Evaluation of the Effect of Waste from Agricultural Production on the Properties of Flexible Polyurethane Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Obtaining Flexible Polyurethane Foams Containing Ground Corncake
2.3. Methods
2.3.1. Analysis of Foaming Process
2.3.2. Scanning Electron Microscopy (SEM) Examination
2.3.3. Fourier Transform Infrared (FTIR) Spectroscopy Examination
2.3.4. Physico-Mechanical Tests
3. Results and Discussion
3.1. Foaming Process
3.2. Structure and FTIR Analysis of the Obtained FPUfs
3.3. Physico-Mechanical Properties of FPUfs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Aziz, A.; Antonietti, M.; Barner-Kowollik, C.; Binder, W.; Böker, A. The Next 100 Years of Polymer Science. Macromol. Chem. Phys. 2020, 221, 2000216. [Google Scholar] [CrossRef]
- Formela, K.; Kurańska, M.; Barczewski, M. Recent Advances in Development of Waste-Based Polymer Materials: A Review. Polymers 2022, 14, 1050. [Google Scholar] [CrossRef] [PubMed]
- Saalwächter, K. Grand challenges in polymers. Front. Soft. Matter 2022, 2, 1037349. [Google Scholar] [CrossRef]
- Geyer, R. Production, use, and fate of synthetic polymers. In Plastic Waste and Recycling; Academic Press: London, UK, 2020; ISBN 9780128178805. [Google Scholar] [CrossRef]
- Januszewski, R.; Orwat, B.; Dutkiewicz, M.; Kownacki, I. Structurally-unique polymeric materials obtained through catalytic post-polymerization protocols. Mater. Today Chem. 2022, 26, 101073. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Qin, S. Three Polymers from the Sea: Unique Structures, Directional Modifications, and Medical Applications. Polymers 2021, 13, 2482. [Google Scholar] [CrossRef] [PubMed]
- Kucinska-Lipka, J.; Marzec, M.; Gubanska, I.; Janik, H. Porosity and swelling properties of novel polyurethane–ascorbic acid scaffolds prepared by different procedures for potential use in bone tissue engineering. J. Elastomers Plast. 2017, 49, 440–456. [Google Scholar] [CrossRef]
- Beaumont, M.; Tran, R.; Vera, G.; Niedrist, D.; Rousset, A.; Pierre, R.; Shastri, V.P.; Forget, A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021, 22, 1027–1052. [Google Scholar] [CrossRef]
- Makshakova, O.N.; Zuev, Y.F. Interaction-Induced Structural Transformations in Polysaccharide and Protein-Polysaccharide Gels as Functional Basis for Novel Soft-Matter: A Case of Carrageenans. Gels 2022, 8, 287. [Google Scholar] [CrossRef]
- Coppola, D.; Oliviero, M.; Vitale, G.; Lauritano, C.; Mbra, I.D.; Iannace, S.; De Pascale, D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef]
- Billa, S.; Vislavath, P.; Bahadur, J.; Rath, S.K.; Ratna, D.; Manoj, N.R.; Chakraborty, B.C. Imparting Reprocessability, Quadruple Shape Memory, Self-Healing, and Vibration Damping Characteristics to a Thermosetting Poly(urethane-urea). ACS Appl. Polym. Mater. 2023, 5, 3079–3095. [Google Scholar] [CrossRef]
- Zeng, K.; Yang, Y.; Xu, J.; Wang, N.; Tang, W.; Xu, J.; Zhang, Y.; Wu, Y.; Xu, Y.; Wang, G. Metal-Backboned Polymers with Well-Defined Lengths. Angew. Chem. Int. Ed. 2022, 62, e202216060. [Google Scholar] [CrossRef] [PubMed]
- Britannica. Encyklopedia Britannica. Available online: https://www.britannica.com/technology/Mylar (accessed on 13 July 2023).
- Lu, Y.; Xu, X.; Li, J. Recent advances in adhesive materials used in the biomedical field: Adhesive properties, mechanism, and applications. J. Mater. Chem. B 2023, 11, 3338–3355. [Google Scholar] [CrossRef] [PubMed]
- Plastics Polymers & Resins. Available online: https://www.fortunebusinessinsights.com/plastics-market-102176 (accessed on 18 July 2023).
