Influence of Ageing on Optical, Mechanical, and Thermal Properties of Agricultural Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Artificial Ageing
- Irradiation: 550 W/m2,
- Temperature: 65 °C and humidity 65% for 1000 h, which roughly corresponds to 3 years of actual ageing exposure to atmospheric conditions,
- Dry time/wet time exposure alternated in duration of 102 and 18 min, respectively.
2.3. Differential Scanning Calorimetry (DSC)
2.4. Testing of Tensile Properties
2.5. Spectral Analysis
- The plastic films were cut into small pieces using a die-cutter.
- The pieces of films were placed on a glass plate and covered with another piece of glass.
- The UV–VIS spectrometer was turned on, and the transmittance mode was selected.
- A blank was created by placing a piece of blanket on the machine.
- The blank was subtracted from the readings of the samples.
- The data was collected for both groups of samples, with and without weather chamber ageing.
2.6. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.7. Dynamic Mechanical Analysis (DMA)
2.8. Thermogravimetric Analysis (TGA)
3. Results and Discussion
3.1. Melting Points and Crystallinity (DSC)
3.2. Tensile Properties
3.3. Transmittance
3.4. Chemical Structure Changes (FT-IR)
3.5. DMA Thermograms
3.6. Thermogravimetric Analysis (TGA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Max, J.F.J.; Schurr, U.; Tantau, H.-J.; Mutwiwa, U.N.; Hofmann, T.; Ulbrich, A. Greenhouse Cover Technology. In Horticultural Reviews; Janick, J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; Volume 40, pp. 259–356. [Google Scholar]
- Li, C.; Xiao, S.L. Effects on the Properties of Polyethylene Film Ageing by Different Methods. Adv. Mater. Res. 2013, 830, 49–52. [Google Scholar] [CrossRef]
- Stefani, L.; Zanon, M.; Modesti, M.; Ugel, E.; Vox, G.; Schettini, E. Reduction of the environmental impact of plastic films for greenhouse covering by using fluoropolymeric materials. Acta Hortic. 2008, 801, 131–138. [Google Scholar] [CrossRef]
- Orzolek, M.D. Introduction. In Plastics Design Library, A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture; Orzolek, M.D., Ed.; Elsevier: Oxford, UK, 2017; pp. 1–20. [Google Scholar]
- Briassoulis, D.; Aristopoulou, A.; Bonora, M.; Verlodt, I. Degradation Characterisation of Agricultural Low-density Polyethylene Films. Biosyst. Eng. 2004, 88, 131–143. [Google Scholar] [CrossRef]
- Dilara, P.A.; Briassoulis, D. Degradation and Stabilization of Low-density Polyethylene Films used as Greenhouse Covering Materials. J. Agric. Eng. Res. 2000, 76, 309–321. [Google Scholar] [CrossRef]
- Han, Y.; Wei, M.; Shi, X.; Wang, D.; Zhang, X.; Zhao, Y.; Kong, M.; Song, X.; Xie, Z.; Li, F. Effects of Tensile Stress and Soil Burial on Mechanical and Chemical Degradation Potential of Agricultural Plastic Films. Sustainability 2020, 12, 7985. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, W.; Xing, R.; Xie, S.; Yang, X.; Cui, P.; Lü, J.; Liao, H.; Yu, Z.; Wang, S.; et al. Enhanced in situ, biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology. J. Hazard. Mater. 2020, 384, 121271. [Google Scholar] [CrossRef]
- Briassoulis, D. The effects of tensile stress and the agrochemical Vapam on the ageing of low density polyethylene (LDPE) agricultural films. Part I. Mechanical behaviour. Polym. Degrad. Stab. 2005, 88, 489–503. [Google Scholar] [CrossRef]
- Dehbi, A.; Mourad, A.-H.I.; Bouaza, A. Degradation assessment of LDPE multilayer films used as a greenhouse cover: Natural and artificial ageing impacts. J. Appl. Polym. Sci. 2012, 124, 2702–2716. [Google Scholar] [CrossRef]
- Babaghayou, M.I.; Mourad, A.-H.I.; Lorenzo, V.; Chabira, S.F.; Sebaa, M. Anisotropy evolution of low density polyethylene greenhouse covering films during their service life. Polym. Test. 2018, 66, 146–154. [Google Scholar] [CrossRef]
- Dehbi, A.; Mourad, A.-H.I. Durability of mono-layer versus tri-layers LDPE films used as greenhouse cover: Comparative study. Arab. J. Chem. 2016, 9, S282–S289. [Google Scholar] [CrossRef]
