Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques
Abstract
:1. Introduction
2. Chromatographic Methods
2.1. High-Performance Liquid Chromatography
2.2. Gas Chromatography
2.3. Capillary Electrophoresis
3. Mass Spectrometry Methods
3.1. Mass Spectrometry
3.2. Ambient Ionization Mass Spectrometry
4. Electrochemical Methods
4.1. Voltammetric and Impedometric Methods
4.2. Field Effect Sensors
5. Colorimetric Methods
5.1. Food Safety
5.2. Environmental Analysis
5.3. Biological Samples Detection
5.4. Drug Detection and Medical Treatment
6. Plasmon Resonance Methods
6.1. Surface Plasmonic Resonance (SPR)
6.2. Localized Surface Plasmonic Resonance (LSPR)
7. Surface-Enhanced Raman Spectroscopy
8. Fluorometric Methods
9. Challenges
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lusina, A.; Cegłowski, M. Molecularly Imprinted Polymers as State-of-the-Art Drug Carriers in Hydrogel Transdermal Drug Delivery Applications. Polymers 2022, 14, 640. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Liao, H.; Nie, L.; Yao, S. Influence of cross-linkers’ amount on the performance of the piezoelectric sensor modified with molecularly imprinted polymers. Sensor. Actuat. B-Chem. 2005, 105, 176–182. [Google Scholar] [CrossRef]
- Basak, S.; Venkatram, R.; Singhal, R.S. Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 2022, 139, 109074. [Google Scholar] [CrossRef]
- Selvolini, G.; Marrazza, G. MIP-based sensors: Promising new tools for cancer biomarker determination. Sensors 2017, 17, 718. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Barton, S.J.; Wren, S.P.; Barker, J. Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers. TrAC Trends Anal. Chem. 2021, 144, 116431. [Google Scholar] [CrossRef]
- Lok, C.; Son, R. Application of molecularly imprinted polymers in food sample analysis—A perspective. Int. Food Res. J. 2009, 16, 127–140. [Google Scholar]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef]
- Cegłowski, M.; Marien, Y.W.; Smeets, S.; De Smet, L.; D’hooge, D.R.; Schroeder, G.; Hoogenboom, R. Molecularly Imprinted Polymers with Enhanced Selectivity Based on 4-(Aminomethyl) pyridine-Functionalized Poly (2-oxazoline) s for Detecting Hazardous Herbicide Contaminants. Chem. Mater. 2021, 34, 84–96. [Google Scholar] [CrossRef]
- Unger, C.; Lieberzeit, P.A. Molecularly imprinted thin film surfaces in sensing: Chances and challenges. React. Funct. Polym. 2021, 161, 104855. [Google Scholar] [CrossRef]
- Lowdon, J.W.; Diliën, H.; Singla, P.; Peeters, M.; Cleij, T.J.; van Grinsven, B.; Eersels, K. MIPs for commercial application in low-cost sensors and assays–An overview of the current status quo. Sens. Actuators B Chem. 2020, 325, 128973. [Google Scholar] [CrossRef]
- Battal, D.; Akgönüllü, S.; Yalcin, M.S.; Yavuz, H.; Denizli, A. Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine. Biosens. Bioelectron. 2018, 111, 10–17. [Google Scholar] [CrossRef]
- Chunta, S.; Suedee, R.; Lieberzeit, P.A. High-density lipoprotein sensor based on molecularly imprinted polymer. Anal. Bioanal. Chem. 2018, 410, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Altintas, Z. Surface plasmon resonance based sensor for the detection of glycopeptide antibiotics in milk using rationally designed nanoMIPs. Sci. Rep. 2018, 8, 11222. [Google Scholar] [CrossRef]
- Canfarotta, F.; Smolinska-Kempisty, K.; Piletsky, S. Replacement of antibodies in pseudo-ELISAs: Molecularly imprinted nanoparticles for vancomycin detection. Synth. Antibodies: Methods Protoc. 2017, 1575, 389–398. [Google Scholar]
- D’Aurelio, R.; Chianella, I.; Goode, J.A.; Tothill, I.E. Molecularly imprinted nanoparticles based sensor for cocaine detection. Biosensors 2020, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xia, L.; Li, G. Recent Progress of Molecularly Imprinted Optical Sensors. Chemosensors 2023, 11, 168. [Google Scholar] [CrossRef]
- Ayivi, R.D.; Adesanmi, B.O.; McLamore, E.S.; Wei, J.; Obare, S.O. Molecularly Imprinted Plasmonic Sensors as Nano-Transducers: An Effective Approach for Environmental Monitoring Applications. Chemosensors 2023, 11, 203. [Google Scholar] [CrossRef]
- Pilvenyte, G.; Ratautaite, V.; Boguzaite, R.; Ramanavicius, A.; Viter, R.; Ramanavicius, S. Molecularly Imprinted Polymers for the Determination of Cancer Biomarkers. Int. J. Mol. Sci. 2023, 24, 4105. [Google Scholar] [CrossRef]
- Nageib, A.M.; Halim, A.A.; Nordin, A.N.; Ali, F. Recent Applications of Molecularly Imprinted Polymers (MIPs) on Screen-Printed Electrodes for Pesticide Detection. J. Electrochem. Sci. Technol 2023, 14, 1–14. [Google Scholar] [CrossRef]
- Bélanger, J.M.R.; Jocelyn Paré, J.R.; Sigouin, M. Chapter 2 High performance liquid chromatography (HPLC): Principles and applications. In Techniques and Instrumentation in Analytical Chemistry; Paré, J.R.J., Bélanger, J.M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 18, pp. 37–59. [Google Scholar]
- Bird, I.M. High Performance Liquid Chromatography: Principles And Clinical Applications. BMJ Br. Med. J. 1989, 299, 783–787. [Google Scholar] [CrossRef]
- Dorsey, J.G.; Cooper, W.T.; Siles, B.A.; Foley, J.P.; Barth, H.G. Liquid Chromatography: Theory and Methodology. Anal. Chem. 1996, 68, 515–568. [Google Scholar] [CrossRef]
- Kalász, H.; Báthori, M.; Valkó, K.L. Chapter 10—Basis and pharmaceutical applications of thin-layer chromatography. In Handbook of Analytical Separations; Valkó, K.L., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2020; Volume 8, pp. 523–585. [Google Scholar]
- Nováková, L.; Svoboda, P.; Pavlík, J. Chapter 29—Ultra-high performance liquid chromatography. In Liquid Chromatography, 2nd ed.; Fanali, S., Haddad, P.R., Poole, C.F., Riekkola, M.-L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 719–769. [Google Scholar]
- Stoll, D.R.; Carr, P.W. Two-Dimensional Liquid Chromatography: A State of the Art Tutorial. Anal. Chem. 2017, 89, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Lhotská, I.; Holznerová, A.; Solich, P.; Šatínský, D. Critical comparison of the on-line and off-line molecularly imprinted solid-phase extraction of patulin coupled with liquid chromatography. J. Sep. Sci. 2017, 40, 4599–4609. [Google Scholar] [CrossRef]
- Wan, Q.; Liu, H.; Deng, Z.; Bu, J.; Li, T.; Yang, Y.; Zhong, S. A critical review of molecularly imprinted solid phase extraction technology. J. Polym. Res. 2021, 28, 401. [Google Scholar] [CrossRef]
- Fresco-Cala, B.; Batista, A.D.; Cárdenas, S. Molecularly Imprinted Polymer Micro- and Nano-Particles: A review. Molecules 2020, 25, 4740. [Google Scholar] [CrossRef] [PubMed]
- Moein, M.M.; Javanbakht, M.; Akbari-adergani, B. Molecularly imprinted polymer cartridges coupled on-line with high performance liquid chromatography for simple and rapid analysis of human insulin in plasma and pharmaceutical formulations. Talanta 2014, 121, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dang, X.; Chen, H. A molecularly imprinted polymer monolithic column with dual template and bifunctional monomers for selective extraction and simultaneous determination of eight phenolics from polycarbonate cups. Anal. Chim. Acta 2023, 1273, 341493. [Google Scholar] [CrossRef]
- Orowitz, T.E.; Ana Sombo, P.; Rahayu, D.; Hasanah, A.N. Microsphere Polymers in Molecular Imprinting: Current and Future Perspectives. Molecules 2020, 25, 3256. [Google Scholar] [CrossRef]
- Boysen, R.I. Advances in the development of molecularly imprinted polymers for the separation and analysis of proteins with liquid chromatography. J. Sep. Sci. 2019, 42, 51–71. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, J.; Sha, B.; Xian, M. Selective solid-phase extraction using molecularly imprinted polymers for the analysis of norfloxacin in fish. Anal. Methods 2012, 4, 3187–3192. [Google Scholar] [CrossRef]
- Metwally, M.G.; Benhawy, A.H.; Khalifa, R.M.; El Nashar, R.M.; Trojanowicz, M. Application of Molecularly Imprinted Polymers in the Analysis of Waters and Wastewaters. Molecules 2021, 26, 6515. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Bottaro, C.S. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J. Chromatogr. A 2020, 1614, 460603. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Chen, R.; Wang, Q.; He, C.; Liu, S. Recent advances and applications of molecularly imprinted polymers in solid-phase extraction for real sample analysis. J. Sep. Sci. 2021, 44, 274–309. [Google Scholar] [CrossRef]
