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Abstract: Emissions of formaldehyde from wood-based panels, such as plywood, are gaining in-
creased attention due to their carcinogenic impact on human health and detrimental effects on the
environment. Plywood, which is primarily bound with a urea-formaldehyde adhesive, releases
formaldehyde during hot pressing and gradually over time. Therefore, this study aims to analyze
the impact of non-formaldehyde adhesive types on plywood performance. In addition, plywood
performance was assessed by comparing Jabon wood (Anthocephalus cadamba Miq) veneer with other
Indonesian wood veneers such as Mempisang (Alphonse spp.) and Mahogany (Swietenia mahagoni). To
manufacture a three-layer plywood panel, a two-step manufacturing process was devised. The first
step involved the use of Jabon veneers treated with citric acid (CA), maleic acid (MA), and molasses
(MO), and another step was carried out for various wood veneers such as Jabon, Mempisang, and Ma-
hogany using CA. The performance of plywood was examined using JAS 233:2003. The performance
of plywood bonded with CA was better than that of plywood bonded with MA and MO. The Jabon
wood veneer resulted in a lower density of plywood than other wood veneers. The water absorption,
thickness swelling, modulus of elasticity, and tensile shear strength of plywood from Jabon wood
veneer were similar to those of plywood from Mahogany wood veneer and lower than those of
Mempisang wood veneer. The ester linkages of plywood bonded with CA were greater than those of
plywood bonded with MA and MO because plywood bonded with CA has better performance than
plywood bonded with MA and MO.

Keywords: eco-friendly composite; Indonesian wood; non-formaldehyde adhesive; plywood

1. Introduction

The expansion of the home construction and furniture industries is driving global
plywood production and consumption, which has experienced a significant increase from
158 million m3 to 162 million m3 [1]. Additionally, to meet the needs of importers such as
Japan, the Republic of Korea, and the United States, Indonesia exports 3.85 million m3 of
plywood annually [2]. Plywood can be used in various applications, including furniture,
musical instruments, modes of transportation, packaging, sporting goods, and construc-
tion [3]. Notably, the manufacturing of plywood has witnessed a transformation in the use
of fast-growing wood species. These species, which are prized for their short rotation cycles
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and suitable harvest diameters, have emerged as an alternative source for veneer-based
products [4]. This shift signifies a sustainable method to meet the ever-expanding demand
for plywood while mitigating the impact on natural wood forests.

Plywood is typically bonded with urea-formaldehyde (UF) adhesive due to its cost-
effectiveness, rapid curing, transparent glue line, and ability to produce high-quality panels
that meet the required standards [5]. Additionally, plywood adhesive such as phenol-
formaldehyde (PF), melamine-urea-formaldehyde (MF), and polyurethane adhesive can be
substituted [6,7]. However, the use of UF, MF, and PF resins in plywood manufacturing,
both during the hot-pressing process and in the panel’s lifespan, poses environmental
concerns and health risks [8] including conditions like nasopharyngeal cancer, leukaemia,
respiratory tract irritation, genotoxicity, and skin sensitization [9–12]. Several effective
techniques have been devised to mitigate formaldehyde emissions from wood-based panels
joined with formaldehyde-based resins. [13–19]. Kristak et al. [8] reported that the emission
of formaldehyde from wood-based panels joined with formaldehyde-based resins can be
reduced using several techniques. The primary ones include (i) lowering the formaldehyde-
urea molar ratio; (ii) changing the hot-pressing parameters, such as the temperature and
duration used during pressing; (iii) including formaldehyde scavengers like tannins, lignin,
starch, wheat flour, and rice husk flour; and (iv) the use of alternative adhesive sys-
tems based on carbon materials, modified amide-containing biopolymer, carboxymethyl
cellulose, and soy flour, post-treatment of the wood-based goods, surface treatment, or
combining UF resin with other resins. In addition, non-formaldehyde adhesives have been
developed to reduce formaldehyde emissions [20]. Non-formaldehyde adhesives were
successfully fabricated as wood adhesives [21–27]. The latter have been considered the
cheapest non-formaldehyde adhesives (CA) with remarkable adhesion properties [28–30].

