Free-Standing CNT Film for Interlaminar Toughening: Insight into Infiltration and Thickness Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CNT-Film-Toughened Interlayer
2.3. Preparation of Laminates
2.4. Characterizations
2.4.1. Interlaminate Fracture Toughness Tests
2.4.2. Other Characterizations
3. Results and Discussion
3.1. Mode I Fracture Test
3.2. Mode II Fracture Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soutis, C. Carbon fiber reinforced plastics in aircraft construction. Mater. Sci. Eng. A 2005, 412, 171–176. [Google Scholar] [CrossRef]
- Al-Furjan, M.S.H.; Shan, L.; Shen, X.; Zarei, M.S.; Hajmohammad, M.H.; Kolahchi, R. A review on fabrication techniques and tensile properties of glass, carbon, and Kevlar fiber reinforced rolymer composites. J. Mater. Res. Technol. 2022, 19, 2930–2959. [Google Scholar] [CrossRef]
- Xu, H.; Tong, X.; Zhang, Y.; Li, Q.; Lu, W. Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves. Compos. Sci. Technol. 2016, 127, 113–118. [Google Scholar] [CrossRef]
- Ali, A.; Koloor, S.S.R.; Alshehri, A.H.; Arockiarajan, A. Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures—A review. J. Mater. Res. Technol. 2023, 24, 6495–6521. [Google Scholar] [CrossRef]
- Rao, Y.A.; Ramji, K.; Rao, P.S.; Srikanth, I. Effect of A-MWCNTs and ETBN toughener on impact, compression and damping properties of carbon fiber reinforced epoxy composites. J. Mater. Res. Technol. 2019, 8, 896–903. [Google Scholar] [CrossRef]
- Tang, Y.; Ye, L.; Zhang, Z.; Friedrich, K. Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles—A review. Compos. Sci. Technol. 2013, 86, 26–37. [Google Scholar] [CrossRef]
- İnal, O.; Katnam, K.; Potluri, P.; Soutis, C. Progress in interlaminar toughening of aerospace polymer composites using particles and non-woven veils. Aeronaut. J. 2021, 126, 222–248. [Google Scholar] [CrossRef]
- Mouritz, A.P.; Bannister, M.K.; Falzon, P.J.; Leong, K.H. Review of applications for advanced three-dimensional fibre textile composites. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1445–1461. [Google Scholar] [CrossRef]
- Pegorin, F.; Pingkarawat, K.; Mouritz, A. Comparative study of the mode I and mode II delamination fatigue properties of z-pinned aircraft composites. Mater. Des. 2015, 65, 139–146. [Google Scholar] [CrossRef]
- Tan, K.; Watanabe, N.; Iwahori, Y. X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Compos. Part B Eng. 2011, 42, 874–884. [Google Scholar] [CrossRef]
- Howard, W.; Gossard, J.T.; Jones, R. Reinforcement of composite laminate free edges with U-shaped caps. In Proceedings of the 27th Structures, Structural Dynamics and Materials Conference, San Antonio, TX, USA, 19–21 May 1986; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1986. [Google Scholar] [CrossRef]
- Dong, H.; Yi, X.; An, X.; Zhang, C.; Yan, L.; Deng, H. Development of interleaved fibre-reinforced thermoset polymer matrix composites. Acta Mater. Compos. Sin. 2014, 31, 273–285. [Google Scholar] [CrossRef]
- Yi, X. Challenges and Innovations in Advanced Composite Technologies. Aeronaut. Manuf. Technol. 2004, 7, 24–30. [Google Scholar] [CrossRef]
- Lu, K.; Zhang, Y.; Yang, X.; Li, G.; Su, Q.; Gao, S. Research Development of Interlaminar Reinforcing and Toughening Technique of Carbon Fiber Composites. Aeronaut. Manuf. Technol. 2020, 63, 14–23. [Google Scholar] [CrossRef]
- Song, Y.; Zheng, N.; Dong, X.; Gao, J. Flexible Carboxylated CNT/PA66 Nanofibrous Mat Interleaved Carbon Fiber/Epoxy Laminates with Improved Interlaminar Fracture Toughness and Flexural Properties. Ind. Eng. Chem. Res. 2020, 59, 1151–1158. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Kuwata, M.; Bilotti, E.; Peijs, T. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Compos. Part A Appl. Sci. Manuf. 2015, 70, 102–110. [Google Scholar] [CrossRef]
- Ni, X.; Furtado, C.; Kalfon-Cohen, E.; Zhou, Y.; Valdes, G.A.; Hank, T.J.; Camanho, P.P.; Wardle, B.L. Static and fatigue interlaminar shear reinforcement in aligned carbon nanotube-reinforced hierarchical advanced composites. Compos. Part A Appl. Sci. Manuf. 2019, 120, 106–115. [Google Scholar] [CrossRef]
