Chitosan/Alginate Polymeric Nanoparticle-Loaded α-Mangostin: Characterization, Cytotoxicity, and In Vivo Evaluation against Breast Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals
2.1.2. Cells
2.2. Animals and Foods
2.3. Preparation of NANO-AMCAL DDS
2.4. Physicochemical Characterization of NANO-AMCAL
2.5. Evaluation
2.5.1. Entrapment Efficiency (%)
2.5.2. Solubility Test
2.5.3. In Vitro Release Profile
2.5.4. Cytotoxicity Assay (MTT Assay)
2.6. Preparation of Test Animals
2.7. DMBA Induction
2.8. Histopathology
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of NANO-AMCAL Suspension
3.2. Characterization of NANO-AMCAL
3.2.1. Fourier-Transform Infrared (FTIR)
3.2.2. Crystalinity
3.2.3. Morphology
3.3. In Vitro Evaluation of NANO-AMCAL
3.3.1. Results of Entrapment Efficiency
3.3.2. Results of In Vitro Release Profile
3.3.3. Results of Solubility
3.3.4. Cytotoxicity Assay
3.4. In Vivo Evaluation
3.4.1. DMBA Induction
3.4.2. NANO-AMCAL In Vivo Testing (NPαM)
- Observation Results of Rat Body Weight
- 2.
- Observation Result of Tumor Volume
- 3.
- Results of the Tumor Histology Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkinson, L.; Gathani, T. Understanding breast cancer as a global health concern. Br. J. Radiol. 2022, 95, 20211033. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Moo, T.A.; Sanford, R.; Dang, C.; Morrow, M. Overview of Breast Cancer Therapy. PET Clin. 2018, 13, 339–354. [Google Scholar] [CrossRef]
- Debela, D.T.; Muzazu, S.G.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021, 9, 20503121211034366. [Google Scholar] [CrossRef]
- Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol. 2019, 54, 407–419. [Google Scholar] [CrossRef]
- van den Boogaard, W.M.C.; Komninos, D.S.J.; Vermeij, W.P. Chemotherapy Side-Effects: Not All DNA Damage Is Equal. Cancers 2022, 14, 627. [Google Scholar] [CrossRef] [PubMed]
- Knecht, K.; Kinder, D.; Stockert, A. Biologically-Based Complementary and Alternative Medicine (CAM) Use in Cancer Patients: The Good, the Bad, the Misunderstood. Front. Nutr. 2019, 6, 196. [Google Scholar] [CrossRef]
- Molassiotis, A.; Fernández-Ortega, P.; Pud, D.; Ozden, G.; Scott, J.A.; Panteli, V.; Margulies, A.; Browall, M.; Magri, M.; Selvekerova, S.; et al. Use of complementary and alternative medicine in cancer patients: A European survey. Ann. Oncol. 2005, 16, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Muchtaridi, M.; Suryani, D.; Qosim, W.; Saptarini, N. Quantitative analysis of α-mangostin in mangosteen (Garcinia mangostana L.) Pericarp extract from four district of west java by HPLC method. Int. J. Pharm. Pharm. Sci. 2016, 8, 232–236. [Google Scholar]
- Jinsart, W.; Ternai, B.; Buddhasukh, D.; Polya, G.M. Inhibition of wheat embryo calcium-dependent protein kinase and other kinases by mangostin and gamma-mangostin. Phytochemistry 1992, 31, 3711–3713. [Google Scholar] [CrossRef] [PubMed]
- Kritsanawong, S.; Innajak, S.; Imoto, M.; Watanapokasin, R. Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells. Int. J. Oncol. 2016, 48, 2155–2165. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, W.; Shrivastava, A.; Srivastava, R.K.; Shankar, S. Inhibition of pancreatic cancer stem cell characteristics by α-Mangostin: Molecular mechanisms involving Sonic hedgehog and Nanog. J. Cell Mol. Med. 2019, 23, 2719–2730. [Google Scholar] [CrossRef] [PubMed]
- Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Orozco-Ibarra, M.; Pérez-Rojas, J.M. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol. 2008, 46, 3227–3239. [Google Scholar] [CrossRef]
- Wathoni, N.; Rusdin, A.; Febriani, E.; Purnama, D.; Daulay, W.; Azhary, S.Y.; Panatarani, C.; Joni, I.M.; Lesmana, R.; Motoyama, K.; et al. Formulation and Characterization of α-Mangostin in Chitosan Nanoparticles Coated by Sodium Alginate, Sodium Silicate, and Polyethylene Glycol. J. Pharm. Bioallied Sci. 2019, 11, S619–S627. [Google Scholar] [CrossRef]
