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Abstract: Biofabrication is crucial in contemporary tissue engineering. The primary challenge in
biofabrication lies in achieving simultaneous replication of both external organ geometries and
internal structures. Particularly for organs with high oxygen demand, the incorporation of a vascular
network, which is usually intricate, is crucial to enhance tissue viability, which is still a difficulty in
current biofabrication technology. In this study, we address this problem by introducing an innovative
three-dimensional (3D) printing strategy using a thermo-reversible supporting bath which can be
easily removed by decreasing the temperature. This technology is capable of printing hydrated
materials with diverse crosslinked mechanisms, encompassing gelatin, hyaluronate, Pluronic F-127,
and alginate. Furthermore, the technology can replicate the external geometry of native tissues and
organs from computed tomography data. The work also demonstrates the capability to print lines
around 10 µm with a nozzle with a diameter of 60 µm due to the extra force exerted by the supporting
bath, by which the line size was largely reduced, and this technique can be used to fabricate intricate
capillary networks.

Keywords: 3D printing; supporting bath; hydrogel; biological structure

1. Introduction

In recent decades, 3D printing technology has found widespread applications in the
field of tissue engineering [1]. This technology is capable of printing successive layers
of materials to fabricate a wide range of structures and complex geometries. Due to its
ability to create complex structures from 3D models rapidly and directly, it holds significant
potential in surgery and medical equipment [2–5], as well as scaffolds for tissue engineering.
Biodegradable thermoplastic plastics such as polystone and polylactic acid have been
widely used as they possess good mechanical properties and allow for the printing of
complex and fine structures [6–8]. However, these materials usually need to be printed
after dissolving with organic solvents or melting at high temperatures, which makes it
impossible to print them simultaneously with cells [9]. Hydrogels, on the other hand,
possess soft, humid, and good biocompatibility properties and are commonly used as a
material in tissue engineering. In 3D printing of tissue scaffolds, the so-called bioink is
often used, which encapsulates a large number of cells and hydrogels [10–13].

Despite their desirable properties, the poor mechanical properties of hydrogels, such
as significant shrinkage and difficulty in printing, limit their application as bioinks and
make it difficult to build complex models [14–16]. To overcome this limitation, adding
modifiers to hydrogels is an effective idea [17–19]. For instance, Lee et al. added silk fibroin
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(SF) into gelatin to form the silk fibroin-gelatin (SF-GT) composite hydrogel. Increasing
the gelatin content in the composite hydrogel effectively prevented the shrinkage of the
composite hydrogel in phosphate buffer solution at 37 ◦C and enhanced its printability [20].
Liu et al. [21] added chitosan powder to an alginate solution to improve the viscosity of the
solution by 1.5–4 times. Increasing the chitosan content also improved the shape fidelity of
3D-printed hydrogels. Wu et al. [22] designed a nanocomposite hydrogel bioink (gelatin–
alginate–montmorillonite). This bioink has good printability and mechanical properties
based on the thermosensitive properties of gelatin, the advantages of ionic crosslinking of
alginate, and the shear thinning and toughening mechanism of nano-MT.

Another idea is using an embedded 3D bioprinting strategy to increase popular-
ity of constructing complex freeform structures. In this strategy, a sacrificial medium is
used to support the deposition of bioink in the three-dimensional space before crosslink-
ing. The sacrificial medium rapidly liquefies under yield stress and then solidifies with-
out inducing stress due to its unique shear-thinning and self-healing properties [23].
Lee et al. [24] employed the Freeform Reversible Embedding of Suspended Hydrogels
(FRESH) technique, specifically using gelatin microparticles as the sacrificial medium, to
successfully print functional ventricles and full-scale human heart models.