- Ekong, E. Future Aspects of Micro-Plastics and Their Management. SSRN 2023. [Google Scholar] [CrossRef]
- De Souza, F.M.; Sulaiman, M.R.; Gupta, R.K. Materials and Chemistry of Polyurethanes, ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2021. [Google Scholar]
- Kucińska-Lipka, J.; Gubanska, I.; Janik, H. Gelatin-modified polyurethanes for soft tissue scaffold. Sci. World J. 2013, 2013, 450132. [Google Scholar] [CrossRef]
- Brzeska, J.; Dacko, P.; Gebarowska, K. The structure of novel polyurethanes containing synthetic poly(R, S)-3-hydroxybutyrate. J. Appl. Polym. Sci. 2012, 125, 4285–4291. [Google Scholar] [CrossRef]
- Gupta, R.K.; Kahol, P.K. Polyurethane Chemistry: Renewable Polyols and Isocyanates ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2021. [Google Scholar]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnam, N.; Yuvaraj, A.R. Polyurethane types, synthesis and applications—A review. RSC Adv. 2016, 6, 114453–114482. [Google Scholar] [CrossRef]
- Calleros, E.L.; Simonovsky, F.I.; Garty, S.; Ratner, B.D. Crosslinked, biodegradable polyurethanes for precision-porous biomaterials: Synthesis and properties. J. Appl. Polym. Sci. 2020, 137, 48943. [Google Scholar] [CrossRef]
- Liu, Z. Functional Porous Materials 2021. Manufacturing Process Exploration and Composite Integration. Available online: https://purl.lib.fsu.edu/diginole/2021_Fall_Liu_fsu_0071E_16874 (accessed on 17 July 2023).
- Tiuc, A.-E.; Borlea, S.I.; Nemeș, O.; Vermeșan, H.; Vasile, O.; Popa, F.; Pințoi, R. New Composite Materials Made from Rigid/Flexible Polyurethane Foams with Fir Sawdust: Acoustic and Thermal Behavior. Polymers 2022, 14, 3643. [Google Scholar] [CrossRef]
- Hebda, E.; Bukowczan, A.; Michałowski, S.; Pielichowski, K. Flexible Polyurethane Foams Reinforced by Functionalized Polyhedral Oligomeric Silsesquioxanes: Structural Characteristics and Evaluation of Thermal/Flammability Properties. Polymers 2022, 14, 4743. [Google Scholar] [CrossRef]
- Javni, I.; Song, K.; Lin, J.; Petrovic, Z.S. Structure and properties of flexible polyurethane foams with nano- and micro-fillers. J. Cell. Plast. 2011, 47, 357–372. [Google Scholar] [CrossRef]
- Zieleniewska, M.; Auguścik, M.; Prociak, A.; Rojek, P.; Ryszkowska, J. Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering. Polym. Degrad. Stab. 2014, 108, 241–249. [Google Scholar] [CrossRef]
- Kalia, S. Biodegradable Green Composites; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Ionescu, M. Chemistry and Technology of Polyols for Polyurethanes. Polymers 2006, 26, 218. [Google Scholar]
- Das, A.; Mahanwar, P. A brief discussion on advances in polyurethane applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Somarathna, H.M.C.C.; Raman, S.N.; Mohotti, D.; Mutalib, A.A.; Badri, K.H. The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Constr. Build. Mater. 2018, 190, 995–1014. [Google Scholar]
- Zeydan, Z. Optymization of Flexible Polureyhane Foam Hardness by reducing process variance. Sigma J. Eng. Nat. Sci. 2020, 38, 1851–1867. [Google Scholar]
- Lonescu, M. Chemistry and Technology of Polyols for Polyurethanes; Rapra Technology Limited: Shawbury, UK, 2005. [Google Scholar]
- Zhao, Y.; Zhong, F.; Tekeei, A.; Suppes, G.J. Modeling impact of catalyst loading on polyurethane foam polymerization. Appl. Catal. A 2014, 469, 229–238. [Google Scholar] [CrossRef]
- Sonnenschein, M.F. Polyurethanes: Science, Technology, Markets, and Trends; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Malani, R.S.; Malshe, V.C.; Thorat, B.N. Polyols and polyurethanes from renewable sources: Past, present and future—Part 1: Vegetable oils and lignocellulosic biomass. J. Coat. Technol. Res. 2021, 1, 201–222. [Google Scholar] [CrossRef]