- Eskizeybek, V.; Yar, A.; Avcı, A. CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness. Compos. Sci. Technol. 2018, 157, 30–39. [Google Scholar] [CrossRef]
- Zheng, N.; Huang, Y.; Liu, H.-Y.; Gao, J.; Mai, Y.-W. Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves. Compos. Sci. Technol. 2017, 140, 8–15. [Google Scholar] [CrossRef]
- Ou, Y.; González, C.; Vilatela, J.J. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105477. [Google Scholar] [CrossRef]
- Song, J.; Ma, K.; Jiao, T.; Xing, R.; Zhang, L.; Zhou, J.; Peng, Q. Preparation and self-assembly of graphene oxide-dye composite Langmuir films: Nanostructures and aggregations. Colloids Surfaces A: Physicochem. Eng. Asp. 2017, 529, 793–800. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Cho, J.; Roether, J.A.; Thomas, B.J.; Minay, E.J.; Shaffer, M.S. Electrophoretic deposition of carbon nanotubes. Carbon 2006, 44, 3149–3160. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, B.-S.; Chen, S.; Shao-Horn, Y.; Hammond, P.T. Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications. J. Am. Chem. Soc. 2008, 131, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhe, C.; Fei, X.; Shaokai, W.; Min, L. Research progress on interlaminar property of carbon nanotube-continuous fiber rein-forced resin matrix composites. Acta Mater. Compos. Sin. 2022, 39, 863–883. [Google Scholar] [CrossRef]
- Donchak, V.; Stetsyshyn, Y.; Bratychak, M.; Broza, G.; Harhay, K.; Stepina, N.; Kostenko, M.; Voronov, S. Nanoarchitectonics at surfaces using multifunctional initiators of surface-initiated radical polymerization for fabrication of the nanocomposites. Appl. Surf. Sci. Adv. 2021, 5, 100104. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y. Tensile modulus prediction of carbon nanotubes-reinforced nanocomposites by a combined model for dispersion and networking of nanoparticles. J. Mater. Res. Technol. 2019, 9, 22–32. [Google Scholar] [CrossRef]
- Li, Y.-L.; Kinloch, I.A.; Windle, A.H. Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis. Sci. China Technol. Sci. 2004, 304, 276–278. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Gao, l.; Qu, l.; Lv, W. Toughness Enhancement for Interlaminar Fracture Composite Based on Carbon Nanotube Films. Acta Aeronaut. Et Astronaut. Sin. 2019, 40, 307–314. [Google Scholar] [CrossRef]
- Li, Q.; Yin, X.; Yu, Y.; Yang, W.; Lv, W. Preparation and Characterization of Aligned Carbon Nanotubes/Epoxy composite films. Acta Mater. Compos. Sin. 2021, 38, 2759–2767. [Google Scholar] [CrossRef]
- Ramanathan, M.; Müller, H.; Möhwald, H.; Krastev, R. Foam Films as Thin Liquid Gas Separation Membranes. ACS Appl. Mater. Interfaces 2011, 3, 633–637. [Google Scholar] [CrossRef]
- Holt, J.K.; Park, H.G.; Wang, Y.; Stadermann, M.; Artyukhin, A.B.; Grigoropoulos, C.P.; Noy, A.; Bakajin, O. Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes. Science 2006, 312, 1034–1037. [Google Scholar] [CrossRef]
- Muruganatha, R.M.; Krastev, R.; Müller, H.-J.; Möhwald, H. Foam Films Stabilized with Dodecyl Maltoside. 2. Film Stability and Gas Permeability. Langmuir 2006, 22, 7981–7985. [Google Scholar] [CrossRef]
- Muruganathan, R.M.; Krustev, R.; Ikeda, N.; Müller, H.J. Temperature Dependence of the Gas Permeability of Foam Films Stabilized by Dodecyl Maltoside. Langmuir 2003, 19, 3062–3065. [Google Scholar] [CrossRef]
- Wang, S.; Haldane, D.; Liang, R.; Smithyman, J.; Zhang, C.; Wang, B. Nanoscale infiltration behaviour and through-thickness permeability of carbon nanotube buckypapers. Nanotechnology 2013, 24, 015704. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Wu, L.; Yi, X.; Mao, D. Understanding Mode I interlaminar toughening of unidirectional CFRP laminates interleaved with aligned ultrathin CNT fiber veils: Thickness and orientation effects. Compos. Part B Eng. 2023, 254, 110578. [Google Scholar] [CrossRef]
- ASTM D5528; Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites 1. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D7905; Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, USA, 2019.