Another obstacle in building functional tissues and organs is the difficulty of repli-
cating well-defined vascular networks to facilitate the transport of nutrients and oxygen,
maintaining cell viability [25,26]. To address this problem, a sacrificial templating strategy
has been applied to construct intricate vascular networks in 3D tissue constructs [27]. In
this strategy, a sacrificial ink was first written in the hydrogel matrices; after printing,
these matrices were cured and the sacrificial ink was removed, leaving behind a 3D net-
work of interconnected channels [27]. Lewis et al. [28] employed Pluronic F127 bioink
to print sacrificial templates with predetermined geometries, followed by casting with
cell-laden hydrogel. After printing and crosslinking, the sacrificial template was lique-
fied, and human umbilical vein endothelial cells (HUVECs) were subsequently seeded
to form three-dimensional vascularized tissue, attaining a thickness of approximately 1
cm. Embedded 3D printing techniques also enable the high-fidelity 3D bioprinting of
vascular networks. Skylar-Scott et al. [29] developed Sacrificial Writing into Functional
Tissue (SWIFT) technology, which uses a suspension medium composed of spheres or
organ building blocks (OBBs). The OBB-based suspension medium possesses unique
shear-thinning and self-healing properties, enabling sacrificial gel ink printing. Despite its
capability to achieve cell densities close to physiological levels in vascularized tissues, the
SWIFT technology’s external geometry of printed tissues is significantly constrained by
the container, thus limiting the faithful replication of native organ geometries like ventri-
cles. To simultaneously replicate the external geometry and complex internal structures of
functional tissues, Fang et al. [30] developed the Sequential Printing via Inkjet-deposited
Templates (SPIRIT) technique. By using several independent printing stages, the external
shape and internal structure of the tissue are formed separately, resulting in a ventricle
model with a perfusable vascular network. Although this technology achieves the printing
of organ-specific tissues, it heavily relies on a cell-laden hydrogel or bio-material that can
serve as both the embedded bioink and the suspension medium for bioprinting. This
introduces some limitations in the selection of materials for bioinks. Additionally, with
the SPIRIT technique, only 500 µm-sized vessels were printed, and it is still challenging to
print capillaries at the scale of tens of micrometers or even micrometers.

In this study, we present a PF-127 supporting bath printing technology for fabricating
complex biological models using hydrogels. Utilizing a variety of bioinks with distinct
viscosity and crosslinking mechanisms, we effectively prevent the deformation of soft
structures during the printing process, thanks to the support provided by the PF-127
bath. This technology enables the successful printing of microlines with a width of 10 µm,
representing a significant breakthrough in overcoming the current size limitation of DIW
technology. Additionally, it plays a crucial role in fabricating intricate capillary networks.
Furthermore, we ensure biocompatibility throughout the entire printing process by utilizing
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aqueous environments that are tightly controlled for pH, ionic strength, temperature, and
sterility. Our study objectives encompassed the utilization of diverse bioinks, prevention of
soft structure deformation, the realization of microline printing at the 10-micrometer scale,
and ensuring biocompatibility through meticulous control of environmental parameters.

2. Material and Methods
2.1. Bioink Preparation
2.1.1. GelMA Bioink

To prepare the GelMA bioink, 1 g of gelatin (type A, purchased from Sigma-Aldrich,
St. Louis, MO, USA) was dissolved in 10 mL of DPBS solution at 50 ◦C. Then, 2 mL of
Methacrylic anhydride (MA, purchased from Adamas beta, Shanghai, China) was added to
the solution to obtain a mixed solution with a final concentration of 20% (v/v). The mixed
solution was stirred using magnetic force in a 50 ◦C environment for 3 h. Subsequently, the
solution was diluted with DPBS (50 ◦C) to a final volume of 60 mL. The solution was then
centrifuged at 8000 rpm for 10 min to remove unreacted MA and other by-products. The
centrifuged solution was poured into a dialysis bag (MWCO 14000 Spectrum®, Solarbio,
Beijing, China) and dialyzed in deionized water at 37 ◦C for 5 days, during which the
deionized water was replaced every 12 h. After dialysis, the GelMA solution was freeze-
dried at −60 ◦C for 48 h, and the resulting freeze-dried GelMA could be stored at 4 ◦C.

To make the GelMA bioink, 100 mg of the freeze-dried GelMA was dissolved in
1.9 mL of deionized water. Then, 3 mg of LAP (from State Key Laboratory of Bioreactor
Engineering, East China University of Science and Technology) was added as a photo-
initiator to obtain the GelMA bioink with a concentration of 5%. The resulting bioink can
be crosslinked using 365 nm ultraviolet (UV) light.

2.1.2. HAMA Bioink

To prepare HAMA bioink, 1 g of sodium hyaluronate (HA, 300,000, purchased from
Blomade Freda Biopharm, Shandong, China) was dissolved in 100 mL of deionized water
and maintained at 4 ◦C for subsequent reactions. An amount of 8 mL of MA was added
to the solution, and the pH was adjusted to 8 with NaOH. The solution was then allowed
to react for 12 h before being transferred to a dialysis bag and dialyzed with deionized
water for 24 h, with the dialysis water being replaced every 8 h. The solution was then
centrifuged at 7000 rpm for 10 min to remove unreacted precipitation, and the supernatant
was dialyzed again for 3 days. After dialysis, the solution was frozen at −80 ◦C for 3 h and
then freeze-dried in a freeze dryer for 2 days to obtain HAMA. To prepare HAMA bioink,
60 mg of HAMA was dissolved in 1.94 mL of deionized water, and 3 mg of LAP was added
as a photo-initiator to obtain a HAMA bioink with a concentration of 3%, which can be
crosslinked by 365 nm UV light.

2.1.3. PF-127DA Bioink

To prepare PF-127DA bioink, 400 mg of PF-127DA (from State Key Laboratory of
Bioreactor Engineering, East China University of Science and Technology) was dissolved
in 1.6 mL of deionized water, and 3 mg of LAP was added as a photo-initiator to obtain
a PF-127DA solution with a concentration of 3%, which can be crosslinked by 365 nm
UV light.

2.1.4. Alginate Bioink

To prepare Alginate bioink, 50 mg of Alginate was dissolved in 1.95 mL of deionized
water to obtain Alginate bioink with a concentration of 2.5%, which can be crosslinked by
Ca2+ ions in the supporting bath.



Polymers 2023, 15, 3493 4 of 13

2.2. PF-127 Supporting Bath Preparation
2.2.1. General PF-127 Supporting Bath

An amount of 6 g of Pluronic F-127 (PF-127, purchased from Sigma-Aldrich) powder
and 30 mL of deionized water (4 ◦C) was mixed with a vortex mixer at 3000 rpm for 30 min,
then store in a refrigerator at 4 ◦C for 2 h and mix again for 10 min. Repeat this operation
5 times to obtain a final concentration of 20% (w/v) PF-127 supporting bath. Prepare PF-127
supporting baths with mass volume ratios of 25%, 30%, 35% and 40% according to the
same procedure, seal and store in a −4 ◦C refrigerator. Before use, remove the supporting
bath from −4 ◦C, place it in at 4 ◦C to thaw for 12 h, and then mix it on a vortex mixer for
10 min.

2.2.2. PF-127 Supporting Bath with Ca2+ Ions

An amount of 60.5 mg of CaCl2 powder was dissolved in 50 mL of deionized water to
make 11 mM CaCl2 solution and stored at 4 ◦C. 7.5 g of PF-127 powder and 30 mL of CaCl2
solution (4 ◦C) was mixed according to the above steps to obtain a final concentration of
25% (w/v) PF-127 supporting bath with Ca2+ ions.

2.3. PF-127 Supporting Bath Performance Evaluation
2.3.1. Rheology Test

The rheological properties of PF-127 supporting bath were evaluated using a HAAKE
Mar III rheometer (OmniCure Series 2000, Thermo Fisher Scientific, Waltham, MA, USA)
at concentrations of 20%, 25%, 30%, 35%, and 40%. Two parameters, G′-T and G′′-T, were
measured to characterize the storage modulus (G′, in Pa) and the loss modulus (G′′, in Pa)
as a function of temperature (T, in ◦C). A 20 mm P20 TiL disc was used as the parallel plate,
and the test conditions were set as ƒ = 1 Hz and Γ (rotor deflection) = 10%. Each set of data
was tested in triplicate to ensure the reproducibility of the results.