- Gama, M.R.; Bottoli, C.B.G. Molecularly imprinted polymers for bioanalytical sample preparation. J. Chromatogr. B 2017, 1043, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Mbhele, Z.E.; Ncube, S.; Madikizela, L.M. Synthesis of a molecularly imprinted polymer and its application in selective extraction of fenoprofen from wastewater. Environ. Sci. Pollut. Res. 2018, 25, 36724–36735. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Xu, W.; Wang, H.; Liao, S.; Chen, G. Preparation of magnetic molecularly imprinted polymers for the identification of zearalenone in grains. Anal. Bioanal. Chem. 2020, 412, 4725–4737. [Google Scholar] [CrossRef]
- Zhang, W.; She, X.; Wang, L.; Fan, H.; Zhou, Q.; Huang, X.; Tang, J.Z. Preparation, Characterization and Application of a Molecularly Imprinted Polymer for Selective Recognition of Sulpiride. Materials 2017, 10, 475. [Google Scholar] [CrossRef]
- He, Q.; Liang, J.-J.; Chen, L.-X.; Chen, S.-L.; Zheng, H.-L.; Liu, H.-X.; Zhang, H.-J. Removal of the environmental pollutant carbamazepine using molecular imprinted adsorbents: Molecular simulation, adsorption properties, and mechanisms. Water Res. 2020, 168, 115164. [Google Scholar] [CrossRef]
- Sun, X.; Wang, M.; Peng, J.; Yang, L.; Wang, X.; Wang, F.; Zhang, X.; Wu, Q.; Chen, R.; Chen, J. Dummy molecularly imprinted solid phase extraction of climbazole from environmental water samples. Talanta 2019, 196, 47–53. [Google Scholar] [CrossRef]
- He, X.-P.; Lian, Z.-R.; Tan, L.-J.; Wang, J.-T. Preparation and characterization of magnetic molecularly imprinted polymers for selective trace extraction of dienestrol in seawater. J. Chromatogr. A 2016, 1469, 8–16. [Google Scholar] [CrossRef]
- Fan, Y.; Zeng, G.; Ma, X. Effects of prepolymerization on surface molecularly imprinted polymer for rapid separation and analysis of sulfonamides in water. J. Colloid Interface Sci. 2020, 571, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, W.; Gao, R.; Hussain, S.; Hao, Y.; Tian, J.; Chen, S.; Feng, Y.; Zhao, Y.; Qu, Y. Preparation of lightweight daisy-like magnetic molecularly imprinted polymers via etching synergized template immobilization for enhanced rapid detection of trace 17β-estradiol. J. Hazard. Mater. 2022, 424, 127216. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Gao, R.; Tian, X.; Heinlein, J.; Hussain, S.; Pfefferle, L.D.; Chen, X.; Zhang, X.; Hao, Y. Strategic design and fabrication of lightweight sesame ball-like hollow double-layer hybrid magnetic molecularly imprinted nanomaterials for the highly specific separation and recovery of tetracycline from milk. Green Chem. 2022, 24, 8036–8045. [Google Scholar] [CrossRef]
- Stokvis, E.; Rosing, H.; Beijnen, J.H. Liquid chromatography-mass spectrometry for the quantitative bioanalysis of anticancer drugs. Mass Spectrom. Rev. 2005, 24, 887–917. [Google Scholar] [CrossRef]
- McMaster, M.C. LC/MS: A Practical User’s Guide; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Jemal, M.; Xia, Y.-Q. LC-MS Development Strategies for Quantitative Bioanalysis. Curr. Drug Metab. 2006, 7, 491–502. [Google Scholar] [CrossRef]
- Xu, R.N.; Fan, L.; Rieser, M.J.; El-Shourbagy, T.A. Recent advances in high-throughput quantitative bioanalysis by LC–MS/MS. J. Pharm. Biomed. Anal. 2007, 44, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; She, Y.; Zhang, C.; Wang, S.; Du, X.; Jin, F.; Jin, M.; Shao, H.; Zheng, L.; Wang, J. Selective Determination of Chloramphenicol in Milk Samples by the Solid-Phase Extraction Based on Dummy Molecularly Imprinted Polymer. Food Anal. Methods 2017, 10, 2566–2575. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, F.; Zhang, X.; Wang, L.; Wang, C.; Zhao, Q.; Xu, Y.; Ding, L.; Ren, N. Determination of roxithromycin from human plasma samples based on magnetic surface molecularly imprinted polymers followed by liquid chromatography-tandem mass spectromer. J. Chromatogr. B 2016, 1021, 221–228. [Google Scholar] [CrossRef]
- Khulu, S.; Ncube, S.; Kgame, T.; Mavhunga, E.; Chimuka, L. Synthesis, characterization and application of a molecularly imprinted polymer as an adsorbent for solid-phase extraction of selected pharmaceuticals from water samples. Polym. Bull. 2022, 79, 1287–1307. [Google Scholar] [CrossRef]
- Maragou, N.C.; Thomaidis, N.S.; Theodoridis, G.A.; Lampi, E.N.; Koupparis, M.A. Determination of bisphenol A in canned food by microwave assisted extraction, molecularly imprinted polymer-solid phase extraction and liquid chromatography-mass spectrometry. J. Chromatogr. B 2020, 1137, 121938. [Google Scholar] [CrossRef]
- Foguel, M.V.; Pedro, N.T.B.; Wong, A.; Khan, S.; Zanoni, M.V.B.; Sotomayor, M. Synthesis and evaluation of a molecularly imprinted polymer for selective adsorption and quantification of Acid Green 16 textile dye in water samples. Talanta 2017, 170, 244–251. [Google Scholar] [CrossRef]
- Wang, Z.; Jocelyn Paré, J.R. Chapter 3 Gas chromatography (GC): Principles and applications. In Techniques and Instrumentation in Analytical Chemistry; Paré, J.R.J., Bélanger, J.M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 18, pp. 61–91. [Google Scholar]
- McNair, H.M.; Miller, J.M.; Snow, N.H. Basic Gas Chromatography; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Chen, J.; Zhang, W.-t.; Shu, Y.; Ma, X.-h.; Cao, X.-y. Detection of Organophosphorus Pesticide Residues in Leaf Lettuce and Cucumber Through Molecularly Imprinted Solid-Phase Extraction Coupled to Gas Chromatography. Food Anal. Methods 2017, 10, 3452–3461. [Google Scholar] [CrossRef]
- Xu, X.; Liang, S. Molecularly imprinted solid-phase extraction method for the gas chromatographic analysis of organochlorine fungicides in ginseng. J. Sep. Sci. 2019, 42, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Nezhadali, A.; Es’haghi, Z.; Khatibi, A. Selective extraction of progesterone hormones from environmental and biological samples using a polypyrrole molecularly imprinted polymer and determination by gas chromatography. Anal. Methods 2016, 8, 1813–1827. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, X.; Zhao, D.; Guo, X.; Li, R. Molecularly imprinted solid-phase extraction coupled with gas chromatography for the determination of four chloroacetamide herbicides in soil. Anal. Methods 2015, 7, 6411–6418. [Google Scholar] [CrossRef]
- Sneddon, J.; Masuram, S.; Richert, J.C. Gas Chromatography-Mass Spectrometry-Basic Principles, Instrumentation and Selected Applications for Detection of Organic Compounds. Anal. Lett. 2007, 40, 1003–1012. [Google Scholar] [CrossRef]
- Lasáková, M.; Jandera, P. Molecularly imprinted polymers and their application in solid phase extraction. J. Sep. Sci. 2009, 32, 799–812. [Google Scholar] [CrossRef]
- Li, Z.; Qian, Z.; Hu, S.; Gong, T.; Xian, Q. Molecularly imprinted solid phase extraction coupled with gas chromatography-mass spectrometry for determination of N-Nitrosodiphenylamine in water samples. Chemosphere 2018, 212, 872–880. [Google Scholar] [CrossRef]
- Shahhoseini, F.; Azizi, A.; Egli, S.N.; Bottaro, C.S. Single-use porous thin film extraction with gas chromatography atmospheric pressure chemical ionization tandem mass spectrometry for high-throughput analysis of 16 PAHs. Talanta 2020, 207, 120320. [Google Scholar] [CrossRef]
- Marć, M.; Panuszko, A.; Namieśnik, J.; Wieczorek, P.P. Preparation and characterization of dummy-template molecularly imprinted polymers as potential sorbents for the recognition of selected polybrominated diphenyl ethers. Anal. Chim. Acta 2018, 1030, 77–95. [Google Scholar] [CrossRef]
- Xu, X.; Duhoranimana, E.; Zhang, X. Preparation and characterization of magnetic molecularly imprinted polymers for the extraction of hexamethylenetetramine in milk samples. Talanta 2017, 163, 31–38. [Google Scholar] [CrossRef]
- Kemp, G. Capillary electrophoresis: A versatile family of analytical techniques. Biotechnol. Appl. Biochem. 1998, 27, 9–17. [Google Scholar] [CrossRef]
- Gackowski, M.; Przybylska, A.; Kruszewski, S.; Koba, M.; Mądra-Gackowska, K.; Bogacz, A. Recent Applications of Capillary Electrophoresis in the Determination of Active Compounds in Medicinal Plants and Pharmaceutical Formulations. Molecules 2021, 26, 4141. [Google Scholar] [CrossRef]
- Rutkowska, M.; Namieśnik, J. Chapter Nine—Molecularly imprinted polymers applied in capillary electrochromatography and electrophoresis techniques. In Comprehensive Analytical Chemistry; Marć, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 86, pp. 235–259. [Google Scholar]
- Lobato, A.; Pereira, E.A.; Gonçalves, L.M. Combining capillary electromigration with molecular imprinting techniques towards an optimal separation and determination. Talanta 2021, 221, 121546. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, J.; Qiao, X.; Xu, Z. A study on biomimetic immunoassay-capillary electrophoresis method based on molecularly imprinted polymer for determination of trace trichlorfon residue in vegetables. Food Chem. 2017, 221, 1285–1290. [Google Scholar] [CrossRef]
- da Silva, A.T.M.; Pires, B.C.; Dinali, L.A.F.; Maia, A.C.F.C.; dos Santos, C.J.; Sanches, C.; Borges, W.d.S.; Borges, K.B. Terephthalic acid-based magnetic molecularly imprinted polymer for enantioselective capillary electrophoresis determination of atenolol in human plasma. Sep. Purif. Technol. 2021, 261, 118257. [Google Scholar] [CrossRef]
- Bezdekova, J.; Vlcnovska, M.; Zemankova, K.; Bacova, R.; Kolackova, M.; Lednicky, T.; Pribyl, J.; Richtera, L.; Vanickova, L.; Adam, V.; et al. Molecularly imprinted polymers and capillary electrophoresis for sensing phytoestrogens in milk. J. Dairy Sci. 2020, 103, 4941–4950. [Google Scholar] [CrossRef] [PubMed]
- Moreno-González, D.; Jáč, P.; Riasová, P.; Nováková, L. In-line molecularly imprinted polymer solid phase extraction-capillary electrophoresis coupled with tandem mass spectrometry for the determination of patulin in apple-based food. Food Chem. 2021, 334, 127607. [Google Scholar] [CrossRef]
- Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Aksenov, A.A.; da Silva, R.; Knight, R.; Lopes, N.P.; Dorrestein, P.C. Global chemical analysis of biology by mass spectrometry. Nat. Rev. Chem. 2017, 1, 0054. [Google Scholar] [CrossRef]
- Hu, B.; So, P.-K.; Chen, H.; Yao, Z.-P. Electrospray ionization using wooden tips. Anal. Chem. 2011, 83, 8201–8207. [Google Scholar] [CrossRef]
- Hu, B.; Yao, Z.-P. Electrospray ionization mass spectrometry with wooden tips: A review. Anal. Chim. Acta 2022, 1209, 339136. [Google Scholar] [CrossRef] [PubMed]
- Peacock, P.M.; Zhang, W.-J.; Trimpin, S. Advances in ionization for mass spectrometry. Anal. Chem. 2017, 89, 372–388. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ma, Y.; Hu, H.; Guo, P.; Miao, L.; Yang, Y.; Zhang, M. Rapid and sensitive detection of trace malachite green and its metabolite in aquatic products using molecularly imprinted polymer-coated wooden-tip electrospray ionization mass spectrometry. RSC Adv. 2017, 7, 52091–52100. [Google Scholar] [CrossRef]
- Srivastava, S.; Sinha, R.; Roy, D. Toxicological effects of malachite green. Aquat. Toxicol. 2004, 66, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Stolker, A.; Zuidema, T.; Nielen, M. Residue analysis of veterinary drugs and growth-promoting agents. TrAC Trends Anal. Chem. 2007, 26, 967–979. [Google Scholar] [CrossRef]
- Damon, D.E.; Davis, K.M.; Moreira, C.R.; Capone, P.; Cruttenden, R.; Badu-Tawiah, A.K. Direct biofluid analysis using hydrophobic paper spray mass spectrometry. Anal. Chem. 2016, 88, 1878–1884. [Google Scholar] [CrossRef]
- Santos, H.; Martins, R.; Soares, D.; Chaves, A. Molecularly imprinted polymers for miniaturized sample preparation techniques: Strategies for chromatographic and mass spectrometry methods. Anal. Methods 2020, 12, 894–911. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Yannell, K.E.; Jarmusch, A.K.; Pirro, V.; Ouyang, Z.; Cooks, R.G. Ambient ionization mass spectrometry for point-of-care diagnostics and other clinical measurements. Clin. Chem. 2016, 62, 99–110. [Google Scholar] [CrossRef]
- Gómez-Ríos, G.A.; Reyes-Garcés, N.; Bojko, B.; Pawliszyn, J. Biocompatible solid-phase microextraction nanoelectrospray ionization: An unexploited tool in bioanalysis. Anal. Chem. 2016, 88, 1259–1265. [Google Scholar] [CrossRef]
- Espy, R.D.; Muliadi, A.R.; Ouyang, Z.; Cooks, R.G. Spray mechanism in paper spray ionization. Int. J. Mass Spectrom. 2012, 325, 167–171. [Google Scholar] [CrossRef]
- Mendes, T.P.; Pereira, I.; Ferreira, M.R.; Chaves, A.R.; Vaz, B.G. Molecularly imprinted polymer-coated paper as a substrate for highly sensitive analysis using paper spray mass spectrometry: Quantification of metabolites in urine. Anal. Methods 2017, 9, 6117–6123. [Google Scholar] [CrossRef]
- Lu, H.; Yu, J.; Wang, J.; Wu, L.; Xiao, H.; Gao, R. Simultaneous quantification of neuroactive dopamine serotonin and kynurenine pathway metabolites in gender-specific youth urine by ultra performance liquid chromatography tandem high resolution mass spectrometry. J. Pharm. Biomed. Anal. 2016, 122, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Mazzu-Nascimento, T.; Leão, P.A.G.C.; Catai, J.R.; Morbioli, G.G.; Carrilho, E. Towards low-cost bioanalytical tools for sarcosine assays for cancer diagnostics. Anal. Methods 2016, 8, 7312–7318. [Google Scholar] [CrossRef]
- Imai, K.; Ochiai, K. Effect of microbial coinfection with HIV-1 and butyric acid-producing anaerobic bacteria on AIDS progression. J. Oral Biosci. 2013, 55, 55–60. [Google Scholar] [CrossRef]
- Tavares, L.S.; Carvalho, T.C.; Romão, W.; Vaz, B.G.; Chaves, A.R. Paper spray tandem mass spectrometry based on molecularly imprinted polymer substrate for cocaine analysis in oral fluid. J. Am. Soc. Mass Spectrom. 2017, 29, 566–572. [Google Scholar] [CrossRef]
- Frederick, D.L. Toxicology testing in alternative specimen matrices. Clin. Lab. Med. 2012, 32, 467–492. [Google Scholar] [CrossRef]
- Montesano, C.; Simeoni, M.C.; Curini, R.; Sergi, M.; Lo Sterzo, C.; Compagnone, D. Determination of illicit drugs and metabolites in oral fluid by microextraction on packed sorbent coupled with LC-MS/MS. Anal. Bioanal. Chem. 2015, 407, 3647–3658. [Google Scholar] [CrossRef]
- Pereira, I.; Rodrigues, M.F.; Chaves, A.R.; Vaz, B.G. Molecularly imprinted polymer (MIP) membrane assisted direct spray ionization mass spectrometry for agrochemicals screening in foodstuffs. Talanta 2018, 178, 507–514. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Q.; Chen, X.; Song, Y.; Wu, Q.; Yang, Y.; He, L. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips. Talanta 2019, 204, 238–247. [Google Scholar] [CrossRef]
- Díaz-Liñán, M.; García-Valverde, M.; Lucena, R.; Cárdenas, S.; López-Lorente, A. Dual-template molecularly imprinted paper for the determination of drugs of abuse in saliva samples by direct infusion mass spectrometry. Microchem. J. 2021, 160, 105686. [Google Scholar] [CrossRef]
- Huang, M.-Z.; Cheng, S.-C.; Cho, Y.-T.; Shiea, J. Ambient ionization mass spectrometry: A tutorial. Anal. Chim. Acta 2011, 702, 1–15. [Google Scholar] [CrossRef]
- Harris, G.A.; Galhena, A.S.; Fernandez, F.M. Ambient sampling/ionization mass spectrometry: Applications and current trends. Anal. Chem. 2011, 83, 4508–4538. [Google Scholar] [CrossRef]
- Guć, M.; Reszke, E.; Cegłowski, M.; Schroeder, G. The application of the microwave plasma ionization source in ambient mass spectrometry. Plasma Chem. Plasma Process. 2019, 39, 1001–1017. [Google Scholar] [CrossRef]
- Guć, M.; Schroeder, G. Application of molecularly imprinted polymers (MIP) and magnetic molecularly imprinted polymers (mag-MIP) to selective analysis of quercetin in flowing atmospheric-pressure afterglow mass spectrometry (FAPA-MS) and in electrospray ionization mass spectrometry (ESI-MS). Molecules 2019, 24, 2364. [Google Scholar]
- Cegłowski, M.; Smoluch, M.; Reszke, E.; Silberring, J.; Schroeder, G. Molecularly imprinted polymers as selective adsorbents for ambient plasma mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 3393–3405. [Google Scholar] [CrossRef]
- Bogdanowicz, N.; Lusina, A.; Nazim, T.; Cegłowski, M. Rapid quantification of 2, 4-dichlorophenol in river water samples using molecularly imprinted polymers coupled to ambient plasma mass spectrometry. J. Hazard. Mater. 2023, 450, 131068. [Google Scholar] [CrossRef] [PubMed]
- Pawlaczyk, M.; Guc, M.; Schroeder, G. Adsorption and selectivity studies of direct and magnetite-cored molecularly imprinted polymers (MIPs and magMIPs) towards chosen chalcones investigated with various analytical methods. RSC Adv. 2021, 11, 25334–25347. [Google Scholar] [CrossRef]
- Elugoke, S.E.; Adekunle, A.S.; Fayemi, O.E.; Akpan, E.D.; Mamba, B.B.; Sherif, E.-S.M.; Ebenso, E.E. Molecularly imprinted polymers (MIPs) based electrochemical sensors for the determination of catecholamine neurotransmitters—Review. Electrochem. Sci. Adv. 2021, 1, e2000026. [Google Scholar] [CrossRef]
- Manikandan, R.; Deepa, P.N.; Narayanan, S.S. Simultaneous electrochemical determination of adenine and guanine using poly 2-naphthol orange film–modified electrode. Ionics 2020, 26, 1475–1482. [Google Scholar] [CrossRef]
- Ribeiro, J.A.; Fernandes, P.M.V.; Pereira, C.M.; Silva, F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016, 160, 653–679. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Shah, B. Electrochemical sensing and biosensing based on square wave voltammetry. Anal. Methods 2013, 5, 2158–2173. [Google Scholar] [CrossRef]
- Elfadil, D.; Lamaoui, A.; Della Pelle, F.; Amine, A.; Compagnone, D. Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis. Molecules 2021, 26, 4607. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Duan, J.; Wang, M.; Cao, J.; She, Y.; Cao, Z.; Li, G.; Jin, F.; Wang, J.; Abd El-Aty, A.M. Application of Molecularly Imprinted Electrochemical Biomimetic Sensors for Detecting Small Molecule Food Contaminants. Polymers 2023, 15, 187. [Google Scholar] [CrossRef]
- Sarpong, K.A.; Zhang, K.; Luan, Y.; Cao, Y.; Xu, W. Development and application of a novel electrochemical sensor based on AuNPS and difunctional monomer-MIPs for the selective determination of Tetrabromobisphenol-S in water samples. Microchem. J. 2020, 154, 104526. [Google Scholar] [CrossRef]
- Tan, F.; Cong, L.; Li, X.; Zhao, Q.; Zhao, H.; Quan, X.; Chen, J. An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sens. Actuators B Chem. 2016, 233, 599–606. [Google Scholar] [CrossRef]
- Liang, Y.; Yu, L.; Yang, R.; Li, X.; Qu, L.; Li, J. High sensitive and selective graphene oxide/molecularly imprinted polymer electrochemical sensor for 2,4-dichlorophenol in water. Sens. Actuators B Chem. 2017, 240, 1330–1335. [Google Scholar] [CrossRef]
- Motia, S.; Tudor, I.A.; Ribeiro, P.A.; Raposo, M.; Bouchikhi, B.; El Bari, N. Electrochemical sensor based on molecularly imprinted polymer for sensitive triclosan detection in wastewater and mineral water. Sci. Total Environ. 2019, 664, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Feier, B.; Blidar, A.; Pusta, A.; Carciuc, P.; Cristea, C. Electrochemical Sensor Based on Molecularly Imprinted Polymer for the Detection of Cefalexin. Biosensors 2019, 9, 31. [Google Scholar] [CrossRef]
- Peng, S.; Wang, A.; Lian, Y.; Jia, J.; Ji, X.; Yang, H.; Li, J.; Yang, S.; Liao, J.; Zhou, S. Technology for Rapid Detection of Cyromazine Residues in Fruits and Vegetables: Molecularly Imprinted Electrochemical Sensors. Biosensors 2022, 12, 414. [Google Scholar] [CrossRef]
- Ali, H.; Mukhopadhyay, S.; Jana, N.R. Selective electrochemical detection of bisphenol A using a molecularly imprinted polymer nanocomposite. New J. Chem. 2019, 43, 1536–1543. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Q.; Huang, W.; Yang, W. Construction of a novel electrochemical sensor based on molecularly imprinted polymers for the selective determination of chlorpyrifos in real samples. J. Sep. Sci. 2017, 40, 4839–4846. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, X.; Ma, J.; Wei, S.; Zhang, H. A novel electrochemical sensor based on molecularly imprinted polymer with binary functional monomers at Fe-doped porous carbon decorated Au electrode for the sensitive detection of lomefloxacin. Ionics 2020, 26, 4183–4192. [Google Scholar] [CrossRef]
- Biyana Regasa, M.; Nyokong, T. Synergistic recognition and electrochemical sensing of 17β-Estradiol using ordered molecularly imprinted polymer-graphene oxide-silver nanoparticles composite films. J. Electroanal. Chem. 2022, 922, 116713. [Google Scholar] [CrossRef]
- Motaharian, A.; Motaharian, F.; Abnous, K.; Hosseini, M.R.M.; Hassanzadeh-Khayyat, M. Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples. Anal. Bioanal. Chem. 2016, 408, 6769–6779. [Google Scholar] [CrossRef] [PubMed]
- Al-Ammari, R.H.; Ganash, A.A.; Salam, M.A. Electrochemical molecularly imprinted polymer based on zinc oxide/graphene/poly(o-phenylenediamine) for 4-chlorophenol detection. Synth. Met. 2019, 254, 141–152. [Google Scholar] [CrossRef]
- Lahcen, A.A.; Baleg, A.A.; Baker, P.; Iwuoha, E.; Amine, A. Synthesis and electrochemical characterization of nanostructured magnetic molecularly imprinted polymers for 17-β-Estradiol determination. Sens. Actuators B Chem. 2017, 241, 698–705. [Google Scholar] [CrossRef]
- Khadem, M.; Faridbod, F.; Norouzi, P.; Rahimi Foroushani, A.; Ganjali, M.R.; Shahtaheri, S.J.; Yarahmadi, R. Modification of Carbon Paste Electrode Based on Molecularly Imprinted Polymer for Electrochemical Determination of Diazinon in Biological and Environmental Samples. Electroanalysis 2017, 29, 708–715. [Google Scholar] [CrossRef]
- Li, Y.; Song, H.; Zhang, L.; Zuo, P.; Ye, B.-c.; Yao, J.; Chen, W. Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level. Biosens. Bioelectron. 2016, 78, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Dang, Y.; Chen, Z.; Zhang, R.; Li, Y.; Ye, B.-C. A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin. Biosens. Bioelectron. 2019, 127, 207–214. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Ciocan, V.; Öpik, A.; Syritski, V. Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 2020, 209, 120502. [Google Scholar] [CrossRef] [PubMed]
- Cetó, X.; Saint, C.P.; Chow, C.W.K.; Voelcker, N.H.; Prieto-Simón, B. Electrochemical detection of N-nitrosodimethylamine using a molecular imprinted polymer. Sens. Actuators B Chem. 2016, 237, 613–620. [Google Scholar] [CrossRef]
- Bolat, G.; Yaman, Y.T.; Abaci, S. Molecularly imprinted electrochemical impedance sensor for sensitive dibutyl phthalate (DBP) determination. Sens. Actuators B Chem. 2019, 299, 127000. [Google Scholar] [CrossRef]
- Zamora-Gálvez, A.; Mayorga-Matinez, C.C.; Parolo, C.; Pons, J.; Merkoçi, A. Magnetic nanoparticle-molecular imprinted polymer: A new impedimetric sensor for tributyltin detection. Electrochem. Commun. 2017, 82, 6–11. [Google Scholar] [CrossRef]
- Trevizan, H.F.; Olean-Oliveira, A.; Cardoso, C.X.; Teixeira, M.F.S. Development of a molecularly imprinted polymer for uric acid sensing based on a conductive azopolymer: Unusual approaches using electrochemical impedance/capacitance spectroscopy without a soluble redox probe. Sens. Actuators B Chem. 2021, 343, 130141. [Google Scholar] [CrossRef]
- Liu, W.; Ma, Y.; Sun, G.; Wang, S.; Deng, J.; Wei, H. Molecularly imprinted polymers on graphene oxide surface for EIS sensing of testosterone. Biosens. Bioelectron. 2017, 92, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Radi, A.-E.; Eissa, A.; Wahdan, T. Molecularly Imprinted Impedimetric Sensor for Determination of Mycotoxin Zearalenone. Electroanalysis 2020, 32, 1788–1794. [Google Scholar] [CrossRef]
- Nishitani, S.; Sakata, T. Potentiometric Adsorption Isotherm Analysis of a Molecularly Imprinted Polymer Interface for Small-Biomolecule Recognition. ACS Omega 2018, 3, 5382–5389. [Google Scholar] [CrossRef] [PubMed]
- Sakata, T. Biologically Coupled Gate Field-Effect Transistors Meet in Vitro Diagnostics. ACS Omega 2019, 4, 11852–11862. [Google Scholar] [CrossRef]
- Kaisti, M. Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 2017, 98, 437–448. [Google Scholar] [CrossRef]
- Yang, H.; Nishitani, S.; Sakata, T. Potentiometric Langmuir Isotherm Analysis of Histamine-Selective Molecularly Imprinted Polymer-Based Field-Effect Transistor. ECS J. Solid State Sci. Technol. 2018, 7, Q3079. [Google Scholar] [CrossRef]
- Kajisa, T.; Li, W.; Michinobu, T.; Sakata, T. Well-designed dopamine-imprinted polymer interface for selective and quantitative dopamine detection among catecholamines using a potentiometric biosensor. Biosens. Bioelectron. 2018, 117, 810–817. [Google Scholar] [CrossRef]
- Nishitani, S.; Kajisa, T.; Sakata, T. Development of molecularly imprinted polymer-based field effect transistor for sugar chain sensing. Jpn. J. Appl. Phys. 2017, 56, 04CM02. [Google Scholar] [CrossRef]
- Kajisa, T.; Sakata, T. Molecularly Imprinted Artificial Biointerface for an Enzyme-Free Glucose Transistor. ACS Appl. Mater. Interfaces 2018, 10, 34983–34990. [Google Scholar] [CrossRef]
- Bartold, K.; Iskierko, Z.; Borowicz, P.; Noworyta, K.; Lin, C.-Y.; Kalecki, J.; Sharma, P.S.; Lin, H.-Y.; Kutner, W. Molecularly imprinted polymer-based extended-gate field-effect transistor (EG-FET) chemosensor for selective determination of matrix metalloproteinase-1 (MMP-1) protein. Biosens. Bioelectron. 2022, 208, 114203. [Google Scholar] [CrossRef] [PubMed]
- Iskierko, Z.; Checinska, A.; Sharma, P.S.; Golebiewska, K.; Noworyta, K.; Borowicz, P.; Fronc, K.; Bandi, V.; D’Souza, F.; Kutner, W. Molecularly imprinted polymer based extended-gate field-effect transistor chemosensors for phenylalanine enantioselective sensing. J. Mater. Chem. C 2017, 5, 969–977. [Google Scholar] [CrossRef]
- Monogarova, O.; Oskolok, K.; Apyari, V. Colorimetry in chemical analysis. J. Anal. Chem. 2018, 73, 1076–1084. [Google Scholar] [CrossRef]
- Wang, S.; Xu, S.; Zhou, Q.; Liu, Z.; Xu, Z. State-of-the-art molecular imprinted colorimetric sensors and their on-site inspecting applications. J. Sep. Sci. 2023, 46, 2201059. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Hu, Y.; Ma, L.; Lu, X. Development of molecularly imprinted polymers-surface-enhanced Raman spectroscopy/colorimetric dual sensor for determination of chlorpyrifos in apple juice. Sens. Actuators B Chem. 2017, 241, 750–757. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Alexander, S. Synthesis and characterization of vinyl-functionalized multiwalled carbon nanotubes based molecular imprinted polymer for the separation of chlorpyrifos from aqueous solutions. J. Chem. Technol. Biotechnol. 2013, 88, 1847–1858. [Google Scholar] [CrossRef]
- Lee, W.J.; Blair, A.; Hoppin, J.A.; Lubin, J.H.; Rusiecki, J.A.; Sandler, D.P.; Dosemeci, M.; Alavanja, M.C. Cancer incidence among pesticide applicators exposed to chlorpyrifos in the Agricultural Health Study. J. Natl. Cancer Inst. 2004, 96, 1781–1789. [Google Scholar] [CrossRef]
- Zhao, B.; Feng, S.; Hu, Y.; Wang, S.; Lu, X. Rapid determination of atrazine in apple juice using molecularly imprinted polymers coupled with gold nanoparticles-colorimetric/SERS dual chemosensor. Food Chem. 2019, 276, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Hayes, T.; Haston, K.; Tsui, M.; Hoang, A.; Haeffele, C.; Vonk, A. Feminization of male frogs in the wild. Nature 2002, 419, 895–896. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Cheng, Y.; Gao, Z.; Zhang, H.; Wei, J. Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring. Sens. Actuators B Chem. 2018, 273, 1705–1712. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.-S.; Ren, X.-H.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Bimetallic molecularly imprinted nanozyme: Dual-mode detection platform. Biosens. Bioelectron. 2022, 196, 113718. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Wang, B.; Wu, M.; Deng, B.; Xie, L.; Guo, Y. Rapidly colorimetric detection of caffeine in beverages by silver nanoparticle sensors coupled with magnetic molecularly imprinted polymeric microspheres. Int. J. Food Sci. Technol. 2019, 54, 202–211. [Google Scholar] [CrossRef]
- Guo, X.; Yao, S.; Li, H.; Shi, X.; Pang, B.; Jin, J.; Su, Z.; Zhang, H.; Zhao, C.; Wang, J. Multi-functional magnetic molecular imprinting probe for visual detection of IgY antibodies. Microchim. Acta 2021, 188, 378. [Google Scholar] [CrossRef]
- Sawetwong, P.; Chairam, S.; Jarujamrus, P.; Amatatongchai, M. Enhanced selectivity and sensitivity for colorimetric determination of glyphosate using Mn–ZnS quantum dot embedded molecularly imprinted polymers combined with a 3D-microfluidic paper-based analytical device. Talanta 2021, 225, 122077. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, Z.; Zeng, Q.; Huang, Y.; Gu, H.; He, J.; Liu, Y.; Chen, S.; Sun, H.; Lai, J. Visual test for the presence of the illegal additive ethyl anthranilate by using a photonic crystal test strip. Microchim. Acta 2019, 186, 685. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Dong, X.; Qiu, L.; Yan, Z.; Meng, Z.; Xue, M.; He, X.; Liu, X. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules. J. Hazard. Mater. 2017, 326, 130–137. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, H.; Feng, R.; Wang, M.; Hu, P.; Pan, J.; Niu, X. Facile molecular imprinting on magnetic nanozyme surface for highly selective colorimetric detection of tetracycline. Sens. Actuators B Chem. 2022, 370, 132451. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef]
- Xu, J.; Shang, M.; Liu, J.; Chen, X.; Cao, Y. Simultaneous self-assembly of molecularly imprinted magnetic nanoparticles to construct a magnetically responsive photonic crystals sensor for bisphenol A. Sens. Actuators B Chem. 2021, 338, 129858. [Google Scholar] [CrossRef]
- Zeng, L.; Cui, H.; Chao, J.; Huang, K.; Wang, X.; Zhou, Y.; Jing, T. Colorimetric determination of tetrabromobisphenol A based on enzyme-mimicking activity and molecular recognition of metal-organic framework-based molecularly imprinted polymers. Microchim. Acta 2020, 187, 142. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Yin, W.; Zhu, N.; Yuan, M.; Cao, H.; Yu, J.; Gou, Z.; Wang, X.; Zhu, H.; Reyihanguli, A. Colorimetric detection of pyrethroid metabolite by using surface molecularly imprinted polymer. Sens. Actuators B Chem. 2018, 254, 417–423. [Google Scholar] [CrossRef]
- Wu, Z.; He, D.; Cui, B.; Jin, Z. Ultrasensitive detection of microcystin-LR with gold immunochromatographic assay assisted by a molecular imprinting technique. Food Chem. 2019, 283, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Liang, K.; Wang, L.; Chen, C.; Cai, C.; Gong, H. Construction of an Ultrasensitive Molecularly Imprinted Virus Sensor Based on an “Explosive” Secondary Amplification Strategy for the Visual Detection of Viruses. Anal. Chem. 2022, 94, 13879–13888. [Google Scholar] [CrossRef] [PubMed]
- Owe-Young, R.; Webster, N.L.; Mukhtar, M.; Pomerantz, R.J.; Smythe, G.; Walker, D.; Armati, P.J.; Crowe, S.M.; Brew, B.J. Kynurenine pathway metabolism in human blood–brain–barrier cells: Implications for immune tolerance & neurotoxicity. J. Neurochem. 2008, 105, 1346–1357. [Google Scholar]
- Rizvi, A.S.; Murtaza, G.; Yan, D.; Irfan, M.; Xue, M.; Meng, Z.H.; Qu, F. Development of molecularly imprinted 2D photonic crystal hydrogel sensor for detection of L-Kynurenine in human serum. Talanta 2020, 208, 120403. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Wang, Y.; Liu, Y.; Liu, R.; Wang, X.; Tan, H.; Wang, T.; Kong, T. Oriented boronate affinity–imprinted inverse opal hydrogel for glycoprotein assay via colorimetry. Microchim. Acta 2020, 187, 348. [Google Scholar] [CrossRef]
- Shen, M.; Wang, Y.; Kan, X. Dual-recognition colorimetric sensing of thrombin based on surface-imprinted aptamer–Fe3O4. J. Mater. Chem. B 2021, 9, 4249–4256. [Google Scholar] [CrossRef]
- Torrini, F.; Caponi, L.; Bertolini, A.; Palladino, P.; Cipolli, F.; Saba, A.; Paolicchi, A.; Scarano, S.; Minunni, M. A biomimetic enzyme-linked immunosorbent assay (BELISA) for the analysis of gonadorelin by using molecularly imprinted polymer-coated microplates. Anal. Bioanal. Chem. 2022, 414, 5423–5434. [Google Scholar] [CrossRef]
- Chen, W.; Fu, M.; Zhu, X.; Liu, Q. A close-packed imprinted colloidal array for naked-eye detection of glycoproteins under physiological pH. Biosens. Bioelectron. 2019, 142, 111499. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, A.; Cheng, Y.; Zhang, Y.; Fu, D.; Liu, M.; Li, A.; Liu, J. A molecularly imprinted nanoreactor with spatially confined effect fabricated with nano-caged cascaded enzymatic system for specific detection of monosaccharides. Biosens. Bioelectron. 2021, 188, 113355. [Google Scholar] [CrossRef]
- Kantiani, L.; Farré, M.; Barceló, D. Analytical methodologies for the detection of β-lactam antibiotics in milk and feed samples. TrAC Trends Anal. Chem. 2009, 28, 729–744. [Google Scholar] [CrossRef]
- Lowdon, J.W.; Diliën, H.; van Grinsven, B.; Eersels, K.; Cleij, T.J. Colorimetric sensing of amoxicillin facilitated by molecularly imprinted polymers. Polymers 2021, 13, 2221. [Google Scholar] [CrossRef] [PubMed]
- Lowdon, J.W.; Eersels, K.; Rogosic, R.; Heidt, B.; Dilien, H.; Redeker, E.S.; Peeters, M.; van Grinsven, B.; Cleij, T.J. Substrate displacement colorimetry for the detection of diarylethylamines. Sens. Actuators B Chem. 2019, 282, 137–144. [Google Scholar] [CrossRef]
- Karim, K.; Lamaoui, A.; Amine, A. Acetazolamide smartphone-based detection via its competition with sulfamethoxazole on molecularly imprinted polymer: A proof-of-concept. J. Pharm. Biomed. Anal. 2022, 219, 114954. [Google Scholar] [CrossRef]
- Kadhim, R.A.; Abdul, A.K.K.; Yuan, L. Advances in surface plasmon resonance-based plastic optical fiber sensors. IETE Tech. Rev. 2022, 39, 442–459. [Google Scholar] [CrossRef]
- Cennamo, N.; Pesavento, M.; Profumo, A.; Merli, D.; De Maria, L.; Chemelli, C.; Zeni, L. Chemical sensors based on surface plasmon resonance in a plastic optical fiber for multianalyte detection in oil-filled power transformer. In Proceedings of the Third National Conference on Sensors, Rome, Italy, 23–25 February 2016; pp. 128–134. [Google Scholar]
- Gandhi, M.A.; Chu, S.; Senthilnathan, K.; Babu, P.R.; Nakkeeran, K.; Li, Q. Recent advances in plasmonic sensor-based fiber optic probes for biological applications. Appl. Sci. 2019, 9, 949. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2007; Volume 1. [Google Scholar]
- Liu, J.; Jalali, M.; Mahshid, S.; Wachsmann-Hogiu, S. Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst 2020, 145, 364–384. [Google Scholar] [CrossRef]
- Daghestani, H.N.; Day, B.W. Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors 2010, 10, 9630–9646. [Google Scholar] [CrossRef]
- Chen, Y.; Ming, H. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens. 2012, 2, 37–49. [Google Scholar] [CrossRef]
- Esen, C.; Piletsky, S.A. Surface Plasmon Resonance Sensors Based on Molecularly Imprinted Polymers. In Plasmonic Sensors and their Applications; Wiley-VCH: Weinheim, Germany, 2021; pp. 221–236. [Google Scholar]
- Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Verellen, N.; Van Dorpe, P.; Huang, C.; Lodewijks, K.; Vandenbosch, G.A.; Lagae, L.; Moshchalkov, V.V. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 2011, 11, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; D’Agostino, G.; Porto, G.; Biasiolo, A.; Perri, C.; Arcadio, F.; Zeni, L. A molecularly imprinted polymer on a plasmonic plastic optical fiber to detect perfluorinated compounds in water. Sensors 2018, 18, 1836. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, E.; Özgür, E.; Bereli, N.; Türkmen, D.; Denizli, A. Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection. Mater. Sci. Eng. C 2017, 73, 603–610. [Google Scholar] [CrossRef]
- Pesavento, M.; Zeni, L.; De Maria, L.; Alberti, G.; Cennamo, N. SPR-optical fiber-molecularly imprinted polymer sensor for the detection of furfural in wine. Biosensors 2021, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Ayankojo, A.G.; Reut, J.; Öpik, A.; Furchner, A.; Syritski, V. Hybrid molecularly imprinted polymer for amoxicillin detection. Biosens. Bioelectron. 2018, 118, 102–107. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Perri, C.; Arcadio, F.; Chiaretti, G.; Parisio, E.M.; Camarlinghi, G.; Vettori, C.; Di Marzo, F.; Cennamo, R. Proof of concept for a quick and highly sensitive on-site detection of SARS-CoV-2 by plasmonic optical fibers and molecularly imprinted polymers. Sensors 2021, 21, 1681. [Google Scholar] [CrossRef]
- Ertürk Bergdahl, G.; Andersson, T.; Allhorn, M.; Yngman, S.; Timm, R.; Lood, R. In vivo detection and absolute quantification of a secreted bacterial factor from skin using molecularly imprinted polymers in a surface plasmon resonance biosensor for improved diagnostic abilities. ACS Sens. 2019, 4, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Alberti, G.; Zanoni, C.; Spina, S.; Magnaghi, L.R.; Biesuz, R. Trends in Molecularly Imprinted Polymers (MIPs)-Based Plasmonic Sensors. Chemosensors 2023, 11, 144. [Google Scholar] [CrossRef]
- Walcarius, A.; Collinson, M.M. Analytical chemistry with silica sol-gels: Traditional routes to new materials for chemical analysis. Annu. Rev. Anal. Chem. 2009, 2, 121–143. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; D’Agostino, G.; Galatus, R.; Bibbò, L.; Pesavento, M.; Zeni, L. Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sens. Actuators B Chem. 2013, 188, 221–226. [Google Scholar] [CrossRef]
- Cennamo, N.; Pesavento, M.; Lunelli, L.; Vanzetti, L.; Pederzolli, C.; Zeni, L.; Pasquardini, L. An easy way to realize SPR aptasensor: A multimode plastic optical fiber platform for cancer biomarkers detection. Talanta 2015, 140, 88–95. [Google Scholar] [CrossRef]
- Cennamo, N.; Zeni, L.; Tortora, P.; Regonesi, M.E.; Giusti, A.; Staiano, M.; D’Auria, S.; Varriale, A. A High Sensitivity Biosensor to detect the presence of perfluorinated compounds in environment. Talanta 2018, 178, 955–961. [Google Scholar] [CrossRef]
- Saito, K.; Uemura, E.; Ishizaki, A.; Kataoka, H. Determination of perfluorooctanoic acid and perfluorooctane sulfonate by automated in-tube solid-phase microextraction coupled with liquid chromatography–mass spectrometry. Anal. Chim. Acta 2010, 658, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.F.; Moody, C.A.; Spencer, C.; Small, J.M.; Muir, D.C.; Mabury, S.A. Analysis for perfluorocarboxylic acids/anions in surface waters and precipitation using GC− MS and analysis of PFOA from large-volume samples. Environ. Sci. Technol. 2006, 40, 6405–6410. [Google Scholar] [CrossRef]
- Liang, J.; Deng, X.; Tan, K. An eosin Y-based “turn-on” fluorescent sensor for detection of perfluorooctane sulfonate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 150, 772–777. [Google Scholar] [CrossRef]
- Clark, R.B.; Dick, J.E. Electrochemical sensing of perfluorooctanesulfonate (PFOS) using ambient oxygen in river water. ACS Sens. 2020, 5, 3591–3598. [Google Scholar] [CrossRef]
- Pitruzzella, R.; Arcadio, F.; Perri, C.; Del Prete, D.; Porto, G.; Zeni, L.; Cennamo, N. Ultra-Low Detection of Perfluorooctanoic Acid Using a Novel Plasmonic Sensing Approach Combined with Molecularly Imprinted Polymers. Chemosensors 2023, 11, 211. [Google Scholar] [CrossRef]
- Al Amin, M.; Sobhani, Z.; Liu, Y.; Dharmaraja, R.; Chadalavada, S.; Naidu, R.; Chalker, J.M.; Fang, C. Recent advances in the analysis of per-and polyfluoroalkyl substances (PFAS)—A review. Environ. Technol. Innov. 2020, 19, 100879. [Google Scholar] [CrossRef]
- Corsini, E.; Sangiovanni, E.; Avogadro, A.; Galbiati, V.; Viviani, B.; Marinovich, M.; Galli, C.L.; Dell’Agli, M.; Germolec, D.R. In vitro characterization of the immunotoxic potential of several perfluorinated compounds (PFCs). Toxicol. Appl. Pharmacol. 2012, 258, 248–255. [Google Scholar] [CrossRef]
- Culver, H.R.; Wechsler, M.E.; Peppas, N.A. Label-free detection of tear biomarkers using hydrogel-coated gold nanoshells in a localized surface plasmon resonance-based biosensor. ACS Nano 2018, 12, 9342–9354. [Google Scholar] [CrossRef]
- Giljohann, D.A.; Mirkin, C.A. Drivers of biodiagnostic development. Nature 2009, 462, 461–464. [Google Scholar] [CrossRef]
- Guerreiro, J.R.L.; Teixeira, N.; De Freitas, V.; Sales, M.G.F.; Sutherland, D.S. A saliva molecular imprinted localized surface plasmon resonance biosensor for wine astringency estimation. Food Chem. 2017, 233, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Obreque-Slier, E.; López-Solís, R.; Peña-Neira, Á.; Zamora-Marín, F. Tannin–protein interaction is more closely associated with astringency than tannin–protein precipitation: Experience with two oenological tannins and a gelatin. Int. J. Food Sci. Technol. 2010, 45, 2629–2636. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.R.; Henry, A.-I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Zhou, H.; Li, X.; Wang, L.; Liang, Y.; Jialading, A.; Wang, Z.; Zhang, J. Application of SERS quantitative analysis method in food safety detection. Rev. Anal. Chem. 2021, 40, 173–186. [Google Scholar] [CrossRef]
- Boginskaya, I.; Gainutdinova, A.; Gusev, A.; Mailyan, K.; Mikhailitsyn, A.; Sedova, M.; Vdovichenko, A.; Ryzhikov, I.; Chvalun, S.; Lagarkov, A. Detection of Organic Substances by a SERS Method Using a Special Ag-Poly(Chloro-P-Xylylene)-Ag Sandwich Substrate. Coatings 2020, 10, 799. [Google Scholar] [CrossRef]
- Guo, X.; Li, J.; Arabi, M.; Wang, X.; Wang, Y.; Chen, L. Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors. ACS Sens. 2020, 5, 601–619. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Yan, M.; Feng, G.; Ying, Y.; Chen, G.; Shao, Y.; She, Y.; Wang, M.; Sun, J.; Zheng, L.; et al. An overview on molecular imprinted polymers combined with surface-enhanced Raman spectroscopy chemical sensors toward analytical applications. Talanta 2021, 225, 122031. [Google Scholar] [CrossRef] [PubMed]
- Hua, M.Z.; Feng, S.; Wang, S.; Lu, X. Rapid detection and quantification of 2,4-dichlorophenoxyacetic acid in milk using molecularly imprinted polymers–surface-enhanced Raman spectroscopy. Food Chem. 2018, 258, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, Y.; Wang, L.; Lu, Y.; Li, J.; Lu, D.; Zhou, T.; Huang, Z.; Huang, J.; Huang, H.; et al. Interference-free and high precision biosensor based on surface enhanced Raman spectroscopy integrated with surface molecularly imprinted polymer technology for tumor biomarker detection in human blood. Biosens. Bioelectron. 2019, 143, 111599. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Kang, Y.; Miao, J.; Lai, K. Selective recognition and determination of malachite green in fish muscles via surface-enhanced Raman scattering coupled with molecularly imprinted polymers. Food Control 2021, 130, 108367. [Google Scholar] [CrossRef]
- Jameson, D.M. Introduction to Fluorescence; Taylor & Francis: Abingdon, UK, 2014. [Google Scholar]
- Turiel, E.; Martín-Esteban, A. Molecularly imprinted polymers-based microextraction techniques. TrAC Trends Anal. Chem. 2019, 118, 574–586. [Google Scholar] [CrossRef]
- Dabrowski, M.; Lach, P.; Cieplak, M.; Kutner, W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens. Bioelectron. 2018, 102, 17–26. [Google Scholar] [CrossRef]
- Ansari, S.; Masoum, S. Recent advances and future trends on molecularly imprinted polymer-based fluorescence sensors with luminescent carbon dots. Talanta 2021, 223, 121411. [Google Scholar] [CrossRef]
- Duan, N.; Chen, X.; Lin, X.; Ying, D.; Wang, Z.; Yuan, W.; Wu, S. based fluorometric sensing of malachite green using synergistic recognition of aptamer-molecularly imprinted polymers and luminescent metal–organic frameworks. Sens. Actuators B Chem. 2023, 384, 133665. [Google Scholar] [CrossRef]
- Quiñone, D.; Belluzzi, M.; Torres, J.; Brovetto, M.; Veiga, N. Fluoride-selective chemosensor based on an anion imprinted fluorescent polymer. Polyhedron 2022, 225, 116033. [Google Scholar] [CrossRef]