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug release study of the chitosan-based nanoparticles. Heliyon 2022, 8, e08674. [Google Scholar] [CrossRef]
- Fathi, M.; Sahandi Zangabad, P.; Majidi, S.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Stimuli-responsive chitosan-based nanocarriers for cancer therapy. Bioimpacts 2017, 7, 269–277. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Alginate-Based Micro- and Nanosystems for Targeted Cancer Therapy. Mar. Drugs 2022, 20, 598. [Google Scholar] [CrossRef]
- Hariyadi, D.M.; Islam, N. Current Status of Alginate in Drug Delivery. Adv. Pharmacol. Pharm. Sci. 2020, 2020, 8886095. [Google Scholar] [CrossRef] [PubMed]
- Herdiana, Y.; Wathoni, N.; Gozali, D.; Shamsuddin, S.; Muchtaridi, M. Chitosan-Based Nano-Smart Drug Delivery System in Breast Cancer Therapy. Pharmaceutics 2023, 15, 879. [Google Scholar] [CrossRef]
- Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett. 2017, 190, 64–83. [Google Scholar] [CrossRef]
- Yu, T.; Huang, X.; Liu, J.; Fu, Q.; Wang, B.; Qian, Z. Polymeric nanoparticles encapsulating α-mangostin inhibit the growth and metastasis in colorectal cancer. Appl. Mater. Today 2019, 16, 351–366. [Google Scholar] [CrossRef]
- Zhang, E.; Xing, R.; Liu, S.; Qin, Y.; Li, K.; Li, P. Advances in chitosan-based nanoparticles for oncotherapy. Carbohydr. Polym. 2019, 222, 115004. [Google Scholar] [CrossRef] [PubMed]
- Hammond, P.T. Polyelectrolyte multilayered nanoparticles: Using nanolayers for controlled and targeted systemic release. Nanomedicine 2012, 7, 619–622. [Google Scholar] [CrossRef]
- Ungureanu, C.; Fierascu, I.; Fierascu, R.C.; Costea, T.; Avramescu, S.M.; Călinescu, M.F.; Somoghi, R.; Pirvu, C. In Vitro and In Vivo Evaluation of Silver Nanoparticles Phytosynthesized Using Raphanus sativus L. Waste Extracts. Materials 2021, 14, 1845. [Google Scholar] [CrossRef]
- Rosdianto, A.M.; Kurniawan, A.; Gunadi, J.W.; Mahendra, I.; Setiawan, I.; Goenawan, H.; Sylviana, N.; Pratiwi, Y.S.; Syamsunarno, M.R.A.A.; Wahyudianingsih, R. DMBA-induced Modulate Estrogen Receptors α and β Breast Cancer’s Animal Model. Maj. Kedokt. Bdg. 2022, 54, 37–42. [Google Scholar] [CrossRef]
- Muchtaridi, M.; Jhoni, M.I.; Wathoni, N.; Lesmana, R.; Suryani, A.I. Alfa-Mangostin Based Nanoparticle Formula Chitosan-Alginate Polymer Which Is Used as an Anti Breast Cancer. PatentP00202304573, 23 May 2023. [Google Scholar]
- Wathoni, N.; Meylina, L.; Rusdin, A.; Mohammed, A.F.A.; Tirtamie, D.; Herdiana, Y.; Motoyama, K.; Panatarani, C.; Joni, I.M.; Lesmana, R.; et al. The Potential Cytotoxic Activity Enhancement of α-Mangostin in Chitosan-Kappa Carrageenan-Loaded Nanoparticle against MCF-7 Cell Line. Polymers 2021, 13, 1681. [Google Scholar] [CrossRef]
- Herdiana, Y.; Handaresta, D.F.; Joni, I.M.; Wathoni, N.; Muchtaridi, M. Synthesis of nano-α mangostin based on chitosan and Eudragit S 100. J. Adv. Pharm. Technol. Res. 2020, 11, 95–100. [Google Scholar] [CrossRef]
- Hsieh, F.-M.; Huang, C.; Lin, T.-F.; Chen, Y.-M.; Lin, J.-C. Study of sodium tripolyphosphate-crosslinked chitosan beads entrapped with Pseudomonas putida for phenol degradation. Process. Biochem. 2008, 43, 83–92. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Nguyen, T.T.H.; Wang, S.-L.; Vo, T.P.K.; Nguyen, A.D. Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Res. Chem. Intermed. 2017, 43, 3527–3537. [Google Scholar] [CrossRef]
- Jana, A.; Mittal, M.; Singla, A.; Sapra, S. Solvent-free, mechanochemical syntheses of bulk trihalide perovskites and their nanoparticles. Chem. Commun. 2017, 53, 3046–3049. [Google Scholar] [CrossRef]