2.3.2. Scratch Recovery Test

To evaluate the scratch recovery effect of the PF-127 supporting bath at different
concentrations, a needle with an outer diameter of 1260 µm was used to scratch the surface
of the gel at a distance of 7 mm from the top. Tests were performed in 20%, 25%, 30%,
35%, and 40% PF-127 supporting bath, which was stabilized for 2 h at a temperature of
26 ± 1 ◦C to reach a soft gel state. The depth of the scratch mark was measured to evaluate
the scratch recovery effect.

2.4. PF-127 Support Bath Printing Effect on Printing Accuracy

The printing accuracy of the 3D bioprinter (3D Bioplotter; EnvisionTec, Gladbeck,
Germany) was assessed using PF-127DA bioink, different printing needles with varying
inner diameters, and PF-127 supporting baths with different concentrations. To evaluate
the single-line accuracy of printing, needles with inner diameters of 60 µm, 90 µm, 160 µm,
and 210 µm were used to print in a PF-127 supporting bath with a concentration of 25%.
In a separate test, a needle with an inner diameter of 60 µm was used to print in PF-127
supporting baths with concentrations of 20%, 25%, 30%, 35%, and 40%. The influence of
the PF-127 supporting bath on printing accuracy was analyzed.

2.5. PF-127 Support Bath Printing Compatibility Test
2.5.1. Compatibility of Different Bioinks

All printing was performed using a PF-127 supporting bath with a concentration of
25%. GelMa, HAMA, and PF-127DA bioinks were cross-linked using 365 nm UV light after
printing in the PF-127 supporting bath. Alginate bioink was printed in a supporting bath
with Ca2+ ions and directly crosslinked by Ca2+ ions.
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2.5.2. Biocompatibility

Human dermal fibroblast (HDF, Shanghai Jiaotong University Ninth People’s Hospital,
Shanghai, China) cells were cultured in DMEM high glucose medium (Hyclone Company,
Logan, UT, USA) with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin in a
commercial incubator (160i; Thermo Fisher Scientific) at 37 ◦C with 5% CO2.

PF-127DA bioink was used to print complex structures using a PF-127 supporting
bath of 25%. After printing, the scaffold was cross-linked using 365 nm UV light. The
supporting bath was cooled down to 4 ◦C to make the PF-127 liquid remove the scaffold
and wash off the remaining PF-127 on the surface of the scaffold. The scaffold was then
immersed in 0.012 mg/mL collagen (rat tail, Corning, Corning, NY, USA) for 12 h to allow
the collagen to completely infiltrate the internal pores of the scaffold. The collagen-coated
scaffolds were used for in vitro experiments.

Thereafter, 2 × 104 HDF cells suspended in 50 µL DMEM high glucose medium were
seeded on PF-127DA scaffolds to form PF-127DA-HDF constructs. Nonadherent cells were
washed away one day after seeding, and the scaffolds were transferred to a blank well
plate. The scaffolds were cultured in DMEM high glucose medium with 10% FBS and 1%
penicillin-streptomycin in an incubator at 37 ◦C with 5% CO2. Cell Counting Kit-8 (Dojindo,
China) was used to test cell proliferation at 1, 4, and 7 days.

2.6. Statistical Analysis

The data were expressed as mean ± standard deviation (SD). The statistical analy-
sis was performed using the one-way ANOVA (analysis of variance) test to determine
significant differences. A p-value < 0.05 was considered statistically significant.

3. Result and Discussion

The use of PF-127 as a supporting bath has demonstrated its potential as a highly
adaptable and cost-effective bio-AM platform. The key advantage of this technology is
that the printed hydrogel is deposited and embedded in the PF-127 support bath, which
maintains the expected structure during the printing process and significantly improves
the printing fidelity. The PF-127 hydrogel system is thermosensitive, existing as a liquid
at low temperature and becoming a semi-solid gel at higher temperatures. As a result,
the hydrogel that is squeezed out of the nozzle and deposited in the bath stays in place,
allowing soft materials that slump when printed in the air to remain in their intended 3D
geometry in the support bath.

