. Bioelectron. 2007, 22, 838–844. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, Y.; Shen, A.; Fu, Y.; Zeng, L.; Hu, J. Facile and controllable synthesis of triplex Au@Ag–Pt@infinite coordination polymer core–shell nanoparticles for highly efficient immobilization of enzymes and enhanced electrochemical biosensing activity. RSC Adv. 2016, 6, 86025–86033. [Google Scholar] [CrossRef]
- Miao, Z.; Wang, P.; Zhong, A.; Yang, M.; Xu, Q.; Hao, S.; Hu, X. Development of a glucose biosensor based on electrodeposited gold nanoparticles–polyvinylpyrrolidone–polyaniline nanocomposites. J. Electroanal. Chem. 2015, 756, 153–160. [Google Scholar] [CrossRef]
- Ren, J.; Shi, W.; Li, K.; Ma, Z. Ultrasensitive platinum nanocubes enhanced amperometric glucose biosensor based on chitosan and nafion film. Sens. Actuators B Chem. 2012, 163, 115–120. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, A. Study of structural and electro-catalytic behaviour of amperometric biosensor based on chitosan/polypyrrole nanotubes-gold nanoparticles nanocomposites. Synth. Met. 2016, 220, 551–559. [Google Scholar] [CrossRef]
- Bagal-Kestwal, D.R.; Kestwal, R.M.; Hsieh, W.-T.; Chiang, B.-H. Chitosan–guar gum–silver nanoparticles hybrid matrix with immobilized enzymes for fabrication of beta-glucan and glucose sensing photometric flow injection system. J. Pharm. Biomed. Anal. 2014, 88, 571–578. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, H.; Yang, M. Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/Chitosan composite film as immobilization matrix. Anal. Chim. Acta 2004, 525, 213–220. [Google Scholar] [CrossRef]
- Yang, L.; Ren, X.; Tang, F.; Zhang, L. A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/nafion composite film. Biosens. Bioelectron. 2009, 25, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Buk, V.; Emregul, E.; Emregul, K.C. Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing. Mater. Sci. Eng. C 2017, 74, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Mahanta, D. Deposition of an ultra-thin polyaniline coating on a TiO2 surface by vapor phase polymerization for electrochemical glucose sensing and photocatalytic degradation. RSC Adv. 2020, 10, 17387–17395. [Google Scholar] [CrossRef] [PubMed]
- German, N.; Ramanaviciene, A.; Ramanavicius, A. Dispersed Conducting Polymer Nanocomposites with Glucose Oxidase and Gold Nanoparticles for the Design of Enzymatic Glucose Biosensors. Polymers 2021, 13, 2173. [Google Scholar] [CrossRef]
- Ansari, A.A.; Kaushik, A.; Solanki, P.R.; Malhotra, B.D. Electrochemical Cholesterol Sensor Based on Tin Oxide-Chitosan Nanobiocomposite Film. Electroanalysis 2009, 21, 965–972. [Google Scholar] [CrossRef]
- Gomathi, P.; Ragupathy, D.; Choi, J.H.; Yeum, J.H.; Lee, S.C.; Kim, J.C.; Lee, S.H.; Ghim, H.D. Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor. Sens. Actuators B Chem. 2011, 153, 44–49. [Google Scholar] [CrossRef]
- Malhotra, B.D.; Kaushik, A. Metal oxide–chitosan based nanocomposite for cholesterol biosensor. Thin Solid Film. 2009, 518, 614–620. [Google Scholar] [CrossRef]
- Khan, R.; Kaushik, A.; Solanki, P.R.; Ansari, A.A.; Pandey, M.K.; Malhotra, B.D. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal. Chim. Acta 2008, 616, 207–213. [Google Scholar] [CrossRef]
- Singh, J.; Srivastava, M.; Kalita, P.; Malhotra, B.D. A novel ternary NiFe2O4/CuO/FeO-chitosan nanocomposite as a cholesterol biosensor. Process Biochem. 2012, 47, 2189–2198. [Google Scholar] [CrossRef]
- Ali, A.; AlSalhi, M.S.; Atif, M.; Ansari, A.A.; Israr, M.Q.; Sadaf, J.R.; Ahmed, E.; Nur, O.; Willander, M. Potentiometric urea biosensor utilizing nanobiocomposite of chitosan-iron oxide magnetic nanoparticles. J. Phys. Conf. Ser. 2013, 414, 012024. [Google Scholar] [CrossRef]
- Ali, A.; Israr-Qadir, M.; Wazir, Z.; Tufail, M.; Ibupoto, Z.H.; Jamil-Rana, S.; Atif, M.; Khan, S.A.; Willander, M. Cobalt oxide magnetic nanoparticles–chitosan nanocomposite based electrochemical urea biosensor. Indian J. Phys. 2015, 89, 331–336. [Google Scholar] [CrossRef]
- Solanki, P.R.; Kaushik, A.; Ansari, A.A.; Sumana, G.; Malhotra, B.D. Zinc oxide-chitosan nanobiocomposite for urea sensor. Appl. Phys. Lett. 2008, 93, 163903. [Google Scholar] [CrossRef]
- Tiwari, A.; Aryal, S.; Pilla, S.; Gong, S. An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles. Talanta 2009, 78, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.L.; Sanfelice, R.C.; Mercante, L.A.; Andre, R.S.; Mattoso, L.H.C.; Correa Daniel, S. Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide nanoparticles. Appl. Surf. Sci. 2018, 443, 18–23. [Google Scholar] [CrossRef]
- Baş, S.Z.; Gülce, H.; Yıldız, S.; Gülce, A. Amperometric biosensors based on deposition of gold and platinum nanoparticles on polyvinylferrocene modified electrode for xanthine detection. Talanta 2011, 87, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Sahyar, B.Y.; Kaplan, M.; Ozsoz, M.; Celik, E.; Otles, S. Electrochemical xanthine detection by enzymatic method based on Ag doped ZnO nanoparticles by using polypyrrole. Bioelectrochemistry 2019, 130, 107327. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.; Thakur, M.; Pundir, C.S. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles–polypyrrole composite film. Biosens. Bioelectron. 2011, 26, 3420–3426. [Google Scholar] [CrossRef]
- Dervisevic, M.; Dervisevic, E.; Çevik, E.; Şenel, M. Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform. J. Food Drug Anal. 2017, 25, 510–519. [Google Scholar] [CrossRef]
- Sadeghi, S.; Fooladi, E.; Malekaneh, M. A nanocomposite/crude extract enzyme-based xanthine biosensor. Anal. Biochem. 2014, 464, 51–59. [Google Scholar] [CrossRef]
- Yadav, S.; Devi, R.; Bhar, P.; Singhla, S.; Pundir, C.S. Immobilization of creatininase, creatinase and sarcosine oxidase on iron oxide nanoparticles/chitosan-g-polyaniline modified Pt electrode for detection of creatinine. Enzym. Microb. Technol. 2012, 50, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Zhybak, M.; Beni, V.; Vagin, M.Y.; Dempsey, E.; Turner, A.P.F.; Korpan, Y. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. Biosens. Bioelectron. 2016, 77, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Bodade, A.B.; Taiwade, M.A.; Chaudhari, G.N. Bioelectrode based chitosan-nano copper oxide for application to lipase biosensor. J. Appl. Pharm. Res. 2017, 5, 30–39. [Google Scholar]
- Narang, J.; Pundir, C.S. Construction of a triglyceride amperometric biosensor based on chitosan–ZnO nanocomposite film. Int. J. Biol. Macromol. 2011, 49, 707–715. [Google Scholar] [CrossRef]
- Chauhan, N.; Pundir, C.S. Amperometric determination of acetylcholine—A neurotransmitter, by chitosan/gold-coated ferric oxide nanoparticles modified gold electrode. Biosens. Bioelectron. 2014, 61, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; Wang, X.; Wang, Y.; Yang, X. A sensitive choline biosensor with supramolecular architecture. Talanta 2010, 82, 483–487. [Google Scholar] [CrossRef]