In 2012, a significant advancement emerged with the development of citric acid (CA)
as a composite adhesive. Some of these developments include adhesive for molding [31–33],
plywood [34–37], laminated veneer lumber [38], oriented strand board [39], composite
plywood [40], and particleboard [24,41]. Notably, CA adhesive has gained widespread
recognition and use in the domain of particleboard adhesives. Some of these developments
include particleboard from bamboo [42,43], Nypa [44], Salacca [45], Imperata cylindrica [46],
rice biomass [47], Washingtonia palm caches [48], giant reed [49], cardoon leaf [50], and
rubberwood [51]. Sutiawan et al. [37] successfully used non-formaldehyde adhesives such
as CA adhesive for Jabon (Anthocephalus cadamba Miq), a fast-growing species of plywood.
The results showed that plywood pressed at 190 ◦C for 10 min had less delamination and
higher tensile shear strength (TSS). Additionally, some properties of plywood complied with
the requirements of JAS 233:2003. In this study, the Jabon and CA adhesive combination
was compared to other Indonesian wood veneers and other non-formaldehyde adhesives
such as maleic acid (MA) and molasses (MO).

Sutiawan et al. [52] reported that JIS A 5908-2003 [53] type 8 was satisfied by the
performance of a sorghum bagasse composite particleboard bonded with MA. In addition,
Sutiawan et al. [54] highlighted the application of MA in bonding table tennis blades fabri-
cated from sorghum bagasse particleboard. The optimum condition of the previous study
was an MA content of 15 wt%, particle size of 4–20 mesh, and pressing process conditions
of 200 ◦C and 20 min [55]. Expanding on this investigation, Syahfitri et al. [56] achieved
favorable outcomes by combining sorghum biomass with MO to produce particleboards.
According to JIS A 5908:2003, the performance of the particleboard fulfilled the required
standards. The optimum condition of the previous study was an MO content of 20 wt%
and particle size of 4–20 mesh [56]. Therefore, this study aims to analyze the influence
of non-formaldehyde adhesive on the performance of plywood. In addition, plywood
performance was assessed by comparing Jabon wood veneer with other Indonesian wood
veneers such as Mempisang (Alphonse spp.) and Mahogany (Swietenia mahagoni).
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2. Material and Methods
2.1. Material

Three Indonesian wood veneers—Jabon, Mempisang, and Mahogany—of dimensions
of 350 mm × 350 mm × 2 mm, were obtained from the Center for Standardization of
Sustainable Forest Management Instruments, Bogor, Indonesia. The respective densities of
the Jabon wood, Mempisang, and Mahogany used were 0.40 g/cm3, 0.67 g/cm3, 0.58 g/cm3.
For consistency, the veneers were dried at 60 ◦C for 24 h, resulting in an MC of 5%, which
was used throughout the study. The CA and MA were obtained from MERCK and PT
Telagasakti Sakatautama, respectively. In addition, MO PTPN XII East Java, Indonesia
provided the materials. According to previous investigations, the CA, MA, and MO were
set at concentrations of 59 wt%, 44 wt%, and 59 wt%, respectively [37,52,56]. The adhesives
used in this study have a solids content of 44.23–58.8%, gel time of 4.6–10.3 min, pH of
1.17–4.79, and viscosity of 6.5–152 mPa·s.

2.2. Characterization of Adhesive

The adhesive characteristics tested consisted of solids content, gelation time, pH, and
viscosity.

2.2.1. Solids Content

The solids content of the adhesive identifies the number of particles in the adhesive.
The more adhesive particles that react with wood in the gluing process, the stronger the
bond strength. An adhesive sample of 1 g was added on aluminum foil and then placed in
an oven (Memmert, Germany) at 103 ± 3 ◦C for 3 h. After the sample dried, the aluminum
foil was transferred to a desiccator and weighed. The solids content was calculated using
the formula below:

Solids content (%) = (Oven-dried weight/Initial weight) × 100

2.2.2. Gelation Time

To evaluate gelation time, the adhesive was placed in a test tube. The gel time meter
(Techne GT-6, Coleparmer, Vernon, IL, USA) was positioned to submerge the needle in the
sample. Dimethyl sulfoxide (DMSO) was used in a water bath, and the temperature was
raised to 135 ◦C. After that, the time required for the adhesive to gelatinate was observed.
The adhesive gelation time limit was obtained when the timer stopped automatically and
showed the gelation time number marked “gel” on the screen.

