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Abstract: Two combined ellipsometric techniques—variable angle spectroscopic ellipsometry (VASE)
and variable temperature spectroscopic ellipsometry (VTSE)—were used as tools to study the surface
order and dielectric properties of thin films of a poly(3-hexylthiophene-2,5-diyl) (P3HT) mixture with
a fullerene derivative (6,6-phenyl-C71-butyric acid methyl ester) (PC70BM). Under the influence
of annealing, a layer of the ordered PC70BM phase was formed on the surface of the blend films.
The dielectric function of the ordered PC70BM was determined for the first time and used in the
ellipsometric modeling of the physical properties of the P3HT:PC70BM blend films, such as their
dielectric function and thickness. The applied ellipsometric optical model of the polymer–fullerene
blend treats the components of the blend as a mixture of optically ordered and disordered phases, us-
ing the effective medium approximation for this purpose. The results obtained using the constructed
model showed that a layer of the ordered PC70BM phase was formed on the surface of the layer
of the polymer and fullerene mixture. Namely, as a result of thermal annealing, the thickness of
the layer of the ordered fullerene phase increased, while the thickness of the underlying material
layer decreased.

Keywords: variable temperature spectroscopic ellipsometry; organic semiconductors; polymer films;
ellipsometric modeling; dielectric function

1. Introduction

In recent years, functional organic materials and nanostructures have gained great
importance, primarily in the production of electronics with advanced electrical and optical
properties and flexibility [1–4]. Flexible electronic devices, like organic photovoltaic cells
(OPV), organic light-emitting diodes (OLED), organic field-effect transistors (OFET) and
integrated systems have a high importance for development of computer devices, applica-
ble in such industries as medicine and automotive [5–8]. The importance of active organic
materials in modern electronics grew rapidly with the development of multilayer devices
based on low-molecular amorphous compounds in the 1980s [9].

The use of semiconductor active layers of the polymer–fullerene type produced in this
process provides one of the highest reported efficiencies for third-generation photovoltaic
cells. The use of the active layer in the form of a combination of electron acceptor and donor
polymers poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61(also 71)-butyric acid
methyl ester (PCBM) [10–17] allowed obtaining of high-efficiency OPVs due to efficient
electron absorption and extended near-infrared absorption [18], what can be found in
review article [17]. Better performance of organic cells, compared to standard ones based
on P3HT and PCBM, can be achieved by replacing either the donor or acceptor with new
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materials—for example, replacing PCBM with new, non-fullerene materials, such as Zy-
4Cl [15] or IDTBTC8-CN [16]. Similarly, high efficiency values were demonstrated for
thin-film devices with active layers PTB7–PC70BM and PCDTBT–PC70BM [19–23]. Widely
described research on the production of thin-film electronic devices (including photovoltaic
systems) is based on the selection of component materials, their effective joining and
homogenization, and the development of a technology for the deposition of continuous
homogeneous ultra-thin layers. The microstructure of the active organic layers significantly
affects the physical properties of the devices in which they are used. There is a clear
relationship between the microstructure of the active layers and the performance of these
devices [24–26]. Therefore, it is very important to control and optimize the morphology of
these layers in technological processes. Materials such as P3HT, PC60BM, and PC70BM tend
to organize and crystallize in layers, resulting in appearing of aggregation areas [27,28].

The aim of this article is to show how the ordered PC70BM phase forms on the
surface of P3HT–PC70BM blend films. The novelty in this work is the determination of
PC70BM’s dielectric function components for the first time. Similarly, as in the work of
Bednarski et al. [29], where the morphology of P3HT–PC60BM layers was investigated,
here, the polymer–fullerene films are treated as a mixture of low- and high-ordered P3HT
and amorphous and ordered PC70BM phases.