- Srivastava, M.; Srivastava, S.K.; Nirala, N.R.; Prakash, R. A chitosan-based polyaniline–Au nanocomposite biosensor for determination of cholesterol. Anal. Methods 2014, 6, 817–824. [Google Scholar] [CrossRef]
- Kaushik, A.; Solanki, P.R.; Ansari, A.A.; Sumana, G.; Ahmad, S.; Malhotra, B.D. Iron oxide-chitosan nanobiocomposite for urea sensor. Sens. Actuators B Chem. 2009, 138, 572–580. [Google Scholar] [CrossRef]
- Da Silva, W.; Ghica, M.E.; Ajayi, R.F.; Iwuoha, E.I.; Brett, C.M.A. Tyrosinase based amperometric biosensor for determination of tyramine in fermented food and beverages with gold nanoparticle doped poly(8-anilino-1-naphthalene sulphonic acid) modified electrode. Food Chem. 2019, 282, 18–26. [Google Scholar] [CrossRef]
- Chawla, S.; Pundir, C.S. An amperometric hemoglobin A1c biosensor based on immobilization of fructosyl amino acid oxidase onto zinc oxide nanoparticles–polypyrrole film. Anal. Biochem. 2012, 430, 156–162. [Google Scholar] [CrossRef]
- Singh, K.; Chauhan, R.; Solanki, P.R.; Basu, T. Development of Impedimetric Biosensor for Total Cholesterol Estimation Based on Polypyrrole and Platinum Nanoparticle Multi Layer Nanocomposite. Int. J. Org. Chem. 2013, 3, 262–274. [Google Scholar] [CrossRef]
- Sahin, O.G.; Gulce, H.; Gulce, A. Polyvinylferrocenium based platinum electrodeposited amperometric biosensors for lysine detection. J. Electroanal. Chem. 2013, 690, 1–7. [Google Scholar] [CrossRef]
- Devi, R.; Pundir, C.S. Construction and application of an amperometric uric acid biosensor based on covalent immobilization of uricase on iron oxide nanoparticles/chitosan-g-polyaniline composite film electrodeposited on Pt electrode. Sens. Actuators B Chem. 2014, 193, 608–615. [Google Scholar] [CrossRef]
- Kucherenko, I.S.; Farre, C.; Raimondi, G.; Chaix, C.; Jaffrezic-Renault, N.; Chateaux, J.-F.; Sobolevskyi, M.; Soldatkin, O.O.; Dzyadevych, S.V.; Soldatkin, A.P.; et al. A novel adenosine triphosphate (ATP) biosensor based on electrospun polymer nanofibers with entrapped hexokinase and glucose oxidase. Appl. Nanosci. 2023. [Google Scholar] [CrossRef]
- Bucur, B.; Munteanu, F.-D.; Marty, J.-L.; Vasilescu, A. Advances in Enzyme-Based Biosensors for Pesticide Detection. Biosensors 2018, 8, 27. [Google Scholar] [CrossRef]
- Chauhan, N.; Narang, J.; Jain, U. Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid). J. Exp. Nanosci. 2016, 11, 111–122. [Google Scholar] [CrossRef]
- Kestwal, R.M.; Bagal-Kestwal, D.; Chiang, B.-H. Fenugreek hydrogel–agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection. Anal. Chim. Acta 2015, 886, 143–150. [Google Scholar] [CrossRef]
- Marinov, I.; Ivanov, Y.; Gabrovska, K.; Godjevargova, T. Amperometric acetylthiocholine sensor based on acetylcholinesterase immobilized on nanostructured polymer membrane containing gold nanoparticles. J. Mol. Catal. B Enzym. 2010, 62, 66–74. [Google Scholar] [CrossRef]
- Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012, 429, 19–31. [Google Scholar] [CrossRef]
- Rodrigues, N.F.M.; Neto, S.Y.; Luz, R.D.C.S.; Damos, F.S.; Yamanaka, H. Ultrasensitive Determination of Malathion Using Acetylcholinesterase Immobilized on Chitosan-Functionalized Magnetic Iron Nanoparticles. Biosensors 2018, 8, 16. [Google Scholar] [CrossRef]
- Jeyapragasam, T.; Saraswathi, R. Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide–chitosan nanocomposite. Sens. Actuators B Chem. 2014, 191, 681–687. [Google Scholar] [CrossRef]
- Adeloju, S.B.; Hussain, S. Potentiometric sulfite biosensor based on entrapment of sulfite oxidase in a polypyrrole film on a platinum electrode modified with platinum nanoparticles. Microchim. Acta 2016, 183, 1341–1350. [Google Scholar] [CrossRef]
- Çevik, E.; Şenel, M.; Baykal, A.; Abasıyanık, M.F. A novel amperometric phenol biosensor based on immobilized HRP on poly(glycidylmethacrylate)-grafted iron oxide nanoparticles for the determination of phenol derivatives. Sens. Actuators B Chem. 2012, 173, 396–405. [Google Scholar] [CrossRef]
- Brondani, D.; de Souza, B.; Souza, B.S.; Neves, A.; Vieira, I.C. PEI-coated gold nanoparticles decorated with laccase: A new platform for direct electrochemistry of enzymes and biosensingapplications. Biosens. Bioelectron. 2013, 42, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Campanhã Vicentini, F.; Garcia, L.L.C.; Figueiredo-Filho, L.C.S.; Janegitz, B.C.; Fatibello-Filho, O. A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water. Enzym. Microb. Technol. 2016, 84, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Mercante, L.A.; Iwaki, L.E.O.; Scagion, V.P.; Oliveira, O.N.; Mattoso, L.H.C.; Correa, D.S. Electrochemical Detection of Bisphenol A by Tyrosinase Immobilized on Electrospun Nanofibers Decorated with Gold Nanoparticles. Electrochem 2021, 2, 41–49. [Google Scholar] [CrossRef]
- Du, D.; Ding, J.; Cai, J.; Zhang, A. One-step electrochemically deposited interface of chitosan–gold nanoparticles for acetylcholinesterase biosensor design. J. Electroanal. Chem. 2007, 605, 53–60. [Google Scholar] [CrossRef]
- Li, G.; Nandgaonkar, A.G.; Wang, Q.; Zhang, J.; Krause, W.E.; Wei, Q.; Lucia, L.A. Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: Evaluation for photo- and bio-catalytic dye degradation. J. Membr. Sci. 2017, 525, 89–98. [Google Scholar] [CrossRef]
- Siddeeg, S.M.; Tahoon, M.A.; Mnif, W.; Ben Rebah, F. Iron Oxide/Chitosan Magnetic Nanocomposite Immobilized Manganese Peroxidase for Decolorization of Textile Wastewater. Processes 2020, 8, 5. [Google Scholar] [CrossRef]
- Bayramoğlu, G.; Arıca, M.Y. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: Horseradish peroxidase immobilized on magnetic beads. J. Hazard. Mater. 2008, 156, 148–155. [Google Scholar] [CrossRef]
- Le, T.T.; Murugesan, K.; Lee, C.-S.; Vu, C.H.; Chang, Y.-S.; Jeon, J.-R. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core–shell magnetic copper alginate beads. Bioresour. Technol. 2016, 216, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-W.; Wu, C.-H.; Huang, W.-T.; Tsai, S.-L. Evaluation of different cell-immobilization strategies for simultaneous distillery wastewater treatment and electricity generation in microbial fuel cells. Fuel 2015, 144, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, M.; Geng, Y.; Huang, J. Laccase Immobilization on Poly(p-Phenylenediamine)/Fe3O4 Nanocomposite for Reactive Blue 19 Dye Removal. Appl. Sci. 2016, 6, 232. [Google Scholar] [CrossRef]
- Preethi, S.; Anumary, A.; Ashokkumar, M.; Thanikaivelan, P. Probing horseradish peroxidase catalyzed degradation of azo dye from tannery wastewater. SpringerPlus 2013, 2, 341. [Google Scholar] [CrossRef]
- Sondhi, S.; Kaur, R.; Kaur, S.; Kaur, P.S. Immobilization of laccase-ABTS system for the development of a continuous flow packed bed bioreactor for decolorization of textile effluent. Int. J. Biol. Macromol. 2018, 117, 1093–1100. [Google Scholar] [CrossRef]