3.1. Performance of PF-127 Supporting Bath

During the printing process, the support bath must have sufficient storage modulus
to act as a support for the bioink while quickly recovering scratches for the next layer of
support. Rheological tests have shown that increasing the solid content of PF-127 improves
its support performance by increasing its G′ while decreasing its critical phase transition
temperature from 25 ◦C to 13 ◦C (as shown in Figure 1). However, under the condition of
25 ± 1 ◦C, increasing the solid content of the support bath leads to deeper scratch depth
and worse healing effects (as shown in Figure 2).
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3.2. PF-127 Support Bath Printing of Microline

Hydrogels experience extrusion swelling during the extrusion printing process in
air. Upon extrusion from the needle, the diameter of the extrudate can be significantly
larger than the size of the needle port, sometimes swelling more than twice its original
size. This swelling is caused by the hydrogel’s elastic memory ability. When the colloid
enters the needle, it undergoes strong stretching and shearing deformation. The stretching
deformation is elastic, and only a portion of these deformations is relaxed at the needle’s
exit. The remaining part causes elastic recovery of the hydrogel after extrusion, leading to
extrusion swelling.

The PF-127 supporting bath has a beneficial effect on the printed bioink by reducing
extrusion swelling. When printed with needles of different inner diameters (60 µm, 90 µm,
160 µm, and 210 µm), clear line structures can be obtained, and the printed material line
diameters are smaller than the inner diameter of the needles (Figure 3). Furthermore, the
higher the concentration of the PF-127 supporting bath or the farther the printing position
from the surface of the supporting bath, the more prominent the extrusion effect of the
supporting bath on the printing lines, leading to higher accuracy of single-line printing.
In fact, the accuracy of single-line printing in the PF-127 supporting bath can reach up to
10 µm, far exceeding the printing accuracy without using this technology (Figure 4).

The PF-127 supporting bath applies additional pressure to the hydrogel printed line,
leading to the compaction of its internal porous structure. The initially expanded pores
will contract, resulting in an overall reduction in the hydrogel’s volume. As a consequence,
the microline’s diameter becomes smaller than the nozzle diameter. As the concentration
of the supporting bath or the printing position depth increases, the microline’s diameter
experiences more significant shrinkage (as shown in Figure 4b).
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3.3. Compatibility of Different Bioinks

The PF-127 supporting bath printing technology is compatible with various bioinks
that have different viscosities and curing methods (as shown in Figure 5). The printing
effect depends on the bioink’s characteristics. PF-127DA produces thin, well-defined lines
with uniform thickness. This is due to the material’s significant temperature sensitivity. At
a controlled temperature of 37 ◦C, the PF-127DA material extrudes in a filamentous shape,
as depicted in Figure 6. This bioink remains in its extrusion state while in the supporting
bath at a controlled temperature of 25 ◦C (as shown in Figure 7), making it easy to achieve
excellent printing resolution.
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The lines printed with HAMA bioink are significantly thicker than those printed with
other bioinks. This is because the viscosity of the HAMA bioink cannot be adjusted by
temperature during the printing process. The low viscosity bioink diffuses into the needle’s
scratch before the supporting bath can recover, leading to a printing width that corresponds
to the needle’s outer diameter rather than its inner diameter.

The line boundaries printed with alginate bioink are less defined and have uneven
thickness. This is because alginate’s crosslinking mechanism differs from that of the other
three bioinks. PF-127DA, HAMA, and GelMa are crosslinked by UV light after printing,
whereas sodium alginate reacts directly with Ca2+ ions in the supporting bath while
printing, resulting in less-sharp boundaries in the printed samples that are more affected
by the printing process.