- Singh, I.; Samal, S.K.; Nayak, N.S. Recent Advancement in Plant Oil Derived Polyol-Based Polyurethane Foam for Future Perspective: A Review. Eur. J. Lipid Sci. Technol. 2020, 122, 1900225. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Polyurethanes from Seed Oil-Based Polyols: A Review of Synthesis, Mechanical and Thermal Properties. Ind. Crops Prod. 2019, 142, 111841. [Google Scholar] [CrossRef]
- Jayavani, S.; Sunanda, S.; Varghese, T.O.; Nayak, S.K. Synthesis and Characterizations of Sustainable Polyester Polyols from Non-edible Vegetable Oils: Thermal and Structural Evaluation. J. Clean. Prod. 2017, 162, 795–805. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Bio-Based Routes to Synthesize Cyclic Carbonates and Polyamines Precursors of Non-isocyanate Polyurethanes: A Review. Eur. Polym. J. 2019, 118, 668–684. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, Y.; Li, B.; Sun, C.; Guo, Z. Environmentally Friendly Alternative to Polyester Polyol by Corn Straw on Preparation of Rigid Polyurethane Composite. Compos. Commun. 2020, 17, 109–114. [Google Scholar] [CrossRef]
- Amran, U.A.; Zakaria, S.; Chia, C.H.; Roslan, R.; Jaafar, S.N.S.; Salleh, K.M. Polyols and Rigid Polyurethane Foams Derived from Liquefied Lignocellulosic and Cellulosic Biomass. Cellulose 2019, 26, 3231–3246. [Google Scholar] [CrossRef]
- Leszczyńska, M.; Malewska, E.; Ryszkowska, J.; Kurańska, M.; Gloc, M.; Leszczyński, M.K.; Prociak, A. Vegetable Fillers and Rapeseed Oil-Based Polyol as Natural Raw Materials for the Production of Rigid Polyurethane Foams. Materials 2021, 14, 1772. [Google Scholar] [CrossRef]
- Bryśkiewicz, A.; Zieleniewska, M.; Przyjemska, K.; Chojnacki, P.; Ryszkowska, J. Modification of flexible polyurethane foams by the addition of natural origin fillers. Polym. Degrad. Stab. 2016, 132, 32–40. [Google Scholar] [CrossRef]
- Członka, S.; Strakowska, A.; Strzelec, K.; Kairyte, A.; Kremensas, A. Bio-based polyurethane composite foams with improved mechanical, thermal, and antibacterial properties. Materials 2020, 13, 1108. [Google Scholar] [CrossRef]
- Sair, S.; Oushabi, S.; Kammouni, A.; Tanane, O.; Abboud, Y.; Bouari, A. Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites. Case Stud. Constr. Mater. 2018, 8, 203–212. [Google Scholar] [CrossRef]
- Strzetelski, J. Możliwości wykorzystania w żywieniu bydła produktów ubocznych powstających przy głębokim tłoczeniu oleju z nasion roślin oleistych i produkcji bioetanolu. Wiadomości Zootech. 2006, 3, 56–66. [Google Scholar]
- Kaikade, D.S.; Sabnis, A.S. Polyurethane foams from vegetable oil-based polyols: A review. Polym. Bull. 2023, 80, 2239–2261. [Google Scholar] [CrossRef]
- Andersons, J.; Modniks, J.; Kirpluks, M.; Cabulis, U. The effect of cell shape anisotropy on fracture toughness of low-density brittle foams. Eng. Fract. Mech. 2022, 269, 108565. [Google Scholar] [CrossRef]
- Şerban, D.A.; Linul, E.; Voiconi, T.; Marşavina, L.; Modler, N. Numerical evaluation of two-dimensional micromechanical structures of anisotropic cellular materials: Case study for polyurethane rigid foams. Iran. Polym. J. 2015, 24, 515–529. [Google Scholar] [CrossRef]
- Zhang, C.; Tong, X.; Deng, C.; Wen, H.; Huang, D.; Guo, Q.; Liu, X. The foaming dynamic characteristics of polyurethane foam. J. Cell. Plast. 2020, 56, 279–295. [Google Scholar] [CrossRef]