- Shojaat, R.; Saadatjoo, N.; Karimi, A.; Aber, S. Simultaneous adsorption–degradation of organic dyes using MnFe2O4/calcium alginate nano-composites coupled with GOx and laccase. J. Environ. Chem. Eng. 2016, 4, 1722–1730. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Q.; Liu, Z.; Sha, L.; Chen, Z. Improved performance of immobilized laccase for catalytic degradation of synthetic dyes using redox mediators. New J. Chem. 2022, 46, 9792–9798. [Google Scholar] [CrossRef]
- Bapat, G.; Labade, C.; Chaudhari, A.; Zinjarde, S. Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides. Adv. Colloid Interface Sci. 2016, 237, 1–14. [Google Scholar] [CrossRef]
- Feng, S.; Hao Ngo, H.; Guo, W.; Woong Chang, S.; Duc Nguyen, D.; Cheng, D.; Varjani, S.; Lei, Z.; Liu, Y. Roles and applications of enzymes for resistant pollutants removal in wastewater treatment. Bioresour. Technol. 2021, 335, 125278. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N.; Barceló, D. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. Sci. Total Environ. 2019, 695, 133896. [Google Scholar] [CrossRef]
- Daumann, L.J.; Larrabee, J.A.; Ollis, D.; Schenk, G.; Gahan, L.R. Immobilization of the enzyme GpdQ on magnetite nanoparticles for organophosphate pesticide bioremediation. J. Inorg. Biochem. 2014, 131, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Deng, Y.; Zhou, Y.; Gong, D.; Xu, Y.; Yang, L.; Chen, H.; Chen, L.; Song, T.; Luo, A.; et al. Current progress in biosensors for organophosphorus pesticides based on enzyme functionalized nanostructures: A review. Anal. Methods 2018, 10, 5468–5479. [Google Scholar] [CrossRef]
- Zdarta, J.; Jankowska, K.; Bachosz, K.; Degórska, O.; Kaźmierczak, K.; Nguyen, L.N.; Nghiem, L.D.; Jesionowski, T. Enhanced Wastewater Treatment by Immobilized Enzymes. Curr. Pollut. Rep. 2021, 7, 167–179. [Google Scholar] [CrossRef]
- Xu, R.; Yuan, J.; Si, Y.; Li, F.; Zhang, B. Estrone removal by horseradish peroxidase immobilized on a nanofibrous support with Fe 3 O 4 nanoparticles. RSC Adv. 2016, 6, 3927–3933. [Google Scholar] [CrossRef]
- Lassouane, F.; Aït-Amar, H.; Amrani, S.; Rodriguez-Couto, S. A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Bioresour. Technol. 2019, 271, 360–367. [Google Scholar] [CrossRef]
- Joss, A.; Zabczynski, S.; Göbel, A.; Hoffmann, B.; Löffler, D.; McArdell, C.S.; Ternes, T.A.; Thomsen, A.; Siegrist, H. Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Res. 2006, 40, 1686–1696. [Google Scholar] [CrossRef]
- Siddeeg, S.M.; Amari, A.; Tahoon, M.A.; Alsaiari, N.S.; Rebah, F.B. Removal of meloxicam, piroxicam and Cd+2 by Fe3O4/SiO2/glycidyl methacrylate-S-SH nanocomposite loaded with laccase. Alex. Eng. J. 2020, 59, 905–914. [Google Scholar] [CrossRef]
- Sarkar, S.; Chakraborty, S.; Bhattacharjee, C. Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR). Ecotoxicol. Environ. Saf. 2015, 121, 263–270. [Google Scholar] [CrossRef]
- Adewuyi, A. Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. Water 2020, 12, 1551. [Google Scholar] [CrossRef]
- Shi, L.; Ma, F.; Han, Y.; Zhang, X.; Yu, H. Removal of sulfonamide antibiotics by oriented immobilized laccase on Fe3O4 nanoparticles with natural mediators. J. Hazard. Mater. 2014, 279, 203–211. [Google Scholar] [CrossRef]
- Okoye, C.O.; Okeke, E.S.; Okoye, K.C.; Echude, D.; Andong, F.A.; Chukwudozie, K.I.; Okoye, H.U.; Ezeonyejiaku, C.D. Occurrence and fate of pharmaceuticals, personal care products (PPCPs) and pesticides in African water systems: A need for timely intervention. Heliyon 2022, 8, e09143. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.; Zou, Y.; Xu, Y.; Liu, X.; Zhang, H. Fe3O4@MoS2@PEI-facilitated enzyme tethering for efficient removal of persistent organic pollutants in water. Chem. Eng. J. 2019, 375, 121947. [Google Scholar] [CrossRef]
- Sharma, B.; Dangi, A.K.; Shukla, P. Contemporary enzyme based technologies for bioremediation: A review. J. Environ. Manag. 2018, 210, 10–22. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Y.; Wang, C.; Shi, W.; Zuo, L.; Xu, H. The removal of fluoranthene by Agaricus bisporus immobilized in Ca-alginate modified by Lentinus edodes nanoparticles. RSC Adv. 2015, 5, 44812–44823. [Google Scholar] [CrossRef]
- Varga, B.; Somogyi, V.; Meiczinger, M.; Kováts, N.; Domokos, E. Enzymatic treatment and subsequent toxicity of organic micropollutants using oxidoreductases—A review. J. Clean. Prod. 2019, 221, 306–322. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Xu, D.; Pan, K. Immobilization of horseradish peroxidase on electrospun magnetic nanofibers for phenol removal. Ecotoxicol. Environ. Saf. 2019, 170, 716–721. [Google Scholar] [CrossRef]
- Alver, E.; Metin, A.Ü. Chitosan based metal-chelated copolymer nanoparticles: Laccase immobilization and phenol degradation studies. Int. Biodeterior. Biodegrad. 2017, 125, 235–242. [Google Scholar] [CrossRef]
- Atacan, K.; Güy, N.; Çakar, S.; Özacar, M. Efficiency of glucose oxidase immobilized on tannin modified NiFe2O4 nanoparticles on decolorization of dye in the Fenton and photo-biocatalytic processes. J. Photochem. Photobiol. A Chem. 2019, 382, 111935. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Zhang, X.; Wu, J.; Chai, C.; Ma, D.; Chen, Q.; Xiang, D.; Ge, W. Immobilized lignin peroxidase on Fe3O4@SiO2@polydopamine nanoparticles for degradation of organic pollutants. Int. J. Biol. Macromol. 2019, 138, 433–440. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, W.; Liu, Y.; Zhang, K.; Chen, Y.; Yin, X. Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. J. Mol. Struct. 2020, 1220, 128769. [Google Scholar] [CrossRef]
- Xia, T.-T.; Feng, M.; Liu, C.-L.; Liu, C.-Z.; Guo, C. Efficient phenol degradation by laccase immobilized on functional magnetic nanoparticles in fixed bed reactor under high-gradient magnetic field. Eng. Life Sci. 2021, 21, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Morshed, M.N.; Behary, N.; Bouazizi, N.; Guan, J.; Nierstrasz, V.A. An overview on biocatalysts immobilization on textiles: Preparation, progress and application in wastewater treatment. Chemosphere 2021, 279, 130481. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejczak-Radzimska, A.; Nghiem, L.D.; Jesionowski, T. Functionalized Materials as a Versatile Platform for Enzyme Immobilization in Wastewater Treatment. Curr. Pollut. Rep. 2021, 7, 263–276. [Google Scholar] [CrossRef]
- Jahangiri, E.; Thomas, I.; Schulze, A.; Seiwert, B.; Cabana, H.; Schlosser, D. Characterisation of electron beam irradiation-immobilised laccase for application in wastewater treatment. Sci. Total Environ. 2018, 624, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, H.M.N.; Barceló, D. Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues—A review. Sci. Total Environ. 2019, 689, 160–177. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Wang, Z.; Jiang, S.; Yu, H.; Zhang, S.; Zhang, X. Recent environmental applications of and development prospects for immobilized laccase: A review. Biotechnol. Genet. Eng. Rev. 2020, 36, 81–131. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Okoh, A.I.; Nwodo, U.U. Aptitude of Oxidative Enzymes for Treatment of Wastewater Pollutants: A Laccase Perspective. Molecules 2019, 24, 2064. [Google Scholar] [CrossRef]