- Shinn, J.; Kwon, N.; Lee, S.A.; Lee, Y. Smart pH-responsive nanomedicines for disease therapy. J. Pharm. Investig. 2022, 52, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.J.; Olson, K.; Haber, L.J.; Varghese, B.; Duramad, P.; Tustian, A.D.; Oyejide, A.; Kirshner, J.R.; Canova, L.; Menon, J.; et al. A novel, native-format bispecific antibody triggering T-cell killing of B-cells is robustly active in mouse tumor models and cynomolgus monkeys. Sci. Rep. 2015, 5, 17943. [Google Scholar] [CrossRef] [PubMed]
- Hather, G.; Liu, R.; Bandi, S.; Mettetal, J.; Manfredi, M.; Shyu, W.C.; Donelan, J.; Chakravarty, A. Growth rate analysis and efficient experimental design for tumor xenograft studies. Cancer Inform. 2014, 13, 65–72. [Google Scholar] [CrossRef]
- Tomayko, M.M.; Reynolds, C.P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 1989, 24, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Charan, J.; Kantharia, N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013, 4, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.; Sea, A.; Feldman, S.; Strawbridge, R.; Hoopes, P.J.; Demidenko, E.; Binderup, L.; Gewirtz, D.A. The combination of a potent vitamin D3 analog, EB 1089, with ionizing radiation reduces tumor growth and induces apoptosis of MCF-7 breast tumor xenografts in nude mice. Clin. Cancer Res. 2003, 9, 2350–2356. [Google Scholar]
- Wicaksono, P.A.; Name, S.; Martien, R.; Ismail, H. Formulation and Cytotoxicity of Ribosome-Inactivating Protein Mirabilis Jalapa L. Nanoparticles Using Alginate-Low Viscosity Chitosan Conjugated with Anti-Epcam Antibodies in the T47D Breast Cancer Cell Line. Asian Pac. J. Cancer Prev. 2016, 17, 2277–2284. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, P. Drug Delivery Using Nanocarriers: Indian Perspective. Proc. Natl. Acad. Sci. India Sect. BBiol. Sci. 2012, 82, 167–206. [Google Scholar] [CrossRef]
- Pathak, C.; Vaidya, F.U.; Pandey, S.M. Chapter 3—Mechanism for Development of Nanobased Drug Delivery System. In Applications of Targeted Nano Drugs and Delivery Systems; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 35–67. [Google Scholar]
- Volpe, M.G.; Malinconico, M.; Varricchio, E.; Paolucci, M. Polysaccharides as biopolymers for food shelf-life extention: Recent patents. Recent Pat. Food Nutr. Agric. 2010, 2, 129–139. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Aljaeid, B.M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel Ther. 2016, 10, 483–507. [Google Scholar] [CrossRef]
- Lyu, S.Y.; Kwon, Y.J.; Joo, H.J.; Park, W.B. Preparation of alginate/chitosan microcapsules and enteric coated granules of mistletoe lectin. Arch. Pharm. Res. 2004, 27, 118–126. [Google Scholar] [CrossRef]
- Lawrie, G.; Keen, I.; Drew, B.; Chandler-Temple, A.; Rintoul, L.; Fredericks, P.; Grøndahl, L. Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules 2007, 8, 2533–2541. [Google Scholar] [CrossRef] [PubMed]
- Samprasit, W.; Akkaramongkolporn, P.; Jaewjira, S.; Opanasopit, P. Design of alpha mangostin-loaded chitosan/alginate controlled-release nanoparticles using genipin as crosslinker. J. Drug Deliv. Sci. Technol. 2018, 46, 312–321. [Google Scholar] [CrossRef]
- Helmiyati, H.; Aprilliza, M. Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent. IOP Conf. Ser. Mater. Sci. Eng. 2017, 188, 012019. [Google Scholar] [CrossRef]
- Jampafuang, Y.; Tongta, A.; Waiprib, Y. Impact of Crystalline Structural Differences Between α- and β-Chitosan on Their Nanoparticle Formation Via Ionic Gelation and Superoxide Radical Scavenging Activities. Polymers 2019, 11, 2010. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, Y.; Chen, L. Chitosan and its derivatives as vehicles for drug delivery. Drug Deliv. 2017, 24, 108–113. [Google Scholar] [CrossRef]
