Investigation on the Influence of Process Parameters on the Mechanical Properties of Extruded Bio-Based and Biodegradable Continuous Fiber-Reinforced Thermoplastic Sheets
Abstract
:1. Introduction
1.1. Motivation
1.2. Continuous Fiber-Reinforced Thermoplastics (CFRTPs)
1.3. Impregnation by Thermoplastic Polymers
1.4. Influences of Voids and Undulation
1.5. Research Approach
2. Materials and Methods
2.1. Materials
2.1.1. Fibers
2.1.2. Matrix
2.2. Methods
2.2.1. Description of the Used Direct Extrusion Process
2.2.2. Parameter Variation and Design of Experiments
2.2.3. Fiber and Void Content
2.2.4. Mechanical Properties
3. Results
3.1. Fiber and Void Content
3.2. Mechanical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kesarwani, S. Composites in Aviation Sector. Int. J. Eng. Res. Technol. 2017, 6, 518–525. [Google Scholar] [CrossRef]
- Wan, Y.; Takashi, J. Development of Carbon Fiber-Reinforced Thermoplastics for Mass-Produced Automotive Applications in Japan. J. Compos. Sci. 2021, 5, 86. [Google Scholar] [CrossRef]
- Harmsen, P.F.H.; Hackmann, M.M.; Bos, H.L. Green building blocks for bio-based plastics. Biofuels Bioprod. Bioref. 2014, 8, 306–324. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World´s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Dick Vethaak, A.; Lavorante, B.R.B.O.; Lundebye, A.; Guilhermino, L. Marine microscopic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018, 133, 336–348. [Google Scholar] [CrossRef]
- Bajpai, P.K.; Singh, I. Reinforced Polymer Composites: Processing, Characterization and Post Life Cycle Assessment, 1st ed.; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- La Rosa, A.D. 4—Life cycle assessment of biopolymers. In Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, 1st ed.; Pacheco-Torgal, F., Ivanov, V., Karak, N., Jonkers, H., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 57–78. [Google Scholar] [CrossRef]
- Haylock, R.; Rosentrater, K.A. Cradle-to-Grave Life Cycle Assessment and Techno-Economic Analysis of Polylactic Acid Composites with Traditional and Bio-Based Fillers. J. Polym. Env. 2018, 26, 1484–1503. [Google Scholar] [CrossRef]
- Jefferson Andrew, J.; Dhakal, H.N. Sustainable biobased composites for advanced applications: Recent trends and future opportunities—Acritical review. Compos. Part C 2022, 7, 100220. [Google Scholar] [CrossRef]
- Industrievereinigung Verstärkte Kunststoffe, e.V. Handbuch Faserverbundkunststoffe/Composites Grundlagen Verarbeitung Anwendung, 4th ed.; Springer Vieweg: Wiesbaden, Germany, 2014. [Google Scholar] [CrossRef]
- Neitzel, M.; Mitschang, P.; Breuer, U. Handbuch Verbundwerkstoffe Werkstoffe, Verarbeitung, Anwendung, 2nd ed.; Carl Hanser Verlag: Munich, Germany, 2014. [Google Scholar]
- Christmann, M. Optimierung der Organoblechherstellung durch 2D-Imprägnierung. Ph.D. Thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany, 23 September 2014. [Google Scholar]
- Wöginger, A. Prozesstechnologien zur Herstellung Kontinuierlich Faserverstärkter Thermoplastischer Halbzeuge. Ph.D. Thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany, 9 April 2003. [Google Scholar]
- Baumgärtner, S.; John, J.; Henning, F.; Huber, T.; Hangs, D.-I.B. Effizient zum maßgeschneiderten Organoblech Wirtschaftliche CFK-Herstellung mit Infrarotstrahlung. Kunststoffe 2016, 10, 180–184. [Google Scholar]
- Fröhlich, P. Process Development and Validation of Thermoplastic Complex Shape Thermoforming. Ph.D. Thesis, Technische Universität München, Munich, Germany, 16 March 2017. [Google Scholar]
- Bühler, V.A. Gradual Impregnation during the Production of Thermoplastic Composites. Ph.D. Thesis, Technische Universität München, Munich, Germany, 21 June 2017. [Google Scholar]
- Hopmann, C.; Wilms, E.; Beste, C.; Schneider, D.; Fischer, K.; Stender, S. Investigation of the influence of melt-impregnation parameters on the morphology of thermoplastic UD-tapes and a method for quantifying the same. J. Thermoplast. Compos. Mater. 2021, 34, 1299–1312. [Google Scholar] [CrossRef]
- Bonten, C. Plastics Technology Introduction and Fundamentals, 1st ed.; Carl Hanser Verlag: Munich, Germany, 2019; pp. 67–73. [Google Scholar]
- Li, Y.; Li, Q.; Ma, H. The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites. Compos. Part A 2015, 72, 40–48. [Google Scholar] [CrossRef]
- Shi, J.; Mizuno, M.; Bao, L.; Zhu, C. A Facile Molding Method of Continuous Fiber-Reinforced Thermoplastic Composites and Its Mechanical Property. Polymers 2022, 14, 947. [Google Scholar] [CrossRef]
- Sebaey, T.A.; Bouhrara, M.; O’Dowd, N. Fibre Alignment and Void Assessment in Thermoplastic Carbon Fibre Reinforced Polymers Manufactured by Automated Tape Placement. Polymers 2021, 13, 473. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. J. Compos. Mater. 2019, 53, 1579–1669. [Google Scholar] [CrossRef]
- Lengsfeld, H.; Lacalle, J.; Neumeyer, T.; Altstädt, V. Faserverbundwerkstoffe Prepregs und ihre Verarbeitung, 2nd ed.; Carl Hanser Verlag: Munich, Germany, 2020; pp. 23–25. [Google Scholar]
- Qiao, Y.; Fring, L.D.; Pallaka, M.R.; Simmons, K.L. A review of the fabrication methods and mechanical behavior of continuous thermoplastic polymer fiber-thermoplastic polymer matrix composites. Polym. Compos. 2023, 44, 694–733. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; He, Q.; Weng, C.; Zhai, Z. Fabrication of continuous carbon fiber reinforced polyamide 6 composites by means of self-resistance electric heating. Polym. Compos. 2021, 42, 5962–5974. [Google Scholar] [CrossRef]
- More, A.P. Flax fiber-based polymer composites: A review. Adv. Compos. Hybrid Mater. 2022, 5, 1–20. [Google Scholar] [CrossRef]
- Henning, F.; Moeller, E. Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung, 2nd ed.; Carl Hanser Verlag: Munich, Germany, 2011; pp. 348–349. [Google Scholar]
- Bourmaud, A.; Le Duigou, A.; Gourier, C.; Baley, C. Influence of processing temperature on mechanical performance of unidirectional polyamide 11-flax fibre composites. Ind. Crop. Prod. 2016, 84, 151–165. [Google Scholar] [CrossRef]
- DIN EN ISO 1172; Prepregs, Formmassen und Laminate—Bestimmung des Textilglas- und Mineralstoffgehalts. Beuth Verlag: Berlin, Germany, 1998.
- DIN EN ISO 527-1; Bestimmung der Zugeigenschaften—Teil 1: Allgemeine Grundsätze. Beuth Verlag: Berlin, Germany, 2019.
- DIN EN ISO 527-4; Bestimmung der Zugeigenschaften—Teil 4: Prüfbedingungen für Isotrop und Anisotrop Faserverstärkte Kunststoffverbundwerkstoffe. Beuth Verlag: Berlin, Germany, 2019.
- Brooks, R.A.; Wang, H.; Ding, Z.; Xu, J.; Song, Q.; Liu, H.; Dear, J.P.; Li, N. A review on stamp forming of continuous fibre-reinforced thermoplastics. Int. J. Lightweight Mater. Manuf. 2022, 5, 411–430. [Google Scholar] [CrossRef]
- Gröger, B.; Römisch, D.; Kraus, M.; Troschitz, J.; Füßel, R.; Merklein, M.; Gude, M. Warmforming Flow Pressing Characteristics of Continuous Fibre Reinforced Thermoplastic Composites. Polymers 2022, 14, 5039. [Google Scholar] [CrossRef]
- Alwekar, S.; Ogle, R.; Kim, S.; Vaidya, U. Manufacturing and characterization of continuous fiber-reinforced thermoplastic tape overmolded long fiber thermoplastic. Compos. Part B 2021, 207, 108597. [Google Scholar] [CrossRef]