- Strankowski, M.; Bodarczyk, W.; Piszczyk, Ł.; Strankowska, J. Thermal and Mechanical Properties of Microporous Polyurethanes Modified with Reduced Graphene Oxide. Int. J. Polym. Sci. 2016, 2016, 8070327. [Google Scholar] [CrossRef]
- Faezipour, M.; Shamsi, R.; Ashori, A. Hybrid composite using recycled polycarbonate/waste silk fibers and wood flour. Polym. Compos. 2014, 37, 1667–1673. [Google Scholar] [CrossRef]
- Ryszkowska, J. Materiały Poliuretanowe Wytwarzane z Zastosowaniem Surowców Odnawialnych; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2019. [Google Scholar]
- Bartczak, P.; Stachowiak, J.; Szmitko, M.; Grząbka-Zasadzińska, A.; Borysiak, S. Multifunctional Polyurethane Composites with Coffee Grounds and Wood Sawdust. Materials 2023, 16, 278. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.S.; Laskowski, J.S. Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Process. 2002, 64, 69–80. [Google Scholar] [CrossRef]
- Kitchener, J.A.; Cooper, C.F. Current concepts in the theory of foaming. Q. Rev. Lond. 1959, 13, 71–97. [Google Scholar] [CrossRef]
- Brondi, C.; Santiago-Calvo, M.; Di Maio, E.; Rodríguez-Perez, M.Á. Rola włączenia pęcherzyków powietrza w kinetykę reakcji poliuretanu. Materials 2022, 15, 3135. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, X.; Chen, W.; Zhang, H.; Han, D. Modyfikacja sztywnych pianek poliuretanowych z dodatkiem nano-SiO2 lub biomasy lignocelulozowej. Polymers 2020, 12, 107. [Google Scholar] [CrossRef]
- Prociak, A.; Rokicki, G.; Ryszkowska, J. Materiały Poliuretanowe; Wydawnictwo PWN: Warszawa, Poland, 2014. [Google Scholar]
Fraction on the Sieve | Percentage Content (%) |
---|---|
800–1000 µm | 3.45 |
600–800 µm | 11.87 |
400–600 µm | 14.89 |
200–400 µm | 65.46 |
100–200 µm | 2.42 |
50–100 µm | 0.87 |
<50 µm | 1.04 |
Component | Dry Mass (%) | Water Content (%) | Ash (%) | Proteins (%) | Fat (%) | Raw Fiber (%) | Calcium (%) | Phosphorus (%) |
---|---|---|---|---|---|---|---|---|
Content | 95.00 | 4.70 | 9.00 | 36.50 | 4.20 | 14.20 | 0.33 | 0.85 |
Foam | Rokopol F3000 (g) | DABCO 33LV (g) | DABCO BL-11 (g) | TEGOSTAB BF 2370 (g) | KOSMOS T-9 (g) | Distilled Water (g) | Corncake (php) (g) | Ongronat 1080 (g) |
---|---|---|---|---|---|---|---|---|
REF | 100.00 | 0.20 | 0.05 | 1.00 | 0.20 | 4.00 | 0 0.00 | 47.41 |
CC2% | 100.00 | 0.20 | 0.05 | 1.00 | 0.20 | 4.00 | 2 2.00 | 47.41 |
CC4% | 100.00 | 0.20 | 0.05 | 1.00 | 0.20 | 4.00 | 4 4.00 | 47.41 |
CC6% | 100.00 | 0.20 | 0.05 | 1.00 | 0.20 | 4.00 | 6 6.00 | 47.41 |
CC8% | 100.00 | 0.20 | 0.05 | 1.00 | 0.20 | 4.00 | 8 8.00 | 47.41 |
CC10% | 100.00 | 0.20 | 0.05 | 1.00 | 0.20 | 4.00 | 10 10.00 | 47.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paciorek-Sadowska, J.; Borowicz, M.; Isbrandt, M. Evaluation of the Effect of Waste from Agricultural Production on the Properties of Flexible Polyurethane Foams. Polymers 2023, 15, 3529. https://doi.org/10.3390/polym15173529
Paciorek-Sadowska J, Borowicz M, Isbrandt M. Evaluation of the Effect of Waste from Agricultural Production on the Properties of Flexible Polyurethane Foams. Polymers. 2023; 15(17):3529. https://doi.org/10.3390/polym15173529
Chicago/Turabian StylePaciorek-Sadowska, Joanna, Marcin Borowicz, and Marek Isbrandt. 2023. "Evaluation of the Effect of Waste from Agricultural Production on the Properties of Flexible Polyurethane Foams" Polymers 15, no. 17: 3529. https://doi.org/10.3390/polym15173529
APA StylePaciorek-Sadowska, J., Borowicz, M., & Isbrandt, M. (2023). Evaluation of the Effect of Waste from Agricultural Production on the Properties of Flexible Polyurethane Foams. Polymers, 15(17), 3529. https://doi.org/10.3390/polym15173529