Synthesis and Performance Testing of Maleic Anhydride–Ene Monomers Multicomponent Co-Polymers as Pour Point Depressant for Crude Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Eight Pour Point Depressant (PPD)
2.2.1. Preparation of PPD-1
2.2.2. Preparation of PPD-2
2.2.3. Preparation of PPD-3, PPD-4, PPD-5
2.2.4. Preparation of PPD-6
2.2.5. Preparation of PPD-7
2.2.6. Preparation of PPD-8
2.3. Characterization of the Products
2.4. The Selection of Pour Point Depressants
2.5. Test Concentration of Pour Point Depressants
2.6. Microscopy Studies
3. Results and Discussion
3.1. Polymer Characterization
3.1.1. GPC of PPD
3.1.2. IR Spectroscopy Analysis of PPD
3.1.3. Nuclear Magnetic Resonance Spectroscopy of PPD
3.2. PPD Performance Evaluation
3.2.1. Effect of PPD Addition on Pour Point of Crude Oil
3.2.2. Wax Crystal Pattern of Crude Oil after Adding PPD-8
3.3. Analysis of the PPD Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lv, G.; Li, Q.; Wang, S. Key techniques of reservoir engineering and injection–production process for CO2 flooding in China’s SINOPEC Shengli Oilfield. J. CO2 Util. 2015, 11, 31–40. [Google Scholar] [CrossRef]
- Weidong, W.; Junzhang, L.; Xueli, G. MEOR field test at block Luo801 of Shengli oil field in China. Pet. Sci. Technol. 2014, 32, 673–679. [Google Scholar] [CrossRef]
- Gao, C.; Shi, J.; Zhao, F. Successful polymer flooding and surfactant-polymer flooding projects at Shengli Oilfield from 1992 to 2012. J. Pet. Explor. Prod. Technol. 2014, 4, 1–8. [Google Scholar] [CrossRef]
- Irfan, M.; Khan, J.A.; Al-Kayiem, H.H. Characteristics of Malaysian Crude Oils and Measurement of ASP Flooded Water in Oil Emulsion Stability and Viscosity in Primary Separator. Water 2023, 15, 1290. [Google Scholar] [CrossRef]
- Ashoori, S.; Sharifi, M.; Masoumi, M. The relationship between SARA fractions and crude oil stability. Egypt. J. Pet. 2017, 26, 209–213. [Google Scholar] [CrossRef]
- Yasin, G.; Bhanger, M.I.; Ansari, T.M. Quality and chemistry of crude oils. J. Pet. Technol. Altern. Fuels 2013, 4, 53–63. [Google Scholar]
- Xu, J.; Xing, S.; Qian, H. Effect of polar/nonpolar groups in comb-type copolymers on cold flowability and paraffin crystallization of waxy oils. Fuel 2013, 103, 600–605. [Google Scholar] [CrossRef]
- Kurniawan, M.; Norrman, J.; Paso, K. Pour point depressant efficacy as a function of paraffin chain-length. J. Pet. Sci. Eng. 2022, 212, 110250. [Google Scholar] [CrossRef]
- Ma, R.; Zhu, J.; Wu, B. Distribution and qualitative and quantitative analyses of chlorides in distillates of Shengli crude oil. Energy Fuels 2017, 31, 374–378. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Luo, X. A novel nonlinear multivariable Verhulst grey prediction model: A case study of oil consumption forecasting in China. Energy Rep. 2022, 8, 3424–3436. [Google Scholar] [CrossRef]
- Yi, S.; Zhang, J. Relationship between waxy crude oil composition and change in the morphology and structure of wax crystals induced by pour-point-depressant beneficiation. Energy Fuels 2011, 25, 1686–1696. [Google Scholar] [CrossRef]
- He, C.; Ding, Y.; Chen, J. Influence of the nano-hybrid pour point depressant on flow properties of waxy crude oil. Fuel 2016, 167, 40–48. [Google Scholar] [CrossRef]
- Mohanan, A.; Bouzidi, L.; Narine, S.S. Harnessing the synergies between lipid-based crystallization modifiers and a polymer pour point depressant to improve pour point of biodiesel. Energy 2017, 120, 895–906. [Google Scholar] [CrossRef]
- Adams, J.J.; Tort, F.; Loveridge, J. Physicochemical Approach to Pour Point Depressant Treatment of Waxy Crudes. Energy Fuels 2023, 37, 6432–6449. [Google Scholar] [CrossRef]
- Kamal, R.S.; Shaban, M.M.; Raju, G. High-Density Polyethylene Waste (HDