Screening of Oligomeric (Meth)acrylate Vaccine Adjuvants Synthesized via Catalytic Chain Transfer Polymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthetic Procedures
2.3. Typical Polymerization Procedures to Produce Oligomer Mixtures for Screening
2.3.1. Pre-Isolated Cobalt Catalyst Polymerization Method
2.3.2. In Situ Catalyst Method for Both Cobalt- and Iron-Based Polymerization
2.3.3. Example for Homopolymer Synthesis: Polymerization of LMA
2.3.4. Example for Copolymerization: Polymerization of Poly(lauryl methacrylate-co-butyl acrylate)
2.3.5. Microwave- Versus Conventionally Heated Polymerizations
2.4. Characterization Methods
2.4.1. Gel Permeation Chromatography (GPC)
2.4.2. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy
2.4.3. Emulsion Formulation and Physical Stability Assessment
2.4.4. Peripheral Blood Mononuclear Cell (PBMC) Viability Assay
2.4.5. In Vitro Innate Immune Stimulation Activity
2.4.6. In Vivo Study
3. Results and Discussion
3.1. Results with Cobalt-Catalyzed CCTP
3.2. Results with Iron-Catalyzed CCTP
3.3. Comparison of Conventionally Heated with Microwave-Heated Experiments
3.4. Optimization of Iron-Catalyzed CCTP Reactions
3.5. CCTP of Acrylates
3.6. Scale-Up of the Methacrylate Polymer Mixtures
3.7. Emulsion Formulation and Physical Stability
3.8. In Vitro Innate Immune Stimulation Activity
3.9. In Vivo Adaptive Immune Stimulation Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allison, A.C. Squalene and Squalane Emulsions as Adjuvants. Methods 1999, 19, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, Y.; Nacionales, D.C.; Akaogi, J.; Reeves, W.H.; Satoh, M. Autoimmunity Induced by Adjuvant Hydrocarbon Oil Components of Vaccine. Biomed. Pharmacother. 2004, 58, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, G.; Rappuoli, R.; Didierlaurent, A.M. Correlates of Adjuvanticity: A Review on Adjuvants in Licensed Vaccines. Semin. Immunol. 2018, 39, 14–21. [Google Scholar] [CrossRef]
- Gorse, G.J.; Grimes, S.; Buck, H.; Mulla, H.; White, P.; Hill, H.; May, J.; Frey, S.E.; Blackburn, P. A Phase 1 Dose-Sparing, Randomized Clinical Trial of Seasonal Trivalent Inactivated Influenza Vaccine Combined with MAS-1, a Novel Water-in-Oil Adjuvant/Delivery System. Vaccine 2022, 40, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.B.; Anderson, R.C.; Dutill, T.S.; Goto, Y.; Reed, S.G.; Vedvick, T.S. Monitoring the Effects of Component Structure and Source on Formulation Stability and Adjuvant Activity of Oil-in-Water Emulsions. Colloids Surf. B Biointerfaces 2008, 65, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.A.; Chan, M.; Baudner, B.; Gallorini, S.; Santos, G.; O’Hagan, D.T.; Singh, M. An Alternative Renewable Source of Squalene for Use in Emulsion Adjuvants. Vaccine 2011, 29, 6262–6268. [Google Scholar] [CrossRef]
- Popa, O.; Babeanu, N.E.; Popa, I.; Nita, S.; Dinu-Parvu, C.E. Methods for Obtaining and Determination of Squalene from Natural Sources. BioMed Res. Int. 2015, 2015, 367202. [Google Scholar] [CrossRef]
- Li, J.; El Harfi, J.; Howdle, S.M.; Carmichael, K.; Irvine, D.J. Controlled Oligomerisation of Isoprene-towards the Synthesis of Squalene Analogues. Polym. Chem. 2012, 3, 1495–1501. [Google Scholar] [CrossRef]
- Adlington, K.; El Harfi, J.; Li, J.; Carmichael, K.; Guderian, J.A.; Fox, C.B.; Irvine, D.J. Molecular Design of Squalene/Squalane Countertypes via the Controlled Oligomerization of Isoprene and Evaluation of Vaccine Adjuvant Applications. Biomacromolecules 2016, 17, 165–172. [Google Scholar] [CrossRef]
- Hilgers, L.A.T.; Nicolas, I.; Lejeune, G.; Dewil, E.; Strebelle, M.; Boon, B. Alkyl-Esters of Polyacrylic Acid as Vaccine Adjuvants. Vaccine 1998, 16, 1575–1581. [Google Scholar] [CrossRef]
- Shakya, A.K.; Nandakumar, K.S. Applications of Polymeric Adjuvants in Studying Autoimmune Responses and Vaccination against Infectious Diseases. J. R. Soc. Interface 2013, 10, 20120536. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.R.; Goswami, M.; Pohl, N.L.B.; Mallapragada, S.K. Synthesis and Functionalization of Virus-Mimicking Cationic Block Copolymers with Pathogen-Associated Carbohydrates as Potential Vaccine Adjuvants. RSC Adv. 2014, 4, 15655–15663. [Google Scholar] [CrossRef]
- Kreuter, J.; Haenzel, I. Mode of Action of Immunological Adjuvants: Some Physicochemical Factors Influencing the Effectivity of Polyacrylic Adjuvants. Infect. Immun. 1978, 19, 667–675. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Hussein, W.M.; Giddam, A.K.; Jia, Z.; Reiman, J.M.; Zaman, M.; McMillan, N.A.J.; Good, M.F.; Monteiro, M.J.; Toth, I.; et al. Polyacrylate-Based Delivery System for Self-Adjuvanting Anticancer Peptide Vaccine. J. Med. Chem. 2015, 58, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Faruck, M.O.; Zhao, L.; Hussein, W.M.; Khalil, Z.G.; Capon, R.J.; Skwarczynski, M.; Toth, I. Polyacrylate–Peptide Antigen Conjugate as a Single-Dose Oral Vaccine against Group A Streptococcus. Vaccines 2020, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Koirala, P.; Chen, S.-P.R.; Boer, J.C.; Khalil, Z.G.; Deceneux, C.; Goodchild, G.; Lu, L.; Faruck, M.O.; Shalash, A.O.; Bashiri, S.; et al. Polymeric Nanoparticles as a Self-Adjuvanting Peptide Vaccine Delivery System: The Role of Shape. Adv. Funct. Mater. 2023, 33, 2209304. [Google Scholar] [CrossRef]
- Garinot, M.; Piras-Douce, F.; Probeck, P.; Chambon, V.; Varghese, K.; Liu, Y.; Luna, E.; Drake, D.; Haensler, J. A Potent Novel Vaccine Adjuvant Based on Straight Polyacrylate. Int. J. Pharm. X 2020, 2, 100054. [Google Scholar] [CrossRef]
- Pavot, V.; Bisceglia, H.; Guillaume, F.; Montano, S.; Zhang, L.; Boudet, F.; Haensler, J. A Novel Vaccine Adjuvant Based on Straight Polyacrylate Potentiates Vaccine-Induced Humoral and Cellular Immunity in Cynomolgus Macaques. Hum. Vaccines Immunother. 2021, 17, 2336–2348. [Google Scholar] [CrossRef]
- Knauf, M.J.; Bell, D.P.; Hirtzer, P.; Luo, Z.P.; Young, J.D.; Katre, N.V. Relationship of Effective Molecular Size to Systemic Clearance in Rats of Recombinant Interleukin-2 Chemically Modified with Water-Soluble Polymers. J. Biol. Chem. 1988, 263, 15064–15070. [Google Scholar] [CrossRef]
- Etrych, T.; Šubr, V.; Strohalm, J.; Šírová, M.; Říhová, B.; Ulbrich, K. HPMA Copolymer-Doxorubicin Conjugates: The Effects of Molecular Weight and Architecture on Biodistribution and In Vivo Activity. J. Control. Release 2012, 164, 346–354. [Google Scholar] [CrossRef]
- Hawker, C.J.; Bosman, A.W.; Harth, E. New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chem. Rev. 2001, 101, 3661–3688. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef] [PubMed]
- Barner-Kowollik, C.; Perrier, S. The Future of Reversible Addition Fragmentation Chain Transfer Polymerization. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 5715–5723. [Google Scholar] [CrossRef]
- Gridnev, A. The 25th Anniversary of Catalytic Chain Transfer. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 1753–1766. [Google Scholar] [CrossRef]
- Chiu, T.Y.J.; Heuts, J.P.A.; Davis, T.P.; Stenzel, M.H.; Barner-Kowollik, C. Synthesis of Macromonomers via Catalytic Chain Transfer (CCT) Polymerization and Their Characterization via NMR Spectroscopy and Electrospray Ionization Mass Spectrometry (ESI-MS). Macromol. Chem. Phys. 2004, 205, 752–761. [Google Scholar] [CrossRef]
- Willcock, H.; O’Reilly, R.K. End Group Removal and Modification of RAFT Polymers. Polym. Chem. 2010, 1, 149–157. [Google Scholar] [CrossRef]
- Heuts, J.P.A.; Smeets, N.M.B. Catalytic Chain Transfer and Its Derived Macromonomers. Polym. Chem. 2011, 2, 2407–2423. [Google Scholar] [CrossRef]
- Gridnev, A.A.; Ittel, S.D. Catalytic Chain Transfer in Free-Radical Polymerizations. Chem. Rev. 2001, 101, 3611–3660. [Google Scholar] [CrossRef]
- Haddleton, D.M.; Maloney, D.R.; Suddaby, K.G.; Muir, A.V.G.; Richards, S.N. Catalytic Chain Transfer Polymerisation (Cctp) of Methyl Methacrylate: Effect of Catalyst Structure and Reaction Conditions on Chain Transfer Coefficient. Macromol. Symp. 1996, 111, 37–46. [Google Scholar] [CrossRef]
- Adlington, K.; Jones, G.J.; El Harfi, J.; Dimitrakis, G.; Smith, A.; Kingman, S.W.; Robinson, J.P.; Irvine, D.J. Mechanistic Investigation into the Accelerated Synthesis of Methacrylate Oligomers via the Application of Catalytic Chain Transfer Polymerization and Selective Microwave Heating. Macromolecules 2013, 46, 3922–3930. [Google Scholar] [CrossRef]
- Heuts, J.P.A.; Forster, D.J.; Davis, T.P.; Yamada, B.; Yamazoe, H.; Azukizawa, M. Reversible Cobalt−carbon Bond Formation in Catalytic Chain Transfer Polymerization. Macromolecules 1999, 32, 2511–2519. [Google Scholar] [CrossRef]
- Adlington, K.; Green, A.; Wang, W.; Howdle, S.M.; Irvine, D.J. Direct “In Situ”, Low VOC, High Yielding, CO2 Expanded Phase Catalytic Chain Transfer Polymerisation: Towards Scale-Up. Dalton Trans. 2013, 42, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Adlington, K.; McSweeney, R.; Dimitrakis, G.; Kingman, S.W.; Robinson, J.P.; Irvine, D.J. Enhanced ‘In Situ’ Catalysis via Microwave Selective Heating: Catalytic Chain Transfer Polymerisation. RSC Adv. 2014, 4, 16172–16180. [Google Scholar] [CrossRef]
- Gibson, V.C.; O’Reilly, R.K.; Wass, D.F.; White, A.J.P.; Williams, D.J. Polymerization of Methyl Methacrylate Using Four-Coordinate (α-Diimine)Iron Catalysts: Atom Transfer Radical Polymerization vs Catalytic Chain Transfer. Macromolecules 2003, 36, 2591–2593. [Google Scholar] [CrossRef]
- Shaver, M.P.; Allan, L.E.N.; Rzepa, H.S.; Gibson, V.C. Correlation of Metal Spin State with Catalytic Reactivity: Polymerizations Mediated by α-Diimine–Iron Complexes. Angew. Chem. Int. Ed. 2006, 45, 1241–1244. [Google Scholar] [CrossRef]
- Allan, L.E.N.; Shaver, M.P.; White, A.J.P.; Gibson, V.C. Correlation of Metal Spin-State in α-Diimine Iron Catalysts with Polymerization Mechanism. Inorg. Chem. 2007, 46, 8963–8970. [Google Scholar] [CrossRef]
- Fox, C.B.; Baldwin, S.L.; Duthie, M.S.; Reed, S.G.; Vedvick, T.S. Immunomodulatory and Physical Effects of Oil Composition in Vaccine Adjuvant Emulsions. Vaccine 2011, 29, 9563–9572. [Google Scholar] [CrossRef]
- Misquith, A.; Fung, H.W.M.; Dowling, Q.M.; Guderian, J.A.; Vedvick, T.S.; Fox, C.B. In Vitro Evaluation of TLR4 Agonist Activity: Formulation Effects. Colloids Surf. B Biointerfaces 2014, 113, 312–319. [Google Scholar] [CrossRef]
- Fox, C.B.; Van Hoeven, N.; Granger, B.; Lin, S.; Guderian, J.A.; Hartwig, A.; Marlenee, N.; Bowen, R.A.; Soultanov, V.; Carter, D. Vaccine Adjuvant Activity of Emulsified Oils from Species of the Pinaceae Family. Phytomedicine 2019, 64, 152927. [Google Scholar] [CrossRef]
- Fisher, K.J.; Kinsey, R.; Mohamath, R.; Phan, T.; Liang, H.; Orr, M.T.; Lykins, W.R.; Guderian, J.A.; Bakken, J.; Argilla, D.; et al. Semi-Synthetic Terpenoids with Differential Adjuvant Properties as Sustainable Replacements for Shark Squalene in Vaccine Emulsions. NPJ Vaccines 2023, 8, 14. [Google Scholar] [CrossRef]
- Wang, K.; Dimitrakis, G.; Irvine, D.J. Exemplification of Catalyst Design for Microwave Selective Heating and Its Application to Efficient In Situ Catalyst Synthesis. Chem. Eng. Process. Process Intensif. 2017, 122, 389–396. [Google Scholar] [CrossRef]
- Rogers, S.; Mandelkern, L. Glass Transitions of the Poly-(n-Alkyl Methacrylates). J. Phys. Chem. 1957, 61, 985–991. [Google Scholar] [CrossRef]
- Lovell, R.J.Y.; Peter, A. Introduction to Polymers, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-0-429-10948-5. [Google Scholar]
- Epstein, I.R.; Pojman, J.A. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos; Topics in Physical Chemistry; Oxford University Press: New York, NY, USA, 1998; ISBN 978-0-19-509670-5. [Google Scholar]
- Pojman, J.A.; Ilyashenko, V.M.; Khan, A.M. Free-Radical Frontal Polymerization: Self-Propagating Thermal Reaction Waves. J. Chem. Soc. Faraday Trans. 1996, 92, 2825–2837. [Google Scholar] [CrossRef]
- Kao, C.-S.; Hu, K.-H. Acrylic Reactor Runaway and Explosion Accident Analysis. J. Loss Prev. Process Ind. 2002, 15, 213–222. [Google Scholar] [CrossRef]
- Fujita, M.; Izato, Y.; Iizuka, Y.; Miyake, A. Thermal Hazard Evaluation of Runaway Polymerization of Acrylic Acid. Process Saf. Environ. Prot. 2019, 129, 339–347. [Google Scholar] [CrossRef]
- Tadlaoui, K.; Pietrasanta, Y.; Michel, A.; Verney, V. Influence of Molecular Weight on the Glass Transition Temperature and the Melt Rheological Behaviour of Methyl Methacrylate Telomers. Polymer 1991, 32, 2234–2237. [Google Scholar] [CrossRef]
- Yang, Y.W.; Wu, C.A.; Morrow, W.J. Cell Death Induced by Vaccine Adjuvants Containing Surfactants. Vaccine 2004, 22, 1524–1536. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.W.; Shen, S.S. Enhanced Antigen Delivery via Cell Death Induced by the Vaccine Adjuvants. Vaccine 2007, 25, 7763–7772. [Google Scholar] [CrossRef]
- Kim, E.H.; Woodruff, M.C.; Grigoryan, L.; Maier, B.; Lee, S.H.; Mandal, P.; Cortese, M.; Natrajan, M.S.; Ravindran, R.; Ma, H.; et al. Squalene Emulsion-Based Vaccine Adjuvants Stimulate CD8 T Cell, but Not Antibody Responses, through a RIPK3-Dependent Pathway. eLife 2020, 9, e52687. [Google Scholar] [CrossRef]
Entry | Solvent | Catalyst | Ligand | Catalyst Loading (ppm) | Mn (kg/mol) | Ð | EDp | Conv. (%) |
---|---|---|---|---|---|---|---|---|
1 | Toluene | Uncontrolled | None | None | 52 | 1.7 | 520 | 86 |
2 | Toluene | PhCoBF | None | 600 | 1.0 | 1.51 | 10 | 56 |
3 | Toluene | PhCoBF | None | 6000 | 0.8 | 2.57 | 8 | 26 |
4 | Toluene | CoBr2 | DPG | 600 | 0.3 | 1.5 | 3 | 25 |
5 | Toluene | CoBr2 | DPG | 6000 | 0.4 | 1.8 | 4 | 43 |
6 | Toluene | CoBr2 | DMG | 600 | 0.3 | 1.6 | 3 | 29 |
7 | Toluene | CoBr2 | DMG | 6000 | 0.5 | 1.4 | 3 | 38 |
Entry | Ligand | Catalyst Loading (ppm) | Method | Mn (kg/mol) | Ð | EDp | Conv. (%) |
---|---|---|---|---|---|---|---|
1 | DIPP | 600 | Isolated | 28 | 1.7 | 280 | 94 |
2 | TMP | 600 | Isolated | 35 | 1.6 | 350 | 86 |
3 | DIPP | 600 | In situ | 27 | 1.7 | 270 | 91 |
4 | TMP | 600 | In situ | 23 | 1.5 | 230 | 91 |
5 | DPG | 600 | In situ | 37 | 1.6 | 365 | 45 |
6 | DMG | 600 | In situ | 31 | 1.6 | 307 | 36 |
7 | DIPP | 6000 | Isolated | 22 | 1.5 | 220 | 74 |
8 | TMP | 6000 | Isolated | 20 | 1.4 | 200 | 62 |
9 | DIPP | 6000 | In situ | 26 | 1.3 | 260 | 53 |
10 | TMP | 6000 | In situ | 27 | 1.6 | 270 | 88 |
11 | DPG | 6000 | In situ | 28.7 | 1.3 | 286 | 33 |
12 | DMG | 6000 | In situ | 27.3 | 1.8 | 272 | 42 |
Entry | Catalyst Loading (ppm) | Ligand | Method | Mn (kg/mol) | Ð | Conv. (%) |
---|---|---|---|---|---|---|
1 | 600 | DIPP | CH | 27 | 1.66 | 9 |
2 | 600 | DIPP | MWH | 51 | 1.72 | 93 |
3 | 6000 | DIPP | CH | 26 | 1.25 | 54 |
4 | 6000 | DIPP | MWH | 42 | 1.60 | 84 |
5 | 600 | TMP | CH | 23 | 1.58 | 91 |
6 | 600 | TMP | MWH | 46 | 1.73 | 94 |
7 | 6000 | TMP | CH | 27 | 1.58 | 88 |
8 | 6000 | TMP | MWH | 48 | 1.67 | 92 |
Entry | Lig. | Catalyst Loading (ppm) | Mono | Solv. | Mn (kg/mol) | Ð | EDp | Conv. (%) |
---|---|---|---|---|---|---|---|---|
1 | DMG | 6000 | MMA | Tol | 54.6 | 1.8 | 547 | 60 |
2 | DMG | 6000 | BMA | Tol | 42.0 | 1.7 | 298 | 46 |
3 | DMG | 6000 | LMA | Tol | 66.4 | 1.8 | 260 | 25 |
4 | DPG | 6000 | MMA | Tol | 37.1 | 1.8 | 370 | 33 |
5 | DPG | 6000 | BMA | Tol | 27.6 | 1.7 | 194 | 82 |
6 | DPG | 6000 | LMA | Tol | 18.2 | 1.9 | 72 | 88 |
Entry | Catalyst Loading (ppm) | Metal Complex | Ligand | Method | Mn (kg/mol) | Ð | Conv. (%) |
---|---|---|---|---|---|---|---|
1 | 0 | None | -- | Uncontrolled | -- | -- | Trommsdorf 2 |
2 | 600 | PhCoBF | -- | Isolated | -- | -- | Trommsdorf 2 |
3 | 6000 | PhCoBF | -- | Isolated | -- | -- | Trommsdorf 2 |
4 | 600 | FeBr2 | DIPP | Isolated | 17 | 2.37 | 91 |
5 | 6000 | FeBr2 | DIPP | Isolated | 26 | 1.61 | 30 |
6 | 600 | FeBr2 | DIPP | In situ | 17 | 3.0 | 74 |
E | Cat. | Lig. | Cat. Load (ppm) | AIBN (ppm) | Mono | Scale (mL) | Mn (kg/mol) | Ð | EDp | Conv. (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | PhCoBF | -- | 120 | 10,000 | EMA | 11 | 0.55 | 1.3 | 5 | 51 |
2 | PhCoBF | -- | 120 | 10,000 | BMA | 11 | 0.72 | 1.3 | 5.0 | 42 |
3 | PhCoBF | -- | 120 | 10,000 | LMA | 11 | 0.97 | 1.7 | 4.0 | 60 |
4 | CoBr2 | DPG | 250 | 1930 | MMA | 11 | 2.4 | 2.4 | 23.0 | 54 |
5 | CoBr2 | DPG | 2500 | 10,000 | Scaled BMA | 22 | 0.5 | 1.3 | 3.5 | 56 |
6 | CoBr2 | DPG | 6000 | 10,000 | Scaled LMA | 21 | 1.72 | 1.4 | 7.0 | 55 |
7 | CoBr2 | DPG | 2500 | 10,000 | BMA/ MMA | 33 | 0.3 | 1.9 | 1.5 | 62 |
8 | CoBr2 | DPG | 2500 | 7000 | LMA/ BMA | 34 | 0.6 | 2.2 | 1.5 | 35 |
9 | CoBr2 | DPG | 2500 | 7000 | SMA/ BMA | 35 | 1.9 | 2.6 | 4.0 | 76 |
10 | CoBr2 | DPG | 2500 | 7000 | SMA/ LMA | 23 | 0.7 | 1.4 | 1.5 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hege, C.S.; Stimpson, A.; Sefton, J.; Summers, J.; Henke, H.; Dundas, A.A.; Phan, T.; Kinsey, R.; Guderian, J.A.; Sivananthan, S.J.; et al. Screening of Oligomeric (Meth)acrylate Vaccine Adjuvants Synthesized via Catalytic Chain Transfer Polymerization. Polymers 2023, 15, 3831. https://doi.org/10.3390/polym15183831
Hege CS, Stimpson A, Sefton J, Summers J, Henke H, Dundas AA, Phan T, Kinsey R, Guderian JA, Sivananthan SJ, et al. Screening of Oligomeric (Meth)acrylate Vaccine Adjuvants Synthesized via Catalytic Chain Transfer Polymerization. Polymers. 2023; 15(18):3831. https://doi.org/10.3390/polym15183831
Chicago/Turabian StyleHege, Cordula S., Amy Stimpson, Joseph Sefton, James Summers, Helena Henke, Adam A. Dundas, Tony Phan, Robert Kinsey, Jeffrey A. Guderian, Sandra J. Sivananthan, and et al. 2023. "Screening of Oligomeric (Meth)acrylate Vaccine Adjuvants Synthesized via Catalytic Chain Transfer Polymerization" Polymers 15, no. 18: 3831. https://doi.org/10.3390/polym15183831
APA StyleHege, C. S., Stimpson, A., Sefton, J., Summers, J., Henke, H., Dundas, A. A., Phan, T., Kinsey, R., Guderian, J. A., Sivananthan, S. J., Mohamath, R., Lykins, W. R., Ramer-Denisoff, G., Lin, S., Fox, C. B., & Irvine, D. J. (2023). Screening of Oligomeric (Meth)acrylate Vaccine Adjuvants Synthesized via Catalytic Chain Transfer Polymerization. Polymers, 15(18), 3831. https://doi.org/10.3390/polym15183831