In this case, we use two connected ellipsometric techniques—VASE and VTSE [30,31]—
which enable the observation and control of the morphology of such layers. The main
advantage is fact these are non-destructive and non-invasive measurements. We obtain the
results only by measuring the polarization change of light beam, reflected from the surface
of the tested samples. The ellipsometric techniques enable us to obtain information about
many physical properties of the tested samples, such as the thickness, refractive index,
extinction coefficient, dielectric constants, or even thermal transformation temperatures,
like the glass transition temperature Tg, cold crystallization temperature Tcc, and melting
point Tm. The determination of thermal transitions using VTSE is possible in two ways:
using temperature variations of physical parameters, like thickness d, refractive index
n, or thermal expansion coefficient α, and using temperature changes of raw data, like
ellipsometric angles Ψ and ∆ or their temperature derivatives [32–34].

In our earlier works, VTSE was used in correlation with differential scanning calorime-
try (DSC) [35–37] and temperature resistance measurements [38], as alternative, confirma-
tive methods. In the work of Mei and Chung, it was shown that electrical resistance can be
useful in studying the thermal properties and thermal history of carbon-fiber-reinforced
nylon-6 composites [39]. They proved that thermal treatment influenced the Tg and Tm
of the material and showed that this measurement method is more sensitive for thermal
transitions than DSC, used as a reference technique.

In this work, we use the VASE and VTSE tools to study films made of a mixture of
polymers and fullerenes in order to examine how the thickness of the P3HT–PC70BM and
PC70BM layers changes under the influence of thermal treatment.

2. Experimental

The material used was 99 wt% purity [6,6]-phenyl-C71-butyric acid methyl ester, M114-
PCBM or PC70BM, with molar mass Mw = 1031 g/mol, and 95.7 wt% purity regioregular
poly(3 hexylthiophene-2,5-diyl) M102-P3HT, which were supplied by Ossila (Sheffield,
UK). Their chemical structures are shown in Figure 1.

The neat materials and their blend were dissolved in chloroform. The concentrations
of solutions were constant and equal to 20 mg/mL. The prepared solutions (neat P3HT,
neat PC70BM, and their 1:1 blend) were stirred for 24 h at 60 ◦C. Thin single films of P3HT,
PC70BM, and their 1:1 mixtures were deposited on silicon substrates coated with SiO2 of
various thicknesses (90, 300, and 400 nm) by spin-coating. The spinning rate was 1000 rpm
and the spinning time was 60 s. The prepared samples were kept in a laboratory dry box at
room temperature.
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Figure 1. Structures of PC70BM (a) and P3HT (b).

All the films were measured using two combined ellipsometric techniques—variable
angle spectroscopic ellipsometry and variable temperature spectroscopic ellipsometry.
The spectra of ellipsometric angles Ψ and ∆ were recorded in the wavelength range
240–2500 nm, at incidence angles 40–70◦ with a step of 10◦ and at the temperature values
25, 50, 70, 90, 110, 130, 150, 170, 190, and 210 ◦C under atmospheric conditions. After each
measurement, an image of the surface was taken using an optical microscope, built into the
ellipsometer. In all attached pictures, the diameter of the viewing circle is equal to 1 mm.

Ellipsometric measurements were performed using a SENTECH SE850E spectroscopic
ellipsometer, equipped with a variable temperature vacuum chamber, operating at low
pressures, and an INSTEC mK1000 temperature controller. The ellipsometer was operated
with the Spectra Ray 3 software [40]. The detection limits of the thin layer thickness for the
VASE and VTSE techniques are determined on the basis of the accuracy of the measurement
of the ellipsometric angles Ψ and ∆, which is 0.05 and 0.2 degrees, respectively, and the
properties of the tested optical system. Therefore, these limits of detection are not rigid.
Nevertheless, they are usually not worse than 10−2 for the refractive index and a few tenths
of a nanometer for the layer thickness. Importantly, they can be significantly improved
by the appropriate (optimal) selection of the experimental conditions, such as the type of
substrate, spectral range, angle of incidence of light, layer thickness, or sample quality.

3. Results and Discussion

The aim of this work was to determine the dielectric function of the low- and high-
ordered phases of the PC70BM fullerene derivative. To this end, we combined two ellipso-
metric techniques—VASE and VTSE. The first one allows measurements of ellipsometric
angles Ψ and ∆, at variable incident light angles. In this mode, it is possible to develop an
accurate optical model by fitting its parameters to the experimentally determined ellipso-
metric angles Ψ and ∆ at the lowest mean squared error (MSE). The second mode allows
us to measure Ψ and ∆ under thermal annealing, in heating or cooling cycles alternatively.
Usually, this mode is used for thermal transition investigations, in low vacuum conditions,
as in our earlier works [35–38]. In this study, due to the need to monitor the surface changes,
with a built-in optical microscope, all measurements were made in atmospheric air con-
ditions. The sample under investigation was heated to the specified temperature values,
listed in the experimental section, and then an angular measurement was performed. The
surface images were taken after every measurement.

It is known from the literature that the layers of the P3HT–PC70BM mixture crystallize
under the influence of thermal annealing [41] and can influence the performance of organic
solar cells [42]. P3HT is a liquid crystal polymer; therefore, its films are never 100%
amorphous. In this case, the structure of the polymer is always more or less ordered.
In turn, the PC70BM layers are more amorphous; hence, we distinguish here between
the disordered and ordered phases of these materials. Since we used optical methods to
identify them, we discuss optically ordered and disordered phases. PCBM nanocrystals
are present in thin PCBM layers even without annealing [29,30]. At the same time, the
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annealing of these layers at high temperatures causes the appearance of large crystalline
precipitates on their surface. Therefore, to determine the dielectric function of the ordered
and disordered PC70BM phases on the basis of the effective medium approximation (EMA),
layers annealed to a temperature not higher than 150 ◦C were used, analogically to [29]. The
assumed optical models for neat materials are shown in Figure 2. They take into account
the presence of an ordered and disordered phase within EMA. These models therefore
describe homogeneous materials.
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The dielectric function of P3HT and PC70BM as well as their 1:1 blend (P3HT:PC70BM)
was described using EMA of the Bruggeman type [29,40,43,44]. In this approximation,
the dielectric function of the effective medium εe is determined from the following equa-
tion [29,40]:

0 ≡ f1(εi1 − εe)(εi1 + 2εe)
−1 + f2(εi2 − εe)(εi2 + 2εe)

−1 (1)

where εi,1–2 are the dielectric functions of the inclusion materials; f 1 and f 2 = (1 − f 1) are the
volume fractions of the materials under consideration. In this approach, the inclusions are
optically ordered and disordered phases of these materials [29]. Note that for a fullerene–
polymer blend, EMA is used multiple times. Namely, first, this approximation is used
to mix P3HT and PCBM, in a 1:1 weight ratio. In turn, both P3HT and PC70BM are
subjected to EMA to mix their ordered and disordered material phases. The proportion
of the ordered phase is expected to increase as the annealing progresses. Therefore, the
ellipsometric models of these materials need to be matched to the spectral dependences of
the ellipsometric angles obtained before and after annealing at different temperatures.

For the layer of neat P3HT, the low- and high-ordered phases’ dielectric functions
were fitted with a model containing five Leng–Lorentz oscillators, which are expressed by
the following formula [40]:

ε(E) = ε∞ +
N
∑

j=1

(
C0i
E2

[
eiβ j
(
Egj − E − iΓj

)µj + e−iβ j
(
Egj + E + iΓj

)µj − 2Re
[
e−iβ j

(
Egj + iΓj

)µj
]

−2iµjEIm
[
e−iβ j

(
Egj + iΓj

)µj−1
]])

+ m0Ex0 + ik0.
(2)

In the case of a single critical point, β is the phase factor, C0 is the amplitude, µ is
the order of the pole, Eg is the critical point energy, Γj is the broadening of the j oscillator,
and N is the number of oscillators. In Equation (2), E = }ω is the photon energy, where
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} = 6.58211· 10−16 eV·s is Dirac’s constant and ω is the frequency of light. Meanwhile, in
the case of the layer of PC70BM, the disordered and ordered phases’ dielectric functions
were described by four Tauc–Lorentz oscillators [45], with the following relationships [40]:

ε2(E) =


AE0C(E−Eg)