2.2.3. Viscosity

Approximately 20 mL of the adhesive samples were introduced into a glass and
mounted on a rotational rheometer (RheolabQC, AntonPaar, Graz, Austria). Viscosity
measurements were performed using a concentric cylinder (cc)-type spindle no. 27 with
a rotation speed of 100/s. Tests were carried out at 25 ◦C to determine the viscosity, and
dynamic viscosity was measured for 120 s.

2.2.4. pH Value

The pH value of the adhesive was determined using a pH meter (Laqua pH 1200,
Horiba, Kyoto, Japan). The pH value was shown on the screen a few moments after the
electrode probe of the pH meter was dipped into the adhesive sample placed in a container.

2.2.5. Curing Behaviors

The curing behaviors of the adhesive were examined using differential scanning
calorimetry (DSC) and thermogravimetric analysis (TGA). The adhesive samples were
analyzed using TGA, and all samples were freeze-dried for one hour and then pulverized
to less than 60 mesh. TGA was conducted using a TGA 4000 instrument (PerkinElmer
4000, Waltham, MA, USA). The sample adhesive was analyzed using DSC. The samples
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were scanned from 25 ◦C to 500 ◦C at a 10 ◦C/min rate under nitrogen purging. DSC
measurements were completed using a DSC 4000 instrument (PerkinElmer 4000, United
States). Under nitrogen purging, the samples were scanned from 25 ◦C to 400 ◦C at
10 ◦C/min.

2.3. Manufacture of Plywood

A layer of 134 g/m2 based on the solids content of non-formaldehyde adhesive with a
single glue line was spread on the wood veneer surface [38]. According to a previous study,
a three-layer plywood panel was created using pressing conditions of 190 ◦C, for 10 min,
under 1.3 MPa [37]. In this study, a two-step manufacturing process was devised (Table 1).
In the first step, Jabon veneer was created using several non-formaldehydes adhesive such
as CA, MA, and MO. Then, in the second step, another plywood panel was created using
CA adhesive for various wood veneers such as Jabon, Mempisang, and Mahogany.

Table 1. Conditions of manufacture of plywood.

Steps Type of Adhesive Type of Wood Veneer

1
CA Jabon
MA Jabon
MO Jabon

2
CA Jabon
CA Mempisang
CA Mahogany

2.4. Determination of Plywood Performance

The performance of plywood, including density, moisture content (MC), water ab-
sorption (WA), thickness swelling (TS), modulus of elasticity (MOE), modulus of rupture
(MOR), and TSS, was examined according to the Japanese Agricultural Standard No. 233
(JAS 2003) [57].

2.4.1. Density

Density testing was carried out using samples measuring 5 × 5 × 0.6 cm3 in length,
width, and thickness. The determination of density was expressed in the results of the
comparison between the weight and volume of the board. The density of plywood was
calculated using an equation based on the JAS 234-2003 standard [58].

Density (g/cm3) = M/V

where:

M is the weight of plywood (g)
V is the volume of plywood (cm3)

2.4.2. Moisture Content (MC)

An MC test was performed on samples measuring 5 × 5 × 0.6 cm3 in length, width,
and thickness. Subsequently, the MC value was calculated using the difference between
the initial weight and the final weight after 24 h of drying in an oven at 103 ◦C. The MC
value was calculated using an equation based on the JAS 234-2003 standard.

MC (%) = (BB − BKT)/BKT × 100

where:

BB is the weight of the sample before drying (g)
BKT is the weight of the sample after drying (g)
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2.4.3. Water Absorption (WA)

WA tests were performed on samples measuring 5 × 5 × 0.6 cm3. The difference in
weight before soaking and weight after immersion in water for 24 h was measured. The
WA value was derived using a calculation based on the JAS 234-2003 standard.