- Gröschel, C.; Drummer, D. The Influence of Moisture and Laminate Setup on the De-Consolidation Behavior of PA6/GF Thermoplastic Matrix Composites. Int. Polym. Process. 2014, 29, 660–668. [Google Scholar] [CrossRef]
- Lebaupin, Y.; Chauvin, M.; Beigbeder, A.; Touchard, F.; Beigbeder, A. Influence of constituents and process parameters on mechanical properties of flax fibre-reinforced polyamide 11 composite. J. Thermoplast. Compos. Mater. 2017, 30, 1503–1521. [Google Scholar] [CrossRef]
- Amjad, A.; Anjang, A.; Abidin, M.S.Z. Effect of nanofiller concentration on the density and void content of natural fiber-reinforced epoxy composites. Biomass. Conv. Bioref. 2022. [Google Scholar] [CrossRef]
- Singh, J.I.P.; Singh, S.; Dhawan, V. Influence of fiber volume fraction and curing temperature on mechanical properties of jute/PLA green composites. Polym. Compos. 2020, 28, 273–284. [Google Scholar] [CrossRef]
- Chin, S.C.; Tee, K.F.; Tong, F.S.; Ong, H.R.; Gimbun, J. Thermal and mechanical properties of bamboo fiber reinforced composites. Mater. Today Commun. 2020, 23, 100876. [Google Scholar] [CrossRef]
Thermal Properties | PLA 2003D | American Society for Testing and Materials (ASTM) |
---|---|---|
Melting point [°C] | 145–160 | D3418 |
Glass transition temperature [°C] | 55.0–60.0 | D3418 |
Deflection temperature at 0.46 MPa (66 psi) [°C] | 55.0 | E2092 |
Experimental Point | Temperature [°C] | Pressure [Bar] |
---|---|---|
1 | 250 | 70 |
2 | 250 | 50 |
3 | 250 | 90 |
4 | 220 | 70 |
5 | 280 | 70 |
Method | Temperature [°C] | Pressure [bar] | Fiber Content [%] | Void Content [%] |
---|---|---|---|---|
Calcination | 200 | 20 | 34.4 | 1.1 |
Calcination | 260 | 40 | 46.5 | 5.7 |
Optical | 200 | 20 | 35.3 | 2.2 |
Optical | 260 | 40 | 46.7 | 5.9 |
Temperature [°C] | Pressure [Bar] | Fiber Content [%] | Void Content [%] |
---|---|---|---|
220 | 70 | 33.8 ± 4.9 | 7.2 ± 1.3 |
250 | 70 | 31.1 ± 5.7 | 9.8 ± 1.9 |
280 | 70 | 34.8 ± 2.1 | 6.8 ± 0.6 |
250 | 50 | 28.8 ± 3.3 | 15.5 ± 1.6 |
250 | 90 | 32.6 ± 3.5 | 11.4 ± 0.7 |
Temperature [°C] | Pressure [Bar] | Tensile Modulus [N/mm2] | Tensile Strength [N/mm2] | Elongation at Break [%] |
---|---|---|---|---|
220 | 70 | 8069 ± 469 | 69 ± 5 | 1.066 ± 0.098 |
250 | 70 | 6655 ± 431 | 66 ± 2 | 1.296 ± 0.123 |
280 | 70 | 8332 ± 432 | 67 ± 5 | 1.039 ± 0.133 |
250 | 50 | 13,407 ± 1003 | 129 ± 9 | 1.191 ± 0.123 |
250 | 90 | 6607 ± 650 | 58 ± 5 | 1.051 ± 0.149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, M.; Neitzel, B.; MohammadKarimi, S.; Puch, F. Investigation on the Influence of Process Parameters on the Mechanical Properties of Extruded Bio-Based and Biodegradable Continuous Fiber-Reinforced Thermoplastic Sheets. Polymers 2023, 15, 3830. https://doi.org/10.3390/polym15183830
Lang M, Neitzel B, MohammadKarimi S, Puch F. Investigation on the Influence of Process Parameters on the Mechanical Properties of Extruded Bio-Based and Biodegradable Continuous Fiber-Reinforced Thermoplastic Sheets. Polymers. 2023; 15(18):3830. https://doi.org/10.3390/polym15183830
Chicago/Turabian StyleLang, Maximilian, Benedikt Neitzel, Shiva MohammadKarimi, and Florian Puch. 2023. "Investigation on the Influence of Process Parameters on the Mechanical Properties of Extruded Bio-Based and Biodegradable Continuous Fiber-Reinforced Thermoplastic Sheets" Polymers 15, no. 18: 3830. https://doi.org/10.3390/polym15183830
APA StyleLang, M., Neitzel, B., MohammadKarimi, S., & Puch, F. (2023). Investigation on the Influence of Process Parameters on the Mechanical Properties of Extruded Bio-Based and Biodegradable Continuous Fiber-Reinforced Thermoplastic Sheets. Polymers, 15(18), 3830. https://doi.org/10.3390/polym15183830