2

(E2−E2
0)+C2E2

1
E ; E > Eg

0 ; E ≤ Eg

(3)

ε1(E) = ε1(∞) +
2
π

P
∞∫

Eg

xε2(x)
x2 − E2 dx (4)

where ε1 and ε2 are the real and imaginary parts of the dielectric function and E0 is the
peak transition energy, C is the broadening term, Eg is the energy gap, and P stands for
the Cauchy principal part of the integral. An additional fitting parameter, ε1(∞), has been
included in Equation (4). The dielectric function components ε1, ε2 and layer thickness d
were determined using the Spectra Ray 3 software; note that ε1 + iε2 = (n + ik)2. Surface
images taken in situ using an optical microscope during the thermal annealing of the tested
samples are shown also in Figure 2.

After determining the dielectric functions of the considered materials, optical models
of their layers can be defined, as shown in Figure 3a,b. It should be emphasized that the
optical models of layers of pure materials and their mixtures in a 1:1 ratio are single-layer
and homogeneous. The precipitation of PCBM aggregates on the surface of the blend
during annealing was taken into account by adding a layer of ordered PCBM phase, the
thickness of which is a parameter of the model.
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Figure 3. Ellipsometric models of P3HT–PC70BM blend films (a), before annealing and (b) after
annealing with additional top layer of ordered phase of PC70BM.

The obtained components of the dielectric functions for P3HT and PC70BM are shown
in Figure 4a–d.

The components of the dielectric functions of P3HT–PC70BM blend films before
and after annealing, determined using the presented model, are shown in Figure 5a,b,
respectively, in energy scale. In this figure, the dielectric functions of PC60BM [9] are shown
for comparison.

Taken in situ during thermal annealing, optical images of the P3HT–PC70BM film
showed that an ordered layer of PC70BM began to form on the surface regardless of the
thickness of the silicon oxide layers that covered the substrates. Surface layers of ordered
PC70BM began to form between 110 and 150 ◦C on blend films deposited onto silicon
wafers, coated with 90, 300, and 400 nm SiO2, respectively. In Figure 6a–d are shown
images of the blend surface deposited onto the Si substrate covered with a 90 nm thick SiO2
layer. The pictures were taken at 90, 150, 170, and 210 ◦C, respectively.



Polymers 2023, 15, 3752 6 of 10Polymers 2023, 15, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 4. Dielectric function components (ε1—real part of dielectric function, ε2—imaginary part of 
dielectric function) of PC70BM, PC60BM (a,b) and P3HT (c,d). 

The components of the dielectric functions of P3HT–PC70BM blend films before and 
after annealing, determined using the presented model, are shown in Figure 5 a,b, respec-
tively, in energy scale. In this figure, the dielectric functions of PC60BM [9] are shown for 
comparison. 

 
Figure 5. Dielectric function components of P3HT–PC70BM blend films before (a) and after annealing 
(b), where ε1 is the real part of dielectric function and ε2 is the imaginary part of dielectric function. 

Taken in situ during thermal annealing, optical images of the P3HT–PC70BM film 
showed that an ordered layer of PC70BM began to form on the surface regardless of the 
thickness of the silicon oxide layers that covered the substrates. Surface layers of ordered 

Figure 4. Dielectric function components (ε1—real part of dielectric function, ε2—imaginary part of
dielectric function) of PC70BM, PC60BM (a,b) and P3HT (c,d).

Polymers 2023, 15, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 4. Dielectric function components (ε1—real part of dielectric function, ε2—imaginary part of 
dielectric function) of PC70BM, PC60BM (a,b) and P3HT (c,d). 

The components of the dielectric functions of P3HT–PC70BM blend films before and 
after annealing, determined using the presented model, are shown in Figure 5 a,b, respec-
tively, in energy scale. In this figure, the dielectric functions of PC60BM [9] are shown for 
comparison. 

 
Figure 5. Dielectric function components of P3HT–PC70BM blend films before (a) and after annealing 
(b), where ε1 is the real part of dielectric function and ε2 is the imaginary part of dielectric function. 

Taken in situ during thermal annealing, optical images of the P3HT–PC70BM film 
showed that an ordered layer of PC70BM began to form on the surface regardless of the 
thickness of the silicon oxide layers that covered the substrates. Surface layers of ordered 

Figure 5. Dielectric function components of P3HT–PC70BM blend films before (a) and after annealing
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It is easy to notice that at 150 ◦C, the surface is already clearly covered with formed,
numerous, single PC70BM aggregates. When the temperature is higher, the ordered phase
of PC70BM begins to cover the surface more and more densely, and, finally, at 210 ◦C it
covers the surface completely, and the crystallites are clearly larger in size.
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Due to the surface changes, the ellipsometric model of the annealed polymer–fullerene
blend films, including the lower- and higher-ordered phases of P3HT and PC70BM, was
extended to account for the additional top layer of the ordered phase of PC70BM (Figure 3b).
The fittings to the ellipsometric angles were taken for the lowest possible MSE, whose value
was close to 1.

The thickness as a function of temperature for films deposited onto silicon substrates,
covered with 90 (blue symbols), 300 (green symbols), and 400 nm (red symbols) thick SiO2
layers, is presented in Figure 7. The blend films’ thickness, determined at 25, 50, 70, 90, 110,
130, 150, 170, 190, and 210 ◦C, is marked with circle symbols, whereas the corresponding
layer thickness of the PC70BM ordered phase is marked with square symbols.
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As can be seen from Figure 7, during thermal annealing, the thickness of the ordered
PC70BM layer increases, while the thickness of the blend layer simultaneously decreases.
This is because clusters of PC70BM form on the surface and grow using the material
beneath them. It would be expected that in the entire temperature range in which the
measurements were carried out, the thickness of the blend would start to change only
when the formation of an ordered PC70BM agglomerate begins to be visible on the surface.
The thickness of the ordered PC70BM layer, however, begins to change slightly earlier,
which means that agglomerates begin to form earlier and are visible on the surface only as
they grow. As the layer of ordered PC70BM grows deep into the deposited structure, the
proportion of the PC70BM ordered phase, at the surface, increases as a result of two factors—
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the crystallization of the material inside the structure and the increasing thickness of the
surface layer. Visible surface agglomeration, resulting from the crystallization of PC70BM
under the influence of temperature, is related to changes in the morphology of the inner
layer and the quality of the deposited material. The large diameter of the agglomerates
particularly deteriorates the properties of the material in terms of its use as an active layer
in optoelectronic devices.

4. Conclusions

The article presents the results of tests on thin films made of the P3HT–PC70BM
blend. To study the optical, thermal, and structural properties of the films, two combined
ellipsometric techniques were used, VASE and VTSE, as well as the in situ observation
of changes in the appearance of the surfaces of the samples using an optical microscope.
For the first time, the dielectric functions of the disordered and ordered phases of the
PC70BM fullerene derivative were determined. For this purpose, the effective medium
approximation was used, taking the dielectric functions of these phases as inclusions.

As a result of thermal annealing at a temperature of approximately 110 ◦C, the ordered
PC70BM phase began to form on the surface of the P3HT–PC70BM blend layer. In order to
account for this effect, the optical model used to describe the annealed polymer–fullerene
film was extended with an additional layer of the ordered PC70BM phase. Treating the
thickness of this layer as a model parameter significantly improved the fit to the experimen-
tal data. Moreover, it was found that the model described the changes that occurred on the
surfaces of the layers with high accuracy and corresponded well to the images recorded in
situ with an optical microscope.

The thickness of the silicon oxide layer on top of the substrates had no effect on the
formation of the ordered PC70BM layer. In all tested cases, the thickness of the layer of
the ordered PC70BM phase on the surface increased with increasing temperature, and the
thickness of the layer of the P3HT–PC70BM mixture below it slightly decreased. It can
be concluded that agglomerates of ordered PC70BM formed partially deep into the blend
layer. The type of substrate also had no effect on the temperature at which the PC70BM
layer began to precipitate.
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