- Masarudin, M.J.; Cutts, S.M.; Evison, B.J.; Phillips, D.R.; Pigram, P.J. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: Application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol. Sci. Appl. 2015, 8, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Muchtaridi, M.; Wijaya, C. Anticancer potential of α-mangostin. Asian J. Pharm. Clin. Res. 2017, 10, 440. [Google Scholar] [CrossRef]
- Lee, Y.B.; Ko, K.C.; Shi, M.D.; Liao, Y.C.; Chiang, T.A.; Wu, P.F.; Shih, Y.X.; Shih, Y.W. alpha-Mangostin, a novel dietary xanthone, suppresses TPA-mediated MMP-2 and MMP-9 expressions through the ERK signaling pathway in MCF-7 human breast adenocarcinoma cells. J. Food Sci. 2010, 75, H13–H23. [Google Scholar] [CrossRef] [PubMed]
- Taher, F.A.; Ibrahim, S.A.; El-Aziz, A.A.; Abou El-Nour, M.F.; El-Sheikh, M.A.; El-Husseiny, N.; Mohamed, M.M. Anti-proliferative effect of chitosan nanoparticles (extracted from crayfish Procambarus clarkii, Crustacea: Cambaridae) against MDA-MB-231 and SK-BR-3 human breast cancer cell lines. Int. J. Biol. Macromol. 2019, 126, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Su, C.; Cui, L.; Zhang, K.; Li, J. Preparing Sodium Alginate/Polyethyleneimine Spheres for Potential Application of Killing Tumor Cells by Reducing the Concentration of Copper Ions in the Lesions of Colon Cancer. Materials 2019, 12, 1570. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Facts & Figures 2020; American Cancer Society: New York, NY, USA, 2020; pp. 1–52. [Google Scholar]
Ingredients | Amount (grams) | Solvent | Volume (mL) |
---|---|---|---|
Amg | 0.03 | Ethanol 96% | 10 |
Chitosan | 0.3 | Acetic acid 1% | 100 |
TPP | 0.06 | Distilled water | 20 |
Alginate | 0.01 | Aquadest® 700C | 10 |
Group | Number (rat) | Treatment | Induction | Therapy |
---|---|---|---|---|
I | 4 | Normal | - | - |
II | 4 | Control | v | - |
III | 4 | Tamoxifen | v | v |
IV | 4 | NPαM5 mg | v | v |
V | 4 | NPαM10 mg | v | v |
VI | 4 | NPαM20 mg | v | v |
VII | 4 | PαM | v | v |
Drug Delivery System | Entrapment Efficiency (%) | Loading Capacity (%) |
---|---|---|
NANO-AMCAL 10% | 93.94 | 5 |
NANO-AMCAL 25% | 89.03 | 4.8 |
NANO-AMCAL 50% | 85.23 | 4.4 |
Sample Test | IC50 Value (µg/mL) |
---|---|
Amg Pure | 8.350 |
Cs/TPP/Alg 10% | 364.800 |
Cs/TPP/Amg | 6.590 |
NANO-AMCAL 10% | 2.744 |
Code | Prescription Name | Quantity | Solvent | Volume |
---|---|---|---|---|
- | Tamoxifen | 0.36 mg | NaCMC 0.5% | 1 mL/P.O |
P.αM | P. Amg | 20 mg | NaCMC 0.5% | |
NPαM | NANO-AMCAL 5 mg | 5 mg | Aquadest | |
NANO-AMCAL 10 mg | 10 mg | Aquadest | ||
NANO-AMCAL 20 mg | 20 mg | Aquadest |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muchtaridi, M.; Suryani, A.I.; Wathoni, N.; Herdiana, Y.; Mohammed, A.F.A.; Gazzali, A.M.; Lesmana, R.; Joni, I.M. Chitosan/Alginate Polymeric Nanoparticle-Loaded α-Mangostin: Characterization, Cytotoxicity, and In Vivo Evaluation against Breast Cancer Cells. Polymers 2023, 15, 3658. https://doi.org/10.3390/polym15183658
Muchtaridi M, Suryani AI, Wathoni N, Herdiana Y, Mohammed AFA, Gazzali AM, Lesmana R, Joni IM. Chitosan/Alginate Polymeric Nanoparticle-Loaded α-Mangostin: Characterization, Cytotoxicity, and In Vivo Evaluation against Breast Cancer Cells. Polymers. 2023; 15(18):3658. https://doi.org/10.3390/polym15183658
Chicago/Turabian StyleMuchtaridi, Muchtaridi, Ade Irma Suryani, Nasrul Wathoni, Yedi Herdiana, Ahmed Fouad Abdelwahab Mohammed, Amirah Mohd Gazzali, Ronny Lesmana, and I. Made Joni. 2023. "Chitosan/Alginate Polymeric Nanoparticle-Loaded α-Mangostin: Characterization, Cytotoxicity, and In Vivo Evaluation against Breast Cancer Cells" Polymers 15, no. 18: 3658. https://doi.org/10.3390/polym15183658
APA StyleMuchtaridi, M., Suryani, A. I., Wathoni, N., Herdiana, Y., Mohammed, A. F. A., Gazzali, A. M., Lesmana, R., & Joni, I. M. (2023). Chitosan/Alginate Polymeric Nanoparticle-Loaded α-Mangostin: Characterization, Cytotoxicity, and In Vivo Evaluation against Breast Cancer Cells. Polymers, 15(18), 3658. https://doi.org/10.3390/polym15183658