- Singh, J.; Saharan, V.; Kumar, S.; Gulati, P.; Kapoor, R. Laccase grafted membranes for advanced water filtration systems: A green approach to water purification technology. Crit. Rev. Biotechnol. 2017, 38, 883–901. [Google Scholar] [CrossRef]
- Daronch, N.A.; Kelbert, M.; Pereira, C.S.; de Araújo, P.H.H.; de Oliveira, D. Elucidating the choice for a precise matrix for laccase immobilization: A review. Chem. Eng. J. 2020, 397, 125506. [Google Scholar] [CrossRef]
- Deska, M.; Kończak, B. Immobilized fungal laccase as “green catalyst” for the decolourization process—State of the art. Process Biochem. 2019, 84, 112–123. [Google Scholar] [CrossRef]
- Okwara, P.C.; Afolabi, I.S.; Ahuekwe, E.F. Application of laccase in aflatoxin B1 degradation: A review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1107, 012178. [Google Scholar] [CrossRef]
- Daâssi, D.; Rodríguez-Couto, S.; Nasri, M.; Mechichi, T. Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. Int. Biodeterior. Biodegrad. 2014, 90, 71–78. [Google Scholar] [CrossRef]
- Hou, J.; Dong, G.; Ye, Y.; Chen, V. Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol–gel coated PVDF membrane. J. Membr. Sci. 2014, 469, 19–30. [Google Scholar] [CrossRef]
- Nadaroglu, H.; Mosber, G.; Gungor, A.A.; Adıguzel, G.; Adiguzel, A. Biodegradation of some azo dyes from wastewater with laccase from Weissella viridescens LB37 immobilized on magnetic chitosan nanoparticles. J. Water Process Eng. 2019, 31, 100866. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, S.; Miao, S.; Suo, H.; Xu, H.; Hu, Y. Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. J. Hazard. Mater. 2021, 401, 123353. [Google Scholar] [CrossRef]
- Khakshoor, M.; Makhdoumi, A.; Asoodeh, A.; Hosseindokht, M.R. Co-immobilized spore laccase/TiO2 nanoparticles in the alginate beads enhance dye removal by two-step decolorization. Environ. Sci. Pollut. Res. 2021, 28, 6099–6110. [Google Scholar] [CrossRef]
- Tišma, M.; Šalić, A.; Planinić, M.; Zelić, B.; Potočnik, M.; Šelo, G.; Bucić-Kojić, A. Production, characterisation and immobilization of laccase for an efficient aniline-based dye decolourization. J. Water Process Eng. 2020, 36, 101327. [Google Scholar] [CrossRef]
- Velu, C.; Veeramani, E.; Suntharam, S.; Kalimuthu, K. Insilico Screening and Comparative Study on the Effectiveness of Textile Dye Decolourization by Crude Laccase Immobilised Alginate Encapsulated Beads from Pleurotus ostreatus. J. Bioprocess. Biotech. 2011, 1, 4. [Google Scholar] [CrossRef]
- Noreen, S.; Asgher, M.; Hussain, F.; Iqbal, A. Performance Improvement of Ca-Alginate Bead Cross- Linked Laccase from Trametes versicolor IBL-04. BioResources 2016, 11, 558–572. [Google Scholar] [CrossRef]
- Faraco, V.; Pezzella, C.; Miele, A.; Giardina, P.; Sannia, G. Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation 2009, 20, 209–220. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Yilmaz, M.; Yakup Arica, M. Preparation and characterization of epoxy-functionalized magnetic chitosan beads: Laccase immobilized for degradation of reactive dyes. Bioprocess Biosyst. Eng. 2010, 33, 439–448. [Google Scholar] [CrossRef]
- Bayramoğlu, G.; Yilmaz, M.; Yakup Arica, M. Reversible immobilization of laccase to poly(4-vinylpyridine) grafted and Cu(II) chelated magnetic beads: Biodegradation of reactive dyes. Bioresour. Technol. 2010, 101, 6615–6621. [Google Scholar] [CrossRef]
- Niladevi, K.N.; Prema, P. Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J. Microbiol. Biotechnol. 2008, 24, 1215–1222. [Google Scholar] [CrossRef]
- Zhu, Y.; Qiu, F.; Rong, J.; Zhang, T.; Mao, K.; Yang, D. Covalent laccase immobilization on the surface of poly(vinylidene fluoride) polymer membrane for enhanced biocatalytic removal of dyes pollutants from aqueous environment. Colloids Surf. B Biointerfaces 2020, 191, 111025. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Misra, N.; Kumar Goel, N.; Thakar, R.; Gupta, J.; Varshney, L. A horseradish peroxidase immobilized radiation grafted polymer matrix: A biocatalytic system for dye waste water treatment. RSC Adv. 2016, 6, 2974–2981. [Google Scholar] [CrossRef]
- Wang, S.; Fang, H.; Wen, Y.; Cai, M.; Liu, W.; He, S.; Xu, X. Applications of HRP-immobilized catalytic beads to the removal of 2,4-dichlorophenol from wastewater. RSC Adv. 2015, 5, 57286–57292. [Google Scholar] [CrossRef]
- Xu, J.; Tang, T.; Zhang, K.; Ai, S.; Du, H. Electroenzymatic catalyzed oxidation of bisphenol-A using HRP immobilized on magnetic silk fibroin nanoparticles. Process Biochem. 2011, 46, 1160–1165. [Google Scholar] [CrossRef]
- Zhai, R.; Zhang, B.; Wan, Y.; Li, C.; Wang, J.; Liu, J. Chitosan–halloysite hybrid-nanotubes: Horseradish peroxidase immobilization and applications in phenol removal. Chem. Eng. J. 2013, 214, 304–309. [Google Scholar] [CrossRef]
- Abdulaal, W.H.; Almulaiky, Y.Q.; El-Shishtawy, R.M. Encapsulation of HRP Enzyme onto a Magnetic Fe3O4 Np–PMMA Film via Casting with Sustainable Biocatalytic Activity. Catalysts 2020, 10, 181. [Google Scholar] [CrossRef]
- Peng, Q.; Liu, Y.; Zeng, G.; Xu, W.; Yang, C.; Zhang, J. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J. Hazard. Mater. 2010, 177, 676–682. [Google Scholar] [CrossRef] [PubMed]
Nano- Composite (NC) | Immobilization Method | Electrode Used | Detection Range (μM) | Limit of Detection (LOD) (μM) | Response Time (s) | Reusability and Storage Stability * | Ref. |
---|---|---|---|---|---|---|---|
AuNPs/chitosan (CS) hydrogel | Self-assembled monolayer deposition of chitosan, AuNPs and HRP | Gold | 8.0–120 500–12,000 | 2.4 | 85% (4 weeks), 94% (50 uses) | [250] | |
AuNPs/sodium alginate | Self-assembled monolayer deposition of sodium alginate and HRP-AuNPs solution | Gold | 20–13,700 | 3 | 15 | 97% (1 month) | [340] |
AuNPs/carboxymethyl chitosan | Drop-casting a mixture of HRP and AuNPs-CMCS NC | Glassy carbon electrode (GCE) | 5–1400 | 0.104 | 5 | RSD of 1.87% (6 cycles) and 94% (20 days) | [341] |
AuNPs/bacteria cellulose (BC) nanofibers | Self-assembled monolayer deposition of AuNPs/BC and HRP | GCE | 1 | 420 | [338] | ||
AuNPs/polyaniline (PANI) nanofibers | Drop-casting of homogenous mixture of HRP and AuNPs/PANI solutions | GCE | 10–2000 | 1.6 | 5 | 95% (15 days) and 85% (1 month) | [188] |
AgNPs/polyvinyl butyral (PVB) | Grafting-to in presence of HRP | Platinum | 10–10,000 | 2 | 10 | 85% (2 weeks), 93.3% (200 cycles) and RSD of 2.1% (9 cycles) | [195] |
AgNPs/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/nafion | Self-assembled monolayer electrodeposition of PEDOT:PSS solution, AgNPs HRP and nafion | GCE | 0.05–20 | 0.02 | RSD of 0.45% (30 cycles) and 93% (2 weeks) | [333] | |
ZnO-AuNPs/nafion | Grafting-to in presence of HRP | GCE | 15–1100 | 9 | RSD of 2.6% (5 cycles) | [196] | |
AuNPs/chitosan | Electrodeposition | Indium titanium oxide (ITO) | 10–500 | 5 | [342] | ||
CeO2/PANI | Electrodeposition of a mixture of aniline and CeO2 solution | ITO | 50,000–500,000 | 50,000 | 100%(8 weeks) | [334] | |
AuNPs/chitosan | Self-assembled deposition of chitosan, gold colloid, and HRP | ITO | 20–6500 | 3.5 | 5 | 90% (2 weeks), RSD of 1.7% (5 cycles) | [339] |
AuNPs/poly (m-phenylenediamine) | Sequential grafting-to followed by addition of HRP | Carbon paste | 0.13–140 | 0.13 | 30 | 100% (14 days), 90% (25 days) and 67% (35 days) | [186] |
γ-Al2O3NPs/chitosan | Drop-casting a mixture of HRP, colloid, and chitosan solution | GCE | 0.5–700 | 0.07 | 5 | 90% (1 month) | [336] |
AgNPs/Poly(γ-glutamic acid) (PGA) | Co-assembled HRP with PGA to form colloidal NPs with photo-crosslinking followed by simultaneous electrodeposition with colloidal AgNPs | GCE | 1–500 500–3000 | 0.35 | 10 | 91.43% (30 days) and RSD of 31.4% (3 assays) | [25] |
Nanocomposite (NC) | Immobilization Method | Electrode Used | Detection Range (μM) | Limit of Detection (μM) | Response Time (s) | Reusability | Ref. |
---|---|---|---|---|---|---|---|
AuNPs/chitosan hydrogel | Electrodeposition | Gold | 5.0–2400 | 2.7 | 7 | RSD of 3.3% (7 assays), 4.6% (5 sensors), 75% (5 weeks) | [85] |
AuNPs/MPS | Self-assembly | Gold | 0.00004–0.0528 | 0.0001 | 86.5% (21 days), 92.6% (160 assays) | [308] | |
AuNW/chitosan | Drop-casting | GCE | 10–20,000 | 5 | 8 | 85% and RSD of 5.1% (1 month) | [311] |
AuNPs/PAMAM/PVS | LbL self-assembly | ITO | 17–1500 | 4 | [306] | ||
AuNPs/chitosan | Electrodeposition | GCE | 50–1300 | 13 | 10 | RSD of 3.3% (10 assays) | [165] |
AuNPs/Nafion | Drop-casting | GCE | 34–6000 | 34 | 90% (2 weeks) and RSD of 2.5% (eight assays), 4.5% (5 sensors) | [197] | |
AuNPs/bacteria cellulose nanofibers/PDDA | Self-assembly | GCE | 10–400 | 2.3 | 90% and RSD of 1.6% (1 week) | [357] | |
AuNPs/chitosan | LbL self-assembly | Platinum | 500–16,000 | 7 | 8 | 90% (1 month), RSD of 3.7% (7 assays) and 5.7% (5 biosensors) | [363] |
AuNPs/chitosan/prussian blue (PB) | Electrodeposition | GCE | 1–1600 | 0.69 | 3 | 70% (2 weeks), RSD of 1.1% (5 assays) and 8.3% (10 biosensors) | [356] |
AuNPs/poly(BEDOA-6) | Electrodeposition of poly(BEDOA-6), covalent immobilization of GOx AuNPs, drop-casting of GOx-AuNPs on polymer-modified electrode | Graphite | 25–1250 | 25 | 100% (3 weeks with daily use) | [312] | |
Nafion/AuNPs/PVP/PANI | Grafting-from a mixture of AuNPs, aniline, and PVP | GCE | 50–2250 | 10 | 89.9% (2 weeks), RSD of 3.9% (10 assays) and 5.8% (10 biosensors) | [365] | |
MNP/chitosan | Grafting-to of chitosan on MNPs | Luminol–H2O2–gold nanoparticle chemiluminescence detection system | 0.85–100 | 0.4 | 70% (8 weeks) and 96%, 89%, 81%, and 77% (5, 10, 20, and 25 assays, respectively) | [361] | |
AuNPs/polypyrrole (PPy) | Grafting-from of PPy on AuNPs | Graphite rod | 200–19,900 | 200 | 5 | RSD of 9% (3 assays) | [192] |
AuNPs/chitosan-PPy nanotubes | Drop-casting of PPy-AuNPs composite, and incubation in GOx solution | ITO | 3–230 | 3.1 | [367] | ||
AuNPs/Electrospun poly(vinyl alcohol) (PVA)/PEI | Electrospinning of GOx, PVA, and PEI, and immersion in AuNPs solution | Gold | 10–200 | 0.9 | 86.5% (3 weeks) and RSD of <4% (3 assays) | [362] | |
AuNPs/ACG | Drop-casting | Platinum | 0.2–2 * | 0.060.1 | [309] | ||
AuNPs/chitosan/PB-chitosan | Self-assembled electrodeposition of PB-chitosan NC, AuNPs-chitosan, and bi-enzyme mixture | Gold | 6.25–93.75 | 1.56 | 10 | [327] | |
AuNPs/PEI | Drop-casting of AuNPs/PEI solution on electrode and immersion in enzyme | Gold | 1–100 | 0.33 | 5 | 94.7% (300 assays), 95% (24 h) and RSD of 4.46% (6 assays) | [187] |
AuNPs/polytriamine | Self-assembled deposition of tryamine, AuNPs solution, and GOx | PB-modified screen-printed carbon | 1–1000 | 1 | 99.7% and 90% (374 and 411 assays respectively) and 99% and 84% (3 and 4 weeks, respectively) | [344] | |
AgNPs/chitosan | Immersion of electrode in a mixture of AgNPs, GOx, and chitosan solution | Platinum | 1–8000 | 0.5 | 5 | [159] | |
AgNPs/guar-gum (GG)/chitosan | Electrodeposition of a mixture of silver nitrate, chitosan, GG, and enzyme solution | Photometric flow injection system analysis | 1.4–6.9 * | 0.0003 | 70% (160 measurements) and 60% (140 days) | [368] | |
0.4–2 * | 0.0002 | ||||||
AgNPs/poly(m-aminophenol) | Drop-casting of a mixture of AgNPs/polymer, GOx, and nafion | GCE | 2000–12,000 | 100 | 3 | 97.5% and 87.2% (2 days and 1 week respectively) and RSD of 3.8% (5 assays) | [343] |
MNPs/chitosan | Drop-casting a of mixture of GOx and NC solution on electrode | ITO | 600–22,200 | 5 | 80% (8 weeks) | [157] | |
MNPs/PVA | Drop-casting a mixture of MNPs, PVA, and GOx on electrode | Tin | 5000–30,000 | 8 | 10 | 81% (1 month) and RSD of 4.2% (5 biosensors) | [347] |
ZnONPs/chitosan-graft-PVA | Spin-casting a mixture of ZnONPs, chitosan, and PVA, dropped GOx solution on modified electrode | ITO | 2–1200 | 2 | [355] | ||
ZnO nanorods/polydopamine | Self-assembled deposition of ZnO nanorods, dopamine, and GOx | ITO | 15–120 | 6.2 | [353] | ||
ZnONPs/chitosan | Drop-casting a mixture of ZnO-chitosan on electrode surface ad immersion in enzyme | Pt-Fe(III)/Pt | 10–11,000 | 1 | 10 | 87% (2 weeks) and RSD of 2.8% and 4.1% (10 assays and 7 biosensors, respectively) | [359] |
ZrO2NPs/chitosan | Drop-casting a mixture of GOx and ZrO2NPs/chitosan solution | Platinum | 12.5–9500 | 10 | 10 | 96.2%, 75.2%, and 60.4% (20, 30, and 40 days, respectively) and RSD of 2.3% and 4.65% (6 assays and 4 biosensors) | [369] |
PdNPs/PEDOT | Sequential deposition of PEDOT, PdCl2, and finally GOx | ITO | 500–30,000 | 75 | 75% (12 days) and RSD of 8.5% and 1.85% (6 biosensors and 7 assays, respectively) | [360] | |
AuNPs/PPy | Sequential electrodeposition of HAuCl4, enzyme, and pyrrole | GCE | 2.5–5000 | 2 | 10 | 60% (2 weeks), 25%, and 68% (25 and 100 assays) and RSD of 1.36% (6 biosensors) | [193] |
MNPs/nafion | Sequential drop-casting a mixture of MNPs and GOx, and nafion | ITO | 1000–8000 | 0.5 | [198] | ||
TiO2NPs/cellulose | Electrospinning of a mixture of TiO2NPs and cellulose solution, immersion in GOx solution | Glass | 1000–10,000 | [352] | |||
CuONPs/chitosan | Magnetic sputtering of CuO on FTO, drop-casting of mixture of GOx and chitosan on modified electrode | FTO | 200–15,000 | 27 | 4 | 87.5% (35 days) and RSD of 1.7% (5 biosensors in real blood serum) | [349] |
PtNPs/poly(amidoamine) | Layer by layer electrodeposition of NC, GOx, and NC | Platinum | 5–1000 | 0.1 | 5 | 80% and 86% (30 days and 100 assays, respectively) | [166] |
ZnO-PtNPs/chitosan | Sequential drop-casting of ZnONPs, PtNPs, chitosan solution, and enzyme | FTO | 16.6–122 | 16.6 | [345] | ||
PtNPs/PPy | Sequential electropolymerization of pyrrole and PtNPs, immersion in GOx solution | Anodized aluminium oxide on a gold disk | 100–9000 | 27.7 | 7 | [194] | |