- Kaminsky, L.S.; Mahoney, M.C.; Leach, J.; Melius, J.; Jo Miller, M. Fluoride: Benefits and risks of exposure. Crit. Rev. Oral Biol. Med. 1990, 1, 261–281. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z.; Wang, H.-C.; Sedgwick, A.C.; Gardiner, J.E.; Bull, S.D.; Xiao, H.-N.; James, T.D. Dual-function cellulose composites for fluorescence detection and removal of fluoride. Dye. Pigment. 2018, 149, 669–675. [Google Scholar] [CrossRef]
- Karrat, A.; Palacios-Santander, J.M.; Amine, A.; Cubillana-Aguilera, L. A novel magnetic molecularly imprinted polymer for selective extraction and determination of quercetin in plant samples. Anal. Chim. Acta 2022, 1203, 339709. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, F.; Fang, G.; Deng, Q.; Wang, S. Fluorometric determination of tyramine by molecularly imprinted upconversion fluorescence test strip. Microchim. Acta 2020, 187, 573. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, N.; Kamalabadi, M.; Mohammadi, A. Determination of histamine and tyramine in canned fish samples by headspace solid-phase microextraction based on a nanostructured polypyrrole fiber followed by ion mobility spectrometry. Food Anal. Methods 2017, 10, 3001–3008. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Li, P.; Xing, Y.; Huang, C. Molecularly imprinted silica-coated CdTe quantum dots for fluorometric determination of trace chloramphenicol. Molecules 2021, 26, 5965. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Lu, R.; Wang, S.; Xiang, C.; Xie, C.; Zheng, M.; Tian, X.; Xu, X. Selective fluorometric determination of microcystin-LR using a segment template molecularly imprinted by polymer-capped carbon quantum dots. Microchem. J. 2021, 161, 105798. [Google Scholar] [CrossRef]
- Raksawong, P.; Nurerk, P.; Chullasat, K.; Kanatharana, P.; Bunkoed, O. A polypyrrole doped with fluorescent CdTe quantum dots and incorporated into molecularly imprinted silica for fluorometric determination of ampicillin. Microchim. Acta 2019, 186, 338. [Google Scholar] [CrossRef]
- Wackerlig, J.; Lieberzeit, P.A. Molecularly imprinted polymer nanoparticles in chemical sensing—Synthesis, characterisation and application. Sens. Actuators B Chem. 2015, 207, 144–157. [Google Scholar] [CrossRef]
- BelBruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.I.; Shaikh, H.; Mustafa, G.; Bhanger, M.I. Recent Applications of Molecularly Imprinted Polymers in Analytical Chemistry. Sep. Purif. Rev. 2019, 48, 179–219. [Google Scholar] [CrossRef]
- Saylan, Y.; Akgönüllü, S.; Yavuz, H.; Ünal, S.; Denizli, A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. Sensors 2019, 19, 1279. [Google Scholar] [CrossRef] [PubMed]
- Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [PubMed]
Polymer | Analysis Method | LOD | Template | Ref. |
---|---|---|---|---|
Poly(2-vinylpyridine) cross-linked with ethylene glycol dimethacrylate (EGDMA) | Offline MISPE-HPLC-PDA 1 | 2.64 nM | Fenoprofen | [38] |
Poly(3-aminopropyltriethoxysilane) cross-linked with tetraethyl orthosilicate and Fe3O4/SiO2 as a support | HPLC-FLD 2 | 1.26 nmol kg−1 | Zearalenone | [39] |
Poly(itaconic acid) cross-linked with EGDMA | HPLC-UV | nd | Sulpiride | [40] |
Poly(4-vinylbenzoic acid) | HPLC-UV | nd | Carbamazepine | [41] |
Poly(methacrylic acid) cross-linked with EGDMA | Online MISPE-HPLC-UV and HPLC-DAD 3 | 0.04 nM | Climbazole (analyte) Miconazole (dummy template) | [42] |
Poly(methacrylic acid) cross-linked with EGDMA and Fe3O4/SiO2 as a support | HPLC-DAD | 0.60 nM | Dienestrol | [43] |
Composite of mesoporous silica-coated on magnetic graphene oxide and poly(4-vinylbenzoic acid) | Offline MISPE-HPLC-PDA | (No prepolymerization) Sulfadiazine, 0.060 nM; Sulfathiazole, 0.051 nM; Sulfamerazine, 0.045 nM; Sulfamethazine, 0.050 nM; Sulfamethoxazole, 0.051 nM; Sulfadoxine, 0.032 nM (With prepolimeryzation) Sulfadiazine, 0.056 nM; Sulfathiazole, 0.051 nM; Sulfamerazine, 0.045 nM; Sulfamethazine, 0.047 nM; Sulfamethoxazole, 0.047 nM; Sulfadoxine, 0.032 nM | Sulfadiazine, Sulfathiazole, Sulfamerazine, Sulfamethazine, Sulfamethoxazole, Sulfadoxine | [44] |
Composite of Poly(dopamine) and Fe3O4 | Offline MISPE-HPLC-UV | 1.03 nM | 17β-Estradiol | [45] |
Composite of Poly(dopamine) and Fe3O4 | Offline MISPE-HPLC-UV | 1.87 nM | Tetracycline | [46] |
Poly(methacrylic acid) cross-linked with EGDMA | Offline MISPE-LC-MS/MS | 3.01 × 10−7 nM | Chloramphenicol | [51] |
Poly(p-vinylbenzoic acid) | LC-MS | 0. 034–0.31 ng mL−1 | Nevirapine, Venlafaxine, Methocarbamol, Carbamazepine, Etilefrine | [53] |
Poly(2-vinylpirydine-co-methacrylic acid) cross-linked with EGDMA | Offline MISPE-LC-MS | 0.3–1.4 ng g−1 | Bisphenol A | [54] |
Poly(methacrylic acid) cross-linked with EGDMA | LC-MS | 4.54 nM | Roxithromycin | [52] |
Poly(1-vinylimidazole) cross-linked with EGDMA | Offline MISPE-LC-MS/MS | No data | Acid Green 16 | [55] |
Poly(methacrylic acid) cross-linked with EGDMA | GC-FPD 4 | 150–890 ng L−1 | Trichlorfon, Dichlorvos, Dimethoate, Imidacloprid, Methamidophos | [58] |
Poly(methacrylic acid) cross-linked with EGDMA | Offline MISPE-GC-(μ-ECD) | 1 ng g−1 | Pentachloronitrobenzene | [59] |
Polypyrrole | GC-FID 5 | 1.99 nM | Progesterone | [60] |
Poly(methacrylic acid) cross-linked with EGDMA | Offline MISPE-GC -(μ-ECD) 6 | 10−3 to 5 × 10−2 ng | Alachlor, Acetochlor, Pretilachlor, Metolachlor (analytes); Butachlor (dummy template) | [61] |
Poly(methacrylic acid) cross-linked with EGDMA | Offline MISPE-GC-MS | 4.04 × 10−3 nM | N-Nitrosodiphenylamine | [64] |
Poly(4-vinylpyridine) cross-linked with EGDMA | Offline MISPE-atmospheric pressure-GC-MS/MS | 1–100 ng L−1 | Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(ghi) perylene, Indeno(1,2,3-cd)pyrene (analytes) Toluene (pseudo template) | [65] |
Poly(methacrylic acid) cross-linked with EGDMA and poly(methacrylic methacrylate) cross-linked EGDMA | Offline MISPE-GC-MS | 0.0302 ng (PBDE-47), 0.0315 ng (PBDE-99) | PBDE-47, PBDE-99 (analytes) Dihydroxydiphenyl ether (dummy template) | [66] |
Poly(methacrylic acid) cross-linked with EGDMA | CE-PDA | 622 nM | Trichlorfon | [72] |
Poly(dopamine) | CE-UV | 590 nM | Genistein | [74] |
Composite of poly(dopamine-co-resorcinol) and Ag and N co-doped zinc oxide supported on activated carbon | CE-MS | 0.3 ng g−1 | Patulin | [75] |
Poly(terephthalic acid) cross-linked with EGDMA | CE-DAD | 18.77 nM | Atenolol | [73] |
Polymer | Analysis Method | LOD | Template | Ref. |
---|---|---|---|---|
Polyacrylate | Wooden-tip ESI-MS | 10 nM (from water), 50 nM (from fish) | Malachite green | [81] |
Poly(methacrylic acid) cross-linked with EGDMA | Wooden-tip ESI-MS | 0.003 ng g−1 (water), 1.1 ng g−1 (honey), 1.9 ng g−1 (milk) | Macrolide | [97] |
Poly(methacrylic acid) cross-linked with EGDMA | PS-MS | 1.57 nM 0.79 nM 0.57 × 10−5 nM | Dopamine Sacrosine Butyric acid | [89] |
Poly(methacrylic acid) cross-linked with EGDMA | PS-MS | 0.89 nM | Cocaine | [93] |
Poly(methacrylic acid) cross-linked with EGDMA | PS-MS | 3.02 nM | Monouron 2,4,5-T | [96] |
Dissolution of nylon-6 in formic acid (8.3 mg mL−1) | DI-ESI-MS | 9.89 nM 20.1 nM | Cocaine Methamphetamine | [98] |
Polymer | Analysis Method | LOD | Template | Ref. |
---|---|---|---|---|
Poly(methacrylic acid)-co-(acrylic acid) cross-linked with EGDMA | Microwave argon plasma ionization-MS | 0.002 μg to 0.005 μg | Atrazine Pendimethalin Quercetin | [101] |
Poly(acrylic acid) cross-linked with EGDMA | FAPA-MS | 10 nM (positive), 100 nM (negative) | Quercetin | [102] |
Poly(acrylamide)-co-(4-vinylpiridine) cross-linked with EGDMA | FAPA-MS | No data | Trans-chalcone 2′,4′-dihydroxy- 3-methoxychalcone | [105] |
Poly(methacrylic acid) cross-linked with EGDMA | FAPA-MS | 10 nM 1000 nM 0.5 × 10−3 nM | Nicotine Propyphenazone Methylparaben | [103] |
Poly(2-methoxycarbonylpropyl- 2-oxazoline) cross-linked with diethylenetriamine (DETA) | FAPA-MS | 1–100 nM | 2,4,5-Trichloro- phenoxyacetic acid | [8] |
Poly(methyl vinyl ether-alt-maleic anhydride) cross-linked with DETA | FAPA-MS | 30–600 nM | 2,4-Dichlorophenol | [104] |
Polymer | Analysis Method | Electrode Type | LOD | Template | Ref. |
---|---|---|---|---|---|
Poly(methacrylic acid-co-4-aminotiophenol | DPV | CPE with Au nanoparticles | 0.029 nM | Tetrabromobisphenol-S | [112] |
Poly(m-phenylenediamine) | DPV | Au SPEL | 0.1 nM | Erythromycin | [128] |
Polypyrrole/graphene quantum dots | DPV | GCE covered by graphene quantum dots | 40 nM | Bisphenol A | [113] |
Poly(methacrylic acid) cross-linked with EGDMA | DPV | GCE coated by graphene oxide | 0.5 nM | 2,4-Dichlorophenol | [114] |
Poly(ethylene glycol methacrylate-co aniline) | SWV | Carbon SPEL | 20 nM | 17β-Estradiol | [124] |