- Abdelhafidi, A.; Babaghayou, I.M.; Chabira, S.F.; Sebaa, M. Impact of Solar Radiation Effects on the Physicochemical Properties of Polyethylene (PE) Plastic Film. Procedia Soc. 2015, 195, 2922–2929. [Google Scholar] [CrossRef]
- Luyt, A.S.; Gasmi, S.A.; Malik, S.S.; Aljindi, R.M.; Ouederni, M.; Vouyiouka, S.N.; Porfyris, A.D.; Pfaendner, R.; Papaspyrides, C.D. Artificial weathering and accelerated heat ageing studies on low-density polyethylene (LDPE) produced via autoclave and tubular process technologies. EXPRESS Polym. Lett. 2021, 15, 121–136. [Google Scholar] [CrossRef]
- Charbonneau, L.; Polak, M.A.; Penlidis, A. Mechanical properties of ETFE foils: Testing and modelling. Constr. Build. Mater. 2014, 60, 63–72. [Google Scholar] [CrossRef]
- Lee, S.; Shon, S. Tensile Strength Characteristics on ETFE Film for Membrane Roof System. Appl. Mech. Mater. 2013, 365–366, 1106–1109. [Google Scholar] [CrossRef]
- Bracciale, M.P.; Capasso, L.; Sarasini, F.; Tirillò, J.; Santarelli, M.L. Effect of Ageing on the Mechanical Properties of Highly Transparent Fluoropolymers for the Conservation of Archaeological Sites. Polymers 2022, 14, 912. [Google Scholar] [CrossRef]
- Lamnatou, C.; Moreno, A.; Chemisana, D.; Reitsma, F.; Clariá, F. Ethylene tetrafluoroethylene (ETFE) material: Critical issues and applications with emphasis on buildings. Renew. Sust. Energy Rev. 2018, 82, 2186–2201. [Google Scholar] [CrossRef]
- Maraveas, C. Environmental Sustainability of Greenhouse Covering Materials. Sustainability 2019, 11, 6129. [Google Scholar] [CrossRef]
- Plastenici i Folije. Available online: https://www.zeleni-hit.hr/vrsta/plastenici-i-folije/folije/ (accessed on 15 July 2023).
- ISO 4892-2; Plastics—Methods of Exposure to Laboratory Light Sources—Part 2: Xenon-Arc Lamps. ISO: Geneva, Switzerland, 2013.
- ISO 527-3; Plastics—Determination of Tensile Properties—Part 3: Test Conditions for Films and Sheets. ISO: Geneva, Switzerland, 2018.
- Wunderlich, B. Thermal Analysis; Academic Press: Cambridge, MA, USA; Elsevier: Oxford, UK, 1990; pp. 417–431. [Google Scholar]
- Chen, X.; Hou, G.; Chen, Y.; Yang, K.; Dong, Y.; Zhou, H. Effect of molecular weight on crystallization, melting behavior and morphology of poly(trimethylene terephalate). Polym. Test. 2007, 26, 144–153. [Google Scholar] [CrossRef]
- White, R.J. Polymer ageing: Physics, chemistry or engineering? Time to reflect. Comptes Rendus Chim. 2006, 9, 1396–1408. [Google Scholar] [CrossRef]
- Najmeddine, A.; Xu, Z.; Liu, G.; Croft, Z.L.; Liu, G.; Esker, A.R.; Shakiba, M. Physics and chemistry-based constitutive modeling of photo-oxidative aging in semi-crystalline polymers. Int. J. Solids Struct. 2022, 239-240, 111427. [Google Scholar] [CrossRef]
- Walsby, N.; Sundholm, F.; Kallio, T.; Sundholm, G. Radiation-grafted ion-exchange membranes: Influence of the initial matrix on the synthesis and structure. J. Polym. Sci. A Polym. Chem. 2011, 39, 3008–3017. [Google Scholar] [CrossRef]
- Chabira, S.F.; Sebaa, M.; G’sell, C. Influence of climatic ageing on the mechanical properties and the microstructure of low-density polyethylene films. J. Appl. Polym. Sci. 2008, 110, 2516–2524. [Google Scholar] [CrossRef]
- Emekli, N.Y.; Büyüktas, K.; Basçetinçelik, A. Changes of some mechanical properties of different low-density polyethylene (LDPE) films during the service life. Appl. Eng. Agric. 2017, 33, 913–918. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Al-Helal, I.M.; Kumar, A.; Alsadon, A.A.; Shady, M.R.; Ibrahim, A.A. Effect of Ageing on the Spectral Radiative Properties of Plastic Film-Covered Greenhouse under Arid Conditions. Int. J. Thermophys. 2018, 39, 115. [Google Scholar] [CrossRef]
- Renner, G.; Schmidt, T.C.; Schram, J. Chapter 4—Characterization and Quantification of Microplastics by Infrared Spectroscopy. In Comprehensive Analytical Chemistry; Rocha-Santos, T.A.P., Duarte, A.C., Eds.; Elsevier: Oxford, UK, 2017; pp. 67–118. [Google Scholar]