- Jiang, P.; Wang, Z.; Chang, Z.; Yang, Z.; Zhou, X.; Feng, Z. Interlaminar Aligned Carbon Nanotubes Spraying Process and Fracture Toughness of CFRP. Acta Mater. Compos. Sin. 2021, 38, 496–505. [Google Scholar] [CrossRef]
- Deng, H.; Wang, l.; Feng, Y.; Chen, M.; Jiang, W. Effect of Carbon Nanotube Film Interlayer Toughening on Mechanical Properties of Carbon Fiber Reinforced Composite. Aerosp. Mater. Technol. 2015, 5, 31–35. [Google Scholar] [CrossRef]
- Daelemans, L.; van der Heijden, S.; De Baere, I.; Rahier, H.; Van Paepegem, W.; De Clerck, K. Using aligned nanofibres for identifying the toughening micromechanisms in nanofibre interleaved laminates. Compos. Sci. Technol. 2016, 124, 17–26. [Google Scholar] [CrossRef]
Sample | CNTF0 | CNTF5D | CNTF5 | CNTF10 | CNTF15 |
---|---|---|---|---|---|
GIC (J/m2) | 875.23 ± 31.75 | 277.74 ± 31.96 | 1412.42 ± 60.99 | 1083.25 ± 19.47 | 1042.93 ± 73.09 |
Improvement | — | −68.27% | +61.38% | +23.77% | +19.16% |
Sample | CNTF0 | CNTF5D | CNTF5 | CNTF10 | CNTF15 |
---|---|---|---|---|---|
GIIC (J/m2) | 587.00 ± 54.13 | 694.41 ± 106.56 | 835.05 ± 100.22 | 882.62 ± 78.59 | 983.73 ± 51.04 |
Improvement | — | +18.30% | +42.26% | +50.36% | +67.59% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, A.; Ou, Y.; Wu, L.; Zhang, Y.; Weng, Y.; Mao, D. Free-Standing CNT Film for Interlaminar Toughening: Insight into Infiltration and Thickness Effects. Polymers 2023, 15, 3579. https://doi.org/10.3390/polym15173579
Fu A, Ou Y, Wu L, Zhang Y, Weng Y, Mao D. Free-Standing CNT Film for Interlaminar Toughening: Insight into Infiltration and Thickness Effects. Polymers. 2023; 15(17):3579. https://doi.org/10.3390/polym15173579
Chicago/Turabian StyleFu, Anran, Yunfu Ou, Longqiang Wu, Yunxiao Zhang, Yiting Weng, and Dongsheng Mao. 2023. "Free-Standing CNT Film for Interlaminar Toughening: Insight into Infiltration and Thickness Effects" Polymers 15, no. 17: 3579. https://doi.org/10.3390/polym15173579
APA StyleFu, A., Ou, Y., Wu, L., Zhang, Y., Weng, Y., & Mao, D. (2023). Free-Standing CNT Film for Interlaminar Toughening: Insight into Infiltration and Thickness Effects. Polymers, 15(17), 3579. https://doi.org/10.3390/polym15173579