Poly(Bismarck Brown Y) | EIS | Fluorine-doped tin oxide | 160 nM | Uric acid | [132] |
Poly(o-phenylenediamine) | EIS | GCE coated by graphene oxide | 4 × 10−7 nM | Testosterone | [133] |
Polyimidazole | SWV | GCE coated by Ag nanoparticles and graphene oxide | 3.01 × 10−7 nM | 17β-Estradiol | [121] |
Polyacrylamide | DPV; EIS | Au SPEL | 7.94 × 10−4 nM (DPV), 1.62 × 10−2 nM (EIS) | Triclosan | [115] |
Poly(o-phenylenediamine) | SWV | GCE coated by a zinc oxide nanoparticle/graphene nanoplatelet | 40 nM | 4-Chlorophenol | [123] |
Poly(indole-3-acetic acid) | DPV | GCE and boron-doped diamond electrode | 4.9 and 3.2 nM | Cefalexin | [116] |
Poly(methacrylic acid) cross-linked with trimethylolpropane trimethacrylate | DPV | Carbon SPEL modified by Au nanoparticles | 500 nM | Cyromazine | [117] |
Composite of poly(N, N′-methylene-bisacrylamide-co-acrylamide) with β-cyclodextrin and reduced graphene oxide | CV, DPV | GCE | 8 nM (DPV) | Bisphenol A | [118] |
Poly(o-phenylenediamine) | EIS | Au SPEL | 0.62 nM | Zearalenone | [134] |
Poly(methacrylic acid) cross-linked with EGDMA | DPV | GCE | 4.08 nM | Chlorpyrifos | [119] |
Poly(methacrylic acid) cross-linked with EGDMA | SWV | CPE | 0.79 nM | Diazinon | [122] |
Poly(o-phenylenediamine-co-β-cyclodextrin) | DPV | Au electrode modified by Fe-doped porous carbon | 0.2 nM | Lomefloxacin | [120] |
Polypyrrole | EIS | GCE | 850 nM | N-nitrosodimethylamine | [129] |
Polypyrrole | EIS | Pencil graphite electrode | 4.5 nM | Dibutyl phthalate | [130] |
Composite of poly(methacrylic acid-co-pyrrole) and magnetite nanoparticles | CV, DPV | Carbon SPEL | 10−3 nM | Tributylin | [131] |
Poly(o-aminophenol) | EIS | Au-Ag alloy microrod | 7.63 × 10−5 nM | Dopamine | [126] |
Composite of poly(dopamine-co-resorcinol) and Ag and N co-doped zinc oxide supported on activated carbon | DPV | GCE | 6.7 × 10−5 nM | Cypermethrin | [127] |
Poly(methacrylic acid) cross-linked with EGDMA | SWV | CPE | 0.13 nM | Diazinon | [125] |
Polymer | Analysis Method | LOD | Template | Ref. |
---|---|---|---|---|
Poly(methacrylic acid) cross-linked with EGDMA | MICS-surface-enhanced Raman spectroscopy (SERS)/colorimetric dual sensor | 285.25 nM – 0.28525 mM | Chlorpyrifos | [146] |
Poly(methacrylic acid) cross-linked with EGDMA | MICS-surface-enhanced Raman spectroscopy (SERS)/colorimetric dual sensor | 0.56 nM | Atrazine | [149] |
Poly(methacrylic acid) cross-linked with EGDMA | MICSs colorimetric sensors | 100 nM | Phosphorus pesticides | [151] |
Poly(methacrylic acid) cross-linked with EGDMA | Ratiometric fluorescence and colorimetric dual-mode | 104 nM | Vanillin | [152] |
Poly(methacrylic acid) cross-linked with EGDMA | AgNPs colorimetry | 25 nM | Caffeine | [153] |
Poly(dopamine) | UV-Vis spectroscopy and visual measurements | 0.013 mg mL−1 | Anti-S. aureus IgY antibodies | [154] |
Poly(N-isopropyl acrylamide) | UV-Vis spectroscopy and color intensity measurements | 11.83 nM | Glyphosate | [155] |
Poly(methacrylic acid) cross-linked with EGDMA | UV-Vis spectroscopy and color change | 0.1 nM | Ethyl-o-aminobeznoate | [156] |
Polymer | Analysis Method | LOD | Template | Ref. |
---|---|---|---|---|
Poly(methacrylic acid)-co-(acrylamide) | Color change of “radar” pattern and PCA | 3.53 µg, 2.42 µg, 4.85 µg, 2.14 µg | 2,4,6-trinitrotoluene, 2,6-dinitrotoluene, 2,4-dinitrotoluene, 4-nitrotoluene | [157] |
Poly(dopamine) | Intensity of oxidation of TBM | 400 nM | Tetracycline | [158] |
Poly(styrene)-co-(vinyl pyrrolidone) (1:9) | Naked-eye detection | 4380 nM | Bisphenol A | [160] |
Poly(3-aminopropyltriethoxysilane)-co- (tetraethyl orthosilicate) | Intensity of oxidation of TBM | 3 pg g−1 | Tetrabromobisphenol A | [161] |
Polu(3-aminopropyltriethoxysilane)-co- (phenyltrimethoxysilane) | Color changes via potassium permanganate reduction | 0.26 × 109 nM | 3-Phenoxybenzaldehyde | [162] |
Poly(3-(trimethoxysilyl)propyl methacrylate) cross-linked with EGDMA | Lateral flow immunochromatographic assay | 0.0402 nM | Microcystin-LR | [163] |
Polymer | Analysis Method | LOD | Template | Ref. |
---|---|---|---|---|
Poly(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)-co- N-hydroxysuccinimide | Fluorescence and visualization | 8.33 × 10−6 nM (fluorescence), 2.08 × 10−3 nM (visualization) | Enterovirus 71 (EV71) | [164] |
Poly(methacrylic acid) cross-linked with N,N′-methylene bisacrylamide (BIS) | Laser pointer and visualization | 50 nM | L-Kynurenine | [166] |
Poly(3-acrylamidophenylboronic acid)-co- (2-hydroxy-2-methylpropiophenone) cross-linked with BIS | Intensity of oxidation of TBM | 1.32 ng mL−1 | Glycoprotein | [167] |
Poly(dopamine) | Intensity of oxidation of TBM | 0.0278 nM | Thrombin | [168] |
Poly(norepinephrine) | Colorimetric indirect competitive bioassay | 0.227 nM | Gonadotropin | [169] |
Poly(2,4-difluoro-3-formylphenylboronic acid) | Visually structure color changes | 0.3 nM | Horseradish peroxidase | [170] |
Poly(4-vinylphenylboronate) | A cascaded catalytic system with glucose oxidase | 400 nM | β-D-glucose | [171] |
Polymer | Analysis Method | LOD | Template | Ref. |
---|---|---|---|---|
Poly(methacrylic acid)-co-(acrylamide) cross-linked with EGDMA | Dye displacement and UV-Vis measurements | No data | Amoxicillin and dyes | [173] |
Poly(methacrylic acid) cross-linked with EGDMA | Dye displacement and UV-Vis measurements | 50,000 nM | 2-methoxiphenidine and dyes | [174] |
Poly(methacrylic acid)-co- (acetazolamide) cross-linked with EGDMA | Smartphone-based detection | 30 nM | Acetazolamide | [175] |
Polymer | Analysis Method | LOD | Template | Ref. |
---|---|---|---|---|
Poly(vinylbenzyl)trimethylammonium chloride-co-1H,1H,2H,2H-perfluoroalkyl acrylate cross-linked with EGDMA | SPR sensor based on a D-shaped POF | 0.13 ppb | Ammonium perfluorooctanoate | [186] |
Poly(vinyl alcohol) cross-linked with EGDMA | SPR | 3.3 nM | Atrazine | [187] |
Poly(methacrylic acid) cross-linked with divinylbenzene (DVB) | SPR sensor based on a D-shaped POF | 41.53 nM | 2-Furaldhyde | [188] |
Poly(methacrylamide-co-vinyl trimethoxysilane-co-tetrahydroxilane) | SPR | 0.073 nM | Amoxicillin | [189] |
Poly(acrylamide-co-N-t-butylacrylamide-co- 2-hydroxyethyl methacrylate | SPR sensor based on a D-shaped POF | 51,000 nM | Subunit 1 of the SARS-CoV-2 spike protein | [190] |
Poly(2-hydroxyethyl methacrylate-co- N-(hydroxymethyl)acrylamide solution-co-N-isopropylacrylamide-co-acrylamide) | SPR biosensor | 0.23 nM | Secreted bacterial factor | [191] |
Poly(vinylbenzyl)trimethylammonium chloride-co-1H,1H,2H,2H-perfluoroalkyl acrylate cross-linked with EGDMA | (1) D-shaped POF with MIP, (2) SPR sensor based on a D-shaped POF | 0.81 ppt | Perfluorooctanoic acid | [201] |
Poly(N-isopropylacrylamide-co-methacrylic acid) | LSPR | No data | Lysozyme and Lactoferrin | [204] |
Poly(methacrylic acid-vinylbenzyl trimethylammonium chloride) cross-linked with EGDMA | LSPR | No data | Polyphenol | [206] |
Polymer | Analysis Method | LOD | Template | Ref. |
---|---|---|---|---|
Poly(3-aminopropyl triethoxysilan) cross-linked by tetraethoxysilane | Paper-based fluorescence sensor | 0.274 nM | Malachite Green | [220] |
Polymerizable anion receptors containing a urea-type binding sites cross-linked with EGDMA | Fluoride-imprinted polymeric optical sensor | 11,300 nM | Fluoride ion | [221] |
Poly(methacrylic acid) cross-linked with EGDMA | Sensitive fluorometric method | 3.64 nM | Quercetin | [224] |
Poly(methacrylic acid) cross-linked with EGDMA | Fluorescence test strip | 1.46 × 106 nM | Tyramine | [226] |
Poly(3-aminopropyl triethoxysilan) cross-linked with tetraethoxysilane | Fluorescence quenching of quantum dots | 350 nM | Chloramphenicol | [228] |
Poly(3-aminopropyl triethoxysilan) cross-linked with tetraethoxysilane | Fluorescence quenching effect | 9.98 × 10−3 nM | Microcystin-LR | [229] |
Poly(3-aminopropyl triethoxysilan) cross-linked with tetraethoxysilane | Fluorescence probe of polypyrrole and quantum dots | 0.143 nM | Ampicillin | [230] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazim, T.; Lusina, A.; Cegłowski, M. Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques. Polymers 2023, 15, 3868. https://doi.org/10.3390/polym15193868
Nazim T, Lusina A, Cegłowski M. Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques. Polymers. 2023; 15(19):3868. https://doi.org/10.3390/polym15193868
Chicago/Turabian StyleNazim, Tomasz, Aleksandra Lusina, and Michał Cegłowski. 2023. "Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques" Polymers 15, no. 19: 3868. https://doi.org/10.3390/polym15193868
APA StyleNazim, T., Lusina, A., & Cegłowski, M. (2023). Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques. Polymers, 15(19), 3868. https://doi.org/10.3390/polym15193868