- Setyaningrum, D.; Riyanto, S.; Rohman, A. Analysis of corn and soybean oils in red fruit oil using FTIR spectroscopy in combination with partial least square. Int. Food Res. J. 2013, 20, 1977–1981. [Google Scholar]
- Xu, A.; Roland, S.; Colin, X. Physico-chemical characterization of the blooming of Irganox 1076® antioxidant onto the surface of a silane-crosslinked polyethylene. Polym. Degrad. Stab. 2020, 171, 109046. [Google Scholar] [CrossRef]
- Balabanovich, A.I.; Klimovtsova, I.A.; Prokopovich, V.P.; Prokopchuk, N.R. Thermal stability and thermal decomposition study of hindered amine light stabilizers. Thermochim. Acta 2007, 459, 1–8. [Google Scholar]
- Gardette, M.; Perthue, A.; Gardette, J.L.; Janecska, T.; Foldes, E.; Pukánszky, B.; Therias, S. Photo- and Thermal-Oxidation of Polyethylene: Comparison of Mechanisms and Influence of Unsaturation Content. Polym. Degrad. Stab. 2013, 98, 2383–2390. [Google Scholar] [CrossRef]
- Yoo, H.; Kwak, S.-Y. Surface functionalization of PTFE membranes with hyperbranched poly(amidoamine) for the removal of Cu2+ ions from aqueous solution. J. Membr. Sci. 2013, 448, 125–134. [Google Scholar] [CrossRef]
- Calleja, G.; Houdayer, A.; Etienne-Calas, S.; Bourgogne, D.; Flaud, V.; Silly, G.; Shibahara, S.; Takahara, A.; Jourdan, A.; Hamwi, A.; et al. Conversion of poly(ethylene-alt-tetrafluoroethylene) copolymers into polytetrauoroethylene by direct fluorination: A convenient approach to access new properties at the ETFE surface. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 1517–1527. [Google Scholar] [CrossRef]
- Kamweru, P.K.; Ndiritu, F.G.; Kinyanjui, T.K.; Muthui, Z.W.; Ngumbu, R.G.; Odhiambo, P.M. Study of Temperature and UV Wavelength Range Effects on Degradation of Photo-Irradiated Polyethylene Films Using DMA. J. Macromol. Sci. B 2011, 50, 1338–1349. [Google Scholar] [CrossRef]
Sample | Tg (°C) | Tm (°C) | ΔHm (J/g) | Xc (%) | Tc (°C) | ΔHc (J/g) |
---|---|---|---|---|---|---|
PE-C | / | 94.3 | 52.1 | 17.8 | 79.2 | 61.5 |
PE-C aged | / | 94.4 | 56.7 | 19.4 | 79.2 | 58.0 |
PE-D | / | 105.6 | 63.4 | 21.6 | 105.1 | 60.9 |
PE-D aged | / | 109.3 | 74.5 | 25.4 | 96.4 | 66.5 |
ETFE | 126.4 | 253.7 | 22.1 | 19.5 | 239.6 | 23.3 |
ETFE aged | / | 253.2 | 29.0 | 25.6 | 240.0 | 23.3 |
Tensile Strength σm, N/mm2 | Tensile Strain at Break εb, % | Tensile Modulus E, N/mm2 | |
---|---|---|---|
ETFE—average | 37.2 ± 8.5 | 208.0 ± 80.7 | 996.0 ± 60.2 |
ETFE aged—average | 42.6 ± 2.2 | 260.3 ± 16.8 | 1003.0 ± 145.7 |
PE-C—average | 17.2 ± 6.2 | 376.5 ± 128.5 | 84.0 ± 3.7 |
PE-C aged—average | 16.8 ± 9.4 | 357.7 ± 223.5 | 79.9 ± 18.7 |
PE-D—average | 14.7 ± 5.5 | 303.9 ± 122.3 | 233 ± 15.1 |
PE-D aged—average | 15.1 ± 4.6 | 341.4 ± 122.5 | 246 ± 14.8 |
Sample | T95 (°C) | Tmax (°C) | m600 (%) |
---|---|---|---|
PE-C | 321.5 | 445.4 | 0.1 |
PE-C aged | 323.5 | 437.5 | 0.2 |
PE-D | 327.6 | 428.0 | 0.2 |
PE-D aged | 311.8 | 432.9 | 0.1 |
ETFE | 383.0 | 470.0 | 0.2 |
ETFE aged | 381.8 | 457.6 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rujnić Havstad, M.; Tucman, I.; Katančić, Z.; Pilipović, A. Influence of Ageing on Optical, Mechanical, and Thermal Properties of Agricultural Films. Polymers 2023, 15, 3638. https://doi.org/10.3390/polym15173638
Rujnić Havstad M, Tucman I, Katančić Z, Pilipović A. Influence of Ageing on Optical, Mechanical, and Thermal Properties of Agricultural Films. Polymers. 2023; 15(17):3638. https://doi.org/10.3390/polym15173638
Chicago/Turabian StyleRujnić Havstad, Maja, Ines Tucman, Zvonimir Katančić, and Ana Pilipović. 2023. "Influence of Ageing on Optical, Mechanical, and Thermal Properties of Agricultural Films" Polymers 15, no. 17: 3638. https://doi.org/10.3390/polym15173638
APA StyleRujnić Havstad, M., Tucman, I., Katančić, Z., & Pilipović, A. (2023). Influence of Ageing on Optical, Mechanical, and Thermal Properties of Agricultural Films. Polymers, 15(17), 3638. https://doi.org/10.3390/polym15173638