PtNPs/chitosan | Electrodeposition of H2PtCl6, CS, and enzyme | GCE | 1.2–40,000 | 0.4 | 5 | 93.1% and 89.6% (3 weeks and 1 month, respectively) and RSD of 5.8% (5 biosensors) | [351] |
PtNPs/PANI | Drop-coating of PANI hydrogel, immersion in H2PtCl6 and enzyme | Platinum | 10–8000 | 0.7 | 3 | [354] | |
PtNPs/PPy/poly(o-aminophenol) (POAP) | Sequential electropolymerization of pyrrole, K2PtCl6, and a mixture of OAP and GOx | GCE | 1.5–13,000 | 0.45 | 7 | 100%, 89%, and 76% (7, 30, and 60 days, respectively) | [350] |
MNPs/chitosan/nafion | Drop-casting of mixture of GOx and MNPs, immersion in mixture of chitosan and MNPs, drop-casting of nafion solution | Platinum | 6–2200 | 6 | 84% and 83% (1 month and 52 assays, respectively) | [370] | |
PtNPs/PDDA/PANI/(PSS) | Interfacial polymerization of PANI followed by doping with PSS, absorption of PtNPs/PDDA on PANI/PSS, immersion in GOx solution | GCE | 10–4500 | 0.5 | 5 | 85% (20 days) and RSD of 4.4% (5 assays) | [346] |
AuNPs/PANI | Sequential drop-casting of NC solution and enzyme | GCE | 1–800 | 0.5 | 5 | 95% (2 weeks) and RSD of 4.8% (7 biosensors) | [189] |
NiFe2O4NPs/chitosan | Drop-casting a mixture of NPs, chitosan, and GOx solution | GCE | 100–20,000 | 100 | 4 | 90% (30 days) | [358] |
PtNPs/chitosan/nafion | Immersion in a mixture of PtNPs, chitosan, and GOx followed by nafion solution | GCE | 1–5000 | 0.5 | 90% (20 days) and RSD of 3% (10 assays) | [366] | |
Au@Ag-PtNPs/infinite coordination polymer (ICP) | Drop-casting a mixture of GOx and NC | Platinum | 0.5–3330 | 0.06 | 90% (14 weeks) and RSD of 3.8% and 4.9% (6 assays and 6 biosensors, respectively) | [364] | |
CuONPs/alginate | Drop-casting a mixture of CuONPs, alginate, GOx, and EDC/NHS | Platinum | 40–30004000–35,000 | 1.6 | 98%, 97%, 93%, 86%, and 78% (2, 4, 6, 10, and 15 days, respectively) and RSD of 0.94% (6 biosensors) | [371] | |
TiO2NPs/PANI/chitosan | Grafting-from of aniline vapour on TiO2 and immersion in enzyme | GCE | 20–140 | 5.33 | [372] | ||
AuNPs/PANI | Grafting-from of AuNPs, aniline, and GOx | Graphite | 70–16,500 * | 70 | 10 | 67.4% (8 days) and RSD of 4.67% (4 assays) | [373] |
AuNPs/PPy | Grafting-from of AuNPs, pyrrole, and GOx | Graphite | 71–16,500 * | 71 | 10 | 71.4% (8 days) and RSD of 5.89% (4 assays) | [373] |
Nanocomposite (NC) | Enzyme | Immobilization Method | Electrode Used | Detected Compound | Detection Range (μM) | Limit of Detection (μM) | Response Time (s) | Reusability | Ref. |
---|---|---|---|---|---|---|---|---|---|
AuNPs/ chitosan | Cholesterol oxidase | Drop-casting of chitosan nanofibers, electrodeposition of AuNPs, adsorption of enzyme | ITO | Cholesterol | 1–45 | 0.5 | 5 | 91% (25 days) and RSD of 4.2% (10 assays) | [375] |
AuNPs/ chitosan/ PPy | Xanthine oxidase | Drop-casting of chitosan-PPy and HAuCl4 mixture, immersion in glutaraldehyde followed by enzyme solution | GCE | Xanthine | 1–200 | 0.25 | 8 | 92%, 85%, and 78% (13 days, 18 days, and 20 assays, respectively) | [387] |
AuNPs/poly(allylamine hydrochloride) (PAH) | Laccase | Mixing laccase solution with AuNPs/PAH composite and graphite | Carbon paste | Dopamine | 0.49 - 23.0 | 0.26 | [328] | ||
AuNPs/poly(8-anilino-1-naphthalene sulphonic acid) (PANSA) | Tyrosinase | Electropolymerization of a mixture of AuNPs and ANSA solution, drop-casting of tyrosinase on modified electrode | GCE | Tyramine | 10–120 | 0.71 | 97.5% and 94.3% (20 assays and 20 days, respectively). RSD of 4.3% (3 biosensors) | [397] | |
ZnONPs/ chitosan | Cholesterol oxidase | Mixed ZnONPs with chitosan solution and drop-casting mixture on electrode surface, drop-casted enzyme solution | ITO | Cholesterol | 129.3–7759 * | 129.3 * | 15 | 85% and 75% (6 days and 8 weeks, respectively) | [377] |
CeO2NPs/ chitosan | Cholesterol oxidase | Mixed CeO2NPs with chitosan solution and drop-casted mixture on electrode surface followed by enzyme | ITO | Cholesterol | 25–10,345 * | 129.3 * | 10 | 100% and 90% (10 assays and 7 weeks, respectively) | [376] |
SnO2NPs/ chitosan | Cholesterol oxidase | Mixed SnO2NPs with chitosan solution and drop-casted mixture on electrode surface followed by enzyme | ITO | Cholesterol | 25–10,345 * | 129.3 * | 5 | 95% and 90% (6 and 8 weeks, respectively) | [374] |
MNPs/ chitosan-graft-PANI | Creatininase, Creatinase Sarcosine oxidase | Electrodeposition of a mixture of aniline, MNPs, and chitosan solution in HCl, dropping of GA followed by enzyme mixture on electrode | Platinum | Creatinine in serum of healthy people | 1–800 | 1 | 2 | 90% (120 assays over 200 days) | [389] |
Fe@AuNPs/chitosan | AChE Choline oxidase | Electrodeposition of Fe@AuNPs by CV, immersion in chitosan solution, immersion of modified electrode in GA followed by enzyme mixture | Gold | Acetyl choline | 0.005–400 | 0.005 | 3 | 50% (100 assays) | [393] |
ZnONPs/ PPy | Fructosyl amino acid oxidase (FAO) | Electropolymerization of PPy followed by ZnONPs by CV | Gold | Hemoglobin A1c | 100–3000 | 50 | 2 | 70% (260 assays) | [398] |
ZnONPs/ PPy | Xanthine oxidase | Electropolymerization of a mixture of PPy and ZnONPs, immersion in enzyme solution | Platinum | Xanthine | 0.8–40 | 0.8 | 5 | 60% (200 assays in 100 days) | [386] |
ZnONPs/ chitosan | LipaseGlycerol kinase Glycerol-3-phosphate oxidase | Immersion in ZnONPs-chitosan mixture, activated with GA, immersion in a mixture of enzyme solutions | Platinum | Triglyceride | 2839–36,906.7 * | 1135.6 * | 6 | 75% and 50% (6 and 7 months, respectively) | [392] |
Ag-ZnONPs/ PPy | Xanthine oxidase | Electropolymerization of PPy followed by Ag-ZnONPs by CV, electrodeposition of enzyme under open circuit | Pencil graphite electrode (PGE) | Xanthine | 0.06–0.6 | 0.07 | 3.2 | 77.82% and 77% (20 days and 20 assays, respectively) | [385] |
AuNPs/ PANI/ chitosan | Cholesterol oxidase | Spin-coated a mixture of chitosan and Au-PANI solution, drop-casted enzyme on modified electrode | ITO | Cholesterol | 1293–12,931.6 * | 980 * | 20 | 100%, 97%, and 90% (20 assays, 2 and 3 weeks, respectively) | [395] |
NiFe2O4-CuO-FeONPs/chitosan | Cholesterol oxidase | Drop-casted a mixture of NiFe2O4-CuO-FeONPs and chitosan solutions | ITO | Cholesterol | 129–12,931.6 * | 809.5 * | 10 | 86% and 75% (10 and 90 days, respectively) | [378] |
PtNPs/PPy | Cholesterol esterase Cholesterol oxidase | Electropolymerization of pyrrole, immersion in hexa chloroplatinic acid followed by pyrrole solution | ITO | Cholesterol | 250–6500 | 250 | 25 | 90% (7 weeks) | [399] |
Au-PTNPs/polyvinylferrocene(PVF)PtNPs/PVF | Xanthine oxidase | Sequential immersion in PVF, KAuCl4 (for Au-PtNPs), PtBr2 | Platinum | Xanthine | 2–66 | 0.6 | 90% (10 days) and RSD of 3.41% (5 biosensors) | [384] | |
PtNPs/poly (thiolated β–cyclodextrin) | HRP Choline oxidase | Sequential immersion of electrode in mixture of polymer and NPs solution and enzyme mixture | Gold | Choline | 0.001–10,000 | 0.0001 | 85% (1 month) and RSD of 4.6% (10 assays) | [394] | |
MNPs/PANI/chitosan | Xanthine oxidase | Dispersion of MNPs in aniline, mixed carbon paste, NC, chitosan, and H2PtCl6 | Carbon paste | Xanthine | 0.2–36.0 | 0.1 | 8 | 85% (100 uses over 3 months), RSD of 4% (5 assays) | [388] |
PtNPs/PVF | Lysine oxidase | Electro-oxidation of PVF, electrodeposition of H2PtCl6, immersion in enzyme solution | Platinum | Lysine | 0.65–3000 | 0.65 | 30 | 90% and 85% (1 month and 15 assays, respectively) | [400] |
CuONPs/chitosan | Lipase | Spin-coating of a mixture of chitosan and CuONPs solution, immersion on lipase enzyme solution | Gold | Triglyceride | 1419.5–17,033.8 * | 15 | 2 | [391] | |
CuONPs/PANI/nafion | Creatinine deaminase | CV of copper nitrate, drop-casting of nafion solution, electropolymerization of aniline, drop-casting of enzyme solution | Screen-printed electrode | Creatinine | 8–90 | 0.5 | 15 | [390] | |
AuNPs/Boltorn | Urease | Polymer grafting | ITO | Urea | 10–35,000 | 10 | 3 | 100% (10 uses) and RSD of 8% and 6% (5 assays and 10 biosensors, respectively) | [382] |
MNPs/chitosan | Urease Glutamate dehydrogenase | Dispersion MNPs in chitosan solution, drop mixture of enzymes and NC on electrode surface | ITO | Urea | 833.3–16,666.7 * | 83.3 * | 10 | 85% and 75% (8 and 10 weeks, respectively) | [396] |
MNPs/chitosan | urease | Drop-casting of mixture of MNPs and chitosan solution | Copper wire | Urea | 100–80,000 | 12 | 90% (3 weeks) | [379] | |
ZnONPs/PPy/polyamide 6 (PA6) | Urease | Electrospinning of PPy and PA6 on fluorine-modified electrode, immersion in ZnO solution followed by urease solution | Tin oxide | Urea | 16.7–41,666.7 | 1.83 | 97% and 80% (2 and 4 weeks, respectively), RSD of 4.4% and 4.5% (8 assays and 3 biosensors, respectively) | [383] | |
ZnONPs/chitosan | Urease Glutamate dehydrogenase | Spin-coating of a mixture of ZnONPs and chitosan, physical adsorption of enzyme on the modified electrode | ITO | Urea | 833.3–16,666.7 * | 500 * | 10 | [381] | |
MNPs/chitosan-graft-PANI | Uricase | Electropolymerization of a mixture of aniline, MNPs, and chitosan, immersed modified electrode in GA followed by uricase solution | Platinum | Uric acid | 0.1–800 | 0.1 | 1 | 90% (120 assays over 100 days) | [401] |
Co3O4NPs/chitosan | Urase | Drop-casted a mixture of NC and chitosan solution, immersion in urase solution | Copper wire | Urea | 100–80,000 | 12 | 85% (1 month) | [380] | |
CuONPs/PANI/nafion | Urease | CV of copper nitrate, drop-casting of nafion solution, electropolymerization of aniline, drop-casting of enzyme solution | Screen-printed electrode | Urea | 5–50 | 0.5 | 15 | [390] | |
AuNPs/polyvinyl alcohol (PVA) | GOx and hexokinase | Electrospinning of a mixture of enzymes, polymers, and AuNPs | Platinum | Adenosine triphosphate (ATP) | 25–200 | 25 | 15 | RSD of 3.4% (9 assays) and 86% (10 cycles) | [402] |
Nanocomposite (NC) | Immobilization Method | Pollutants Removed | Degradation (%) | Degradation Time | Reusability | Ref. |
---|---|---|---|---|---|---|
TiO2/polyvinylidene fluoride (PVDF) | Crosslinking of TiO2/PVDF membrane using APTES and glutaraldehyde followed by immersion in laccase solution | Bisphenol A | 95 | 5 h | 91.7% (96 h of continuous use) | [461] |
TiO2/bacterial cellulose (BC) | Physical adsorption of TiO2 on BC followed by crosslinking with glutaraldehyde and immersion in laccase solution | Reactive red X-3B in presence of ABTS | 80 | 60 min | 70% and 57% (6 and 10 cycles, respectively) | [416] |
Calcium alginate | Physical entrapment of enzyme in nanocomposite | Fluoranthene in a fluidized bed reactor | 81.06 | 8 h | 66.845% (60 days of storage) | [442] |
Fe2O3/poly(ethylene glycol)/concovalin A | Chemical co-precipitation followed by crosslinking with glutaraldehyde and immersion in laccase solution | Sulfadiazine | 100 | 30 min | 82.8% (10 consecutive cycles) | [438] |
Sulfamethazine | ||||||
Sulfamethoxazole (all in presence of syringaldehyde mediator) | ||||||
MNPs/chitosan | Physical mixing of NPs and chitosan followed by crosslinking with glutaraldehyde and immersion in laccase solution | Reactive black 5 | 90 | 30 min | 47% (10 cycles) | [462] |
Evans blue | 60 | 30 min | ||||
Tryphan blue | 80 | 40 min | ||||
Direct blue 15 | 70 | 60 min | ||||
MNPs/polydopamine | Functionalized MNP-polydopamine NC with dialdehyde starch followed by immersion in laccase solution | 2,4-dichlorophenol | 72 | 3 h | 77% (8 cycles) | [191] |
91 | 12 h | |||||
Fe2O3/Cu-alginate | Physical entrapment of enzyme in nanocomposite | Triclosan | 89.6 | 8 h | 86.9% (3 cycles in acetate buffer) | [419] |
53.2 | 8 h (wastewater) | |||||
Remazol Brilliant Blue R (RBBR) | 75.8 | 8 h | ||||
55 | 25 h (wastewater) | |||||
35 | 25 h (waste water) | |||||
Cu (II)-chitosan-graft-poly (glycidyl methacrylate)/poly (ethylene imine) | Physical adsorption of laccase on nanocomposites | Phenol in presence of ABTS | 80 | 4 h | 50% (8 cycles) | [445] |
MNPs/chitosan | Crosslinking with glutaraldehyde followed by immersion in laccase solution | 2,4-Dichlorophenol | 91.4 | 12 h | 75.8% and 57.4% (2,4-DCP and 4-CP after 10 cycles) | [448] |
4-Chlorophenol | 75.5 | |||||
MNPs/SiO2/poly (glycidyl methacrylate)-S-SH | Physical adsorption of enzyme on the nanocomposite | Meloxicam | 92 | 48 h | 82.3%, 88.9%, and 87.5% (meloxicam, piroxicam and Cd2+, respectively, after 5 cycles) | [435] |
Piroxicam | 95 | |||||
Cd2+ | 94 | |||||
MNPs/Poly(p-Phenylenediamine) | Covalent immobilization using glutaraldehyde for crosslinking | Reactive blue 19 | 80 | 1 h | 43% (8 cycles) | [421] |
MNPs@MoS2/polyethyleneimine | Physical adsorption of laccase on nanocomposite | Malachite green | 82.7 | Overnight | 62% (10 cycles) | [440] |
Bisphenol A | 87.6 | |||||
Bisphenol F (all in presence of ABTS) | 70.6 | |||||
Cu-alginate | Physical entrapment of enzyme in nanocomposite | Fuschin blue | 65 (HOBT) | 4 h | 100% and 95% (120 h continuous use and 15 days storage, respectively) | [423] |
Congo red | 27 (ABTS) | |||||
Tryphan blue | 51(syringaldehyde) | |||||
Malachite green | 60 (ABTS) | |||||
Erichrome black T | 50 (HOBT) | |||||
Crystal violet (all in different mediators) | 32 (HOBT) | |||||
Textile effluent in a continuous flow packed bed bioreactor | 66 (colour) 90 (BOD) 98 (COD) | |||||
MNPs/chitosan | Physical entrapment of enzyme in presence of ionic liquid and ABTS | 2,4-dichlorophenol | 100 | 4 h | 93.2% (for 2,4-DCP after 6 cycles) | [463] |
Bisphenol A | 100 | 72 h | ||||
Indole | 70.5 | 72 h | ||||
Anthracene | 93.3 | 72 h | ||||
MNPs/polyethylenimine | Crosslinking of NPs with PEI using glutaraldehyde followed by chelation of laccase with Cu(II) | Phenol in a fixed bed reactor | 72.93% at a flowrate of 25 μL/min | - | - | [449] |
MNPs/Cu2+-PEG | In situ oxidation of metal salt using PEG followed by physical adsorption of laccase | Malachite green | 100 (ABTS) | 120 min | 99.9, 90.1, 89.4, 94.6, 76.5, 80.1, 74.6, and 66.1% (respectively, for the dyes after 10 cycles) | [425] |
Brilliant green | 96.5 (ABTS) | |||||
Crystal violet | 95.2 (ABTS) | |||||
Azophloxine | 97.7 (TEMPO) | |||||
Red MX-5B | 86.6 (ABTS) | |||||
Methyl orange | 92.7 (VLA) | |||||
Reactive blue 19 | 96 (TEMPO) | |||||
Alizarin red | 83.7 (TEMPO) | |||||
TiO2/Zn-alginate | Physical entrapment of enzyme in nanocomposite | Alizarin red | 61 | 5 h | 100% (14 cycles) | [464] |
Tryphan blue | 96 | |||||
Malachite green | 100 | |||||
Indigo carmine | 100 | |||||
Ca-alginate | Physical entrapment with crosslinking of enzyme prior to entrapment | Bisphenol A | 99 | 2 h | 70% (10 successive cycles) | [433] |
Ca-alginate | Physical entrapment of enzyme in nanocomposite | Aniline purple | 86.1 | 24 h | - | [465] |
Ca-alginate | Physical entrapment of enzyme in nanocomposite | Reactive Red 180 | 67.2 | 11 days | - | [466] |
Reactive Blue 21 | 88.05 | |||||
Ca-alginate | Physical entrapment of enzyme in nanocomposite | Reactive T. Blue | 92 | 72 h | 22.3% (6 cycles) | [467] |
Ca-alginate | Physical entrapment of enzyme in nanocomposite | RBBR | 85 | 2 h | 52.1% and 70% (Bismarck brown and all the others, respectively) | [460] |
Reactive Black 5 | 80 | 24 h | ||||
Bismarck Brown R | 55 | 24 h | ||||
Lancet Grey G | 85 | 24 h | ||||
Cu-alginate | Physical entrapment of enzyme in nanocomposite | Acid dye | 38% | 24 h | - | [468] |
MNPs/chitosan | Crosslinking with glutaraldehyde followed by adsorption in laccase solution | Reactive yellow 2 | 85 | 10 h | - | [469] |
Reactive blue 4 | 60 | 12 h | ||||
MNPs/poly(GMA-MMA)/Cu-Poly(4-vinyl pyridine | Polymer grafting with Cu chelation followed by adsorption of enzyme | Reactive green 19 | 60 | 18 h | 63%, 76%, and 59% (green, red, and brown dyes, respectively) | [470] |
Reactive red 2 | 88 | |||||
Reactive brown 10 | 90 | |||||
Cu-alginate | Physical entrapment of enzyme in nanocomposite | phenol model solution containing tannic acid, gallic acid, ferulic acid, resorcinol, and pyrogallol | 75 | 6 h | 35% (8 cycles) | [471] |
FScubes/PDA@PVDF | Prepared the FS/PDA@PVDF membrane using solvothermal process followed by covalent immobilization of laccase using glutaraldehyde as cross linker | Congo red | 97.1 | 3 h | 85% and 76% (7 days and 5 cycles, respectively) | [472] |
Nanocomposite (NC) | Immobilization Method | Pollutants Removed | Degradation (%) | Degradation Time | Reusability | Ref. |
---|---|---|---|---|---|---|
TiO2/polydopamine | In situ polymerization of dopamine on TiO2NPs followed by covalent crosslinking of enzyme with glutaraldehyde | 2,4-dichlorophenol | 100 | 30 min | 100%, 90%, and 63.6% (15, 25, and 40 reuses, respectively) | [190] |
MNPs/poly(glycidylmethacrylate-co-methylmethacrylate) (poly(GMA-MMA)) | Crosslinking of enzyme and nanocomposite beads using glutaraldehyde | phenol | 86 | 2 h | 84% (8 weeks), 92%, and 79% (phenol and p-chlorophenol, respectively, after 48 h of continuous use) | [418] |
p-chlorophenol (in the presence of H2O2) | 59 | |||||
Fe2O3/poly (amido amine) (PAMAM)/silk fibroin | Crosslinking of enzyme with nanocomposites using glutaraldehyde | Bisphenol A in presence of H2O2 | 80 | 120 min | - | [475] |
Calcium alginate | Physical entrapment of enzyme in nanocomposite | Acid blue 113 | 76 | 240 min | Can be recycled up to 3 times | [422] |
Aluminosilicate halloysite nanotubes/chitosan | Crosslinking of enzyme with nanocomposites using glutaraldehyde | Phenol in presence of hydrogen peroxide | 98.8 | 30 min | 60% (4 cycles) | [476] |
MNPs/polyacrylonitrile | Crosslinking of enzyme with nanocomposites using glutaraldehyde | Phenol | 85.2 | - | 52% (5 cycles) | [444] |
MNPs/poly(vinyl alcohol)/poly(acrylic acid) | Physical adsorption of enzyme on nanocomposites | Estrone | 100 | 40 min | 56.2% (7 cycles) | [432] |
MNPs/polymethyl methacrylate | Physical entrapment of enzyme in nanocomposite | Phenol in presence of hydrogen peroxide | 55 | 50 min | - | [477] |
MNPs/poly(glycidylmethacrylate-co-methylmethacrylate) (poly(GMA-MMA)) | Crosslinking of enzyme with nanocomposite beads using glutaraldehyde | Phenol | 86 | 2 h | 91% and 79% (phenol and chlorophenol, respectively, after 48 h of continuous operation) | [418] |
p-Chlorophenol (in presence of hydrogen peroxide in a fluidized bed reactor) | 59 |
Nanocomposite (NC) | Enzyme | Immobilization Method | Pollutants Removed | Degradation (%) | Degradation Time | Reusability | Ref. |
---|---|---|---|---|---|---|---|
TiO2/polydopamine | Chloroperoxidase (CPO) | Covalent crosslinking of enzyme with nanocomposites using glutaraldehyde | Aniline blue | 97.58 | 2 min | 90.3%, 78.2%, and 53.71% (10, 15, and 20 reuses, respectively) | [190] |
Crystal violet | 98.98 | 2 min | |||||
NiFe2O4/tannin | Glucose oxidase | Physical adsorption of enzyme on nanocomposite | Indigo carmine in presence of UV light | 98.6 | 90 min | 85.57% (5 cycles) | [446] |
MnFe2O4/calcium alginate | Glucose oxidase and Laccase | Physical adsorption of enzymes on the nanocomposite | Methylene blue | 82.13 | 1 h | - | [424] |
Indigo | 25.09 | ||||||
Acid red 14 | 20.42 | ||||||
MNPs/PAMAM | Glycerophosphodiesterase (GpdQ) | Crosslinking of enzyme with nanocomposites using glutaraldehyde | Organophosphate pesticide | 44.5 | 120 days | Used as a filter in a Pasteur pipette between two layers of sand | [429] |
MNPs@SiO2/polydopamine | Lignin peroxidase | Physical adsorption of enzymes on the nanocomposite | Tetracycline | 100 | 24 h | 80.3% and 67.5% (7 and 14 days of storage), 70% and 30% (4 and 8 cycles, respectively) | [447] |
Dibutyl phthalate | 100 | 24 h | |||||
5-chlorophenol | 100 | 24 h | |||||
Phenol | 100 | 24 h | |||||
Phenanthrene | 79 | 24 h | |||||
Fluoranthene | 73 | 24 h | |||||
Benzo(a)pyrene | 65 | 24 h | |||||
MNPs/chitosan | Manganese peroxidase | Crosslinking of enzyme with nanocomposites using glutaraldehyde | Methylene blue | 96 | 50 min | 91.7% and 86.7% (5 cycles-methylene blue and reactive orange, respectively) | [417] |
Reactive orange 16 | 98 | ||||||
Fe2O3/chitosan | Saccharomyces cerevisiae enzyme | Adsorption of chitosan on the NPs surface followed by crosslinking with enzyme using glutaraldehyde | Cu(II) | 96.8 | 60 min | - | [478] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyomuhimbo, H.D.; Feleni, U.; Haneklaus, N.H.; Brink, H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers 2023, 15, 3492. https://doi.org/10.3390/polym15163492
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers. 2023; 15(16):3492. https://doi.org/10.3390/polym15163492
Chicago/Turabian StyleKyomuhimbo, Hilda Dinah, Usisipho Feleni, Nils H. Haneklaus, and Hendrik Brink. 2023. "Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review" Polymers 15, no. 16: 3492. https://doi.org/10.3390/polym15163492
APA StyleKyomuhimbo, H. D., Feleni, U., Haneklaus, N. H., & Brink, H. (2023). Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers, 15(16), 3492. https://doi.org/10.3390/polym15163492