WA (%) = (B2 − B1)/ B1 × 100

where:

B1 is the weight of the sample before soaking (g)
B2 is the weight of the sample after soaking (g)

2.4.4. Thickness Swelling (TS)

TS tests were performed on samples of 5 × 5 × 0.6 in length, width, and thickness.
The measurements were carried out by measuring the difference in initial thickness before
and after soaking for 24 h. The TS value was calculated using an equation based on the JAS
234-2003 standard.

TS (%) = (T2 − T1)/T1 × 100

where:

T1 is the thickness of the sample before soaking (mm)
T2 is the thickness of the sample after soaking (mm)

2.4.5. Modulus of Elasticity (MOE) and Modulus of Rupture (MOR)

MOE and MOR tests were performed on samples measuring 20 × 5 × 0.6 cm3. A
universal testing machine (Shimadzu AG-IS 50 kN, Japan) was then used to test the results.
MOE and rupture tests were performed at 10 mm/minute loading speeds. The MOE and
MOR were determined using an equation based on the JAS 234-2003 standard.

MOE (MPa) = (∆PL3)/(4∆Ybh)

MOR (MPa) = (3PmaxL)/(2bh)

where:

P max is the maximum load (N)
P is the load below the limit of proportion (N)
Y is the deflection at load P (mm)
L is the pacing distance (mm)
b is the width of the test sample (mm)
h is the thickness of the test sample (mm)

2.4.6. Tensile Shear Strength (TSS)

The test was carried out using samples measuring 8 × 2.5 × 0.6 cm3. The samples
were sheared using a universal testing machine (Shimadzu AG-IS 50 kN, Kyoto, Japan) at a
loading speed of 2 mm/min to a maximum load. Adhesive strength was calculated using
the JAS 234-2003 standard.

Shear strength (MPa) = P/(b × h)

where:

P is the maximum load (N),
b is the width of the specimen (mm)
h is the distance between notches (mm)
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2.5. Functional Groups Analysis

A Fourier transform infrared (FTIR) instrument was used to measure changes in
functional groups (PerkinElmer, USA). An FTIR spectra range from 4000 to 400 with a
4 cm−1 resolution was captured in absorbance mode. The spectra were normalized for
baseline using Perkin Elmer software (Spectrum, Version 10.5.1) [52].

2.6. Statistical Analysis

A simple completely randomized design was employed, featuring two factors: the
type of non-formaldehyde adhesive (CA, MA, and MO) and the type of wood veneer
(Jabon, Mempisang, and Mahogany). The difference in plywood properties was analyzed
using analysis of variance (ANOVA) and Duncan’s multi-range test (Duncan) at 0.05.

3. Result and Discussion
3.1. Characteristics of Adhesive

The results regarding adhesive characterization (refer to Table 2) reveal that the MA
adhesive has lower solids content, pH, and viscosity than the CA and MO adhesives.
The lower pH and viscosity contributed to the lower quality of plywood bonded with
MA adhesive. The short gelation time indicates that the adhesive no longer required a
long setting time during hot pressing in the manufacture of composite products [59]. The
average viscosity of the CA, MA, and MO adhesives is quite low compared to conventional
formaldehyde-based plywood adhesives, such as UF resins with an average viscosity
of around 250–400 mPa·s [59]. The viscosity value affects the ability of the adhesive to
penetrate the pores of the wood and the storage life of the adhesive. Adhesives with high
viscosity have a short storage life because they harden faster and the quality of the adhesive
is low [59]. Notably, the MA and MO adhesives have lower thermal degradation (145 ◦C
and 150 ◦C) compared to the CA adhesive (165 ◦C) (Figure 1A). However, the MO adhesive
also has a higher first endothermic peak (200 ◦C) compared to the MA and CA adhesives
(140 ◦C and 159 ◦C) (Figure 1B). These phenomena resulted in low TSS in plywood bonded
with MO adhesive.

Table 2. Characteristics of adhesives used in this study.

Type of Adhesive Solids Content (%) Gel Time (min) pH Viscosity (mPa·s)

CA 56.20 4.6 2.3 7.3
MA 44.23 10.3 1.17 6.5
MO 58.8 5.9 4.79 152
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3.2. Variation in Type of Non-Formaldehyde Adhesive

Figure 2 shows the influence of non-formaldehyde adhesive type on the performance
of plywood observed using Jabon plywood. The density and MC of plywood ranged
between 0.43 and 0.50 g/cm3 and between 5.92 and 9.70%, respectively (Figure 2A). The
ANOVA revealed that there was no significant difference between plywood densities
(Table 3). However, the MC of plywood bonded with CA was slightly higher than that
of plywood bonded with MA and MO (Table 4). The samples’ WA and TS ranged from
60.93 to 95.39% and from 4.35 to 7.74%, respectively (Figure 2B). The WA of plywood
bonded with MO was slightly higher than that of plywood bonded with CA and MA. This
phenomenon was affected by a cross-linker in CA and MA, and lignocellulose material
was higher than in MO. Sutiawan et al. [37] reported that CA adhesive resulted in a higher
concentration of cross-linkers in ester linkage than other adhesives, as detected by FTIR
analysis.
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Table 3. ANOVA of plywood properties with variation by type of non-formaldehyde adhesive.

Parameter ANOVA

MOE 0.015 **
MOR 0.497 ns

TSS 0.001 **
Density 0.084 ns

MC 0.003 **
WA 0.000 **
TS 0.005 **

ns not difference, ** difference.

Table 4. Duncan test results of plywood properties with variation by type of non-formaldehyde
adhesive.

Type of Adhesive Density MC WA TS MOE MOR TSS

CA 0.43 a 9.70 c 60.93 a 4.35 a 6.54 b 26.06 a 0.70 b
MA 0.47 ab 5.92 a 93.08 b 6.94 b 4.66 a 17.74 a 0.24 a
MO 0.50 b 6.76 b 95.39 b 7.74 b 4.72 a 22.26 a 0.15 a

There is no difference between values with the same letter in a row.

As shown in Table 4, the MOE and MOR of plywood bonded with CA were marginally
greater than in plywood bonded with MA and MO at a p-value of 0.05. The TSS of plywood
bonded with CA was marginally greater than that of plywood bonded with MA and MO at
the same level of p-value, which was the same as the MOE and MOR (Table 4). According
to previous studies, these occurrences are caused by the presence of hydroxyl groups (OH),
which are necessary for reacting with carboxyl groups (COOH) of CA to produce ester
linkages (R-COO-R) [52].

3.3. Variation of Wood Veneer

The impact of wood veneer type on plywood performance was observed using CA
adhesive, as illustrated in Figure 3. The average density of plywood ranged from 0.43 to
0.59 g/cm3 and the MC ranged from 6.85 to 9.70%, as shown in Figure 3A. The Jabon wood
veneer has a lower density of plywood than other wood veneers (p < 0.05, Tables 5 and 6).
These phenomena are due to the density of Jabon wood (0.40 g/cm3) being lower than
that of Mempisang (0.67 g/cm3) and Mahogany (0.58 g/cm3) [60–62]. Karliati et al. [60]
reported that the manufacture of wood-derived products, such as plywood, could increase
the product’s density compared to solid wood. According to the JAS 233: 2003 standard
(JAS 2003), the MC of all plywood samples was inappropriate according to the standard
(MC < 14%).

Table 5. ANOVA of plywood properties with variation by type of wood veneer.

Parameter ANOVA

MOE 0.002 **
MOR 0.166 ns

TSS 0.051 ns

Density 0.000 **
MC 0.012 **
WA 0.000 **
TS 0.004 **

ns not difference, ** difference.
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represent the standard deviation. (A) Density and moisture content, (B) water absorption and
thickness swelling, (C) modulus of elasticity and rupture, and (D) Tensile shear strength.

Table 6. Duncan test results of plywood properties with variation by type of adhesive.

Type of Wood Veneer Density MC WA TS MOE MOR TSS

Jabon 0.43 a 9.70 b 60.93 b 4.35 a 6.54 a 26.06 a 0.70 a
Mempisang 0.57 b 6.85 a 75.97 c 6.68 b 10.85 b 44.37 a 1.06 b
Mahogany 0.59 b 7.95 a 53.27 a 4.08 a 7.16 a 48.42 a 0.84 ab

There is no difference between values with the same letter in a row.

The WA and TS of plywood from Jabon wood veneer (60.93% and 4.35%) were similar
to those from Mahogany wood veneer (53.27% and 4.08%) and were lower than those from
Mempisang (75.97% and 6.68%) wood veneer (p < 0.05, Tables 5 and 6) (Figure 3B). A previ-
ous study reported that Jabon plywood bonded with PF adhesive has a WA of 107.6% [60].
Therefore, the plywood in this current study showcases commendable dimensional stability.
The formation of ester linkages in wood-derived products has resulted in good dimensional
stability [24,43,63].

The MOE and MOR of plywood from Jabon wood veneer (6.54 GPa and 26.06 MPa)
were lower than those from Mahogany (7.16 GPa and 48.42 MPa) wood veneer and Mem-
pisang (10.85 GPa and 44.37 MPa) wood veneer (p < 0.05, Tables 5 and 6) (Figure 3C).
However, the TSS of plywood made with Jabon wood veneer (0.70 MPa) was similar to that
of Mahogany wood veneer (0.84 MPa) and was lower than that of Mempisang (1.06 MPa)
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wood veneer (p < 0.05, Tables 5 and 6) (Figure 3C,D). The density of wood-derived products
affected mechanical properties such as bending and bonding quality [24]. As an example,
Sutrisno et al. [64] reported that wood-derived products, specifically laminated veneer
lumber bonded with PF resins, exhibited an MOR of 43.14 MPa, which surpasses the MOR
value observed in this study. In addition, Sun et al. [34] reported that Poplar plywood
bonded with CA has a TSS value of 0.35 MPa, making all TSS values higher.

3.4. Functional Groups Analysis

The FTIR spectrum of plywood using different types of non-formaldehyde adhe-
sive and wood veneers is shown in Figure 4. The difference is visible at approximately
1725 cm−1. The peak of plywood bonded with CA, approximately 1725 cm−1 (ester link-
ages), was greater (Figure 4A) than that of plywood bonded with MA and MO [52]. This
distinction in peaks contributes to the superior performance of CA-bonded plywood when
contrasted with MA- and MO-bonded plywood. In addition, the peaks at 1725 cm−1

(ester linkages) and 1040 cm−1 (hemiacetal’s C-O-C) in plywood from Jabon wood veneer
were higher than those from Mahogany and Mempisang wood veneer (Figure 4B). This
observation explains the similarity in TSS between plywood from Jabon wood veneer and
plywood from Mahogany wood veneer, despite the lower density of Jabon wood. The peak
at 1725 cm−1 signifies ester linkages, and the peak at 1040 cm−1 corresponds to hemiac-
etal’s C-O-C stretching vibration, resulting in the esterification of CA with lignocellulose
materials [63,65].
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4. Conclusions

In conclusion, the type of non-formaldehyde adhesive and the type of wood veneer
affected the performance of plywood. Plywood bonded with CA showed superior per-
formance compared to plywood bonded with MA and MO adhesives. The Jabon wood
veneer resulted in a lower density of plywood than other wood veneers. The water ab-
sorption, thickness swelling, modulus of elasticity, and tensile shear strength of plywood
crafted from Jabon wood veneer showed similarities to plywood made from Mahogany
wood veneer and were lower than those derived from Mempisang wood veneer. The ester
linkages of plywood bonded with CA were greater than those of plywood bonded with
MA and MO because plywood bonded with CA has better performance than plywood
bonded with MA and MO. Further study is still needed to determine solid content and
hardener optimization factors when applying CA, MA, and MO in adhesive plywood.
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