3.4. Biocompatibility of PF-127 Supporting Bath

The Cell Counting Kit-8 experiment conducted on the PF-127DA-HDF constructs demon-
strated that the cells on the scaffold exhibited a robust proliferation state with the passage of
culture time (as illustrated in Figure 8). The scaffolds produced by the PF-127 supporting
bath technology exhibited no cytotoxicity and displayed excellent biocompatibility.

Polymers 2023, 15, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 6. Extrusion of different materials from the printing nozzle: (a) HAMA; (b) alginate; (c) 
GelMA; (d) PF−127DA. 

 
Figure 7. The relationship between viscosity and temperature of different printing material: (a) 
The relationship between Viscosity–T of Alginate, HAMA, GelMA and PF−127DA; (b) detailed 
view. 

3.4. Biocompatibility of PF−127 Supporting Bath 
The Cell Counting Kit−8 experiment conducted on the PF−127DA−HDF constructs 

demonstrated that the cells on the scaffold exhibited a robust proliferation state with the 
passage of culture time (as illustrated in Figure 8). The scaffolds produced by the PF−127 
supporting bath technology exhibited no cytotoxicity and displayed excellent biocompat-
ibility. 

 
Figure 8. Proliferation of HDF cells during 7 days of culture (*** means p < 0.01). 

3.5. 3D printing of Complex Biological Structures 
Subsequently, the supporting bath printing technology was employed to 3D print 

complex biological structures based on medical imaging data in order to showcase its ca-
pacity to fabricate intricate geometries. Initially, we employed the PF−127 support bath 

Figure 8. Proliferation of HDF cells during 7 days of culture (*** means p < 0.01).

3.5. 3D Printing of Complex Biological Structures

Subsequently, the supporting bath printing technology was employed to 3D print com-
plex biological structures based on medical imaging data in order to showcase its capacity
to fabricate intricate geometries. Initially, we employed the PF-127 support bath printing
technology to print springs and DNA helical structures that are challenging to realize in a
conventional printing environment (as depicted in Figures 9 and 10). Subsequently, we 3D
printed a human ear using PF-127DA bioink, and the printed ear exhibited a high-fidelity
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resemblance to the actual human ear (as shown in Figures 11 and 12). Furthermore, to
demonstrate the ability of the supporting bath technology to print a hollow structure, we
designed and printed a simple bifurcated tube (height of 30 mm, O.D. of 4.5 mm, I.D.
of 4.0 mm) using CAD. Across all these tests, the supporting bath printing technology
demonstrated excellent forming capabilities.
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4. Conclusions and Future Aspects

In this paper, we employed HAMA, GelMA, PF-127DA, and alginate bioinks to
demonstrate the versatility of embedded 3D printing technology using a supporting bath
coupled with photopolymerization or chemical crosslinking mechanisms. The supporting
bath technology successfully replicates the external geometry of native organs, as evidenced
by the successful printing of a whole ear model. Furthermore, using the supporting bath,
we successfully printed microlines at a scale of 10 µm. The additional pressure provided by
the supporting bath results in the diameter of the printed bioink being significantly smaller
than the nozzle diameter. The HDF cell proliferation test on the scaffold printed using the
supporting bath technology showed no cytotoxicity, indicating excellent biocompatibility.

Achieving simultaneous replication of both external organ geometry and intricate
internal structures of native tissues is a goal that necessitates further research and devel-
opment for its full realization. However, many companies and academic laboratories are
actively working towards this goal [11,13,26,31]. Supporting bath bioprinting technology
offers robust compatibility with multiple bioinks, enabling the printing of native tissue’s
external organ geometry and facilitating the replication of intricate capillary networks. This
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technology has the potential to expand bioprinting into a wide range of academic and
commercial laboratory settings, accelerating important breakthroughs in tissue engineering
for applications ranging from drug testing to regenerative therapies. Further research is
needed to optimize the printing process, develop new bioinks, and improve the biocompat-
ibility of printed constructs. With continued innovation and advancement, supporting bath
printing technology has the potential to revolutionize tissue engineering and bring us one
step closer to the ultimate goal of bioprinting functional organs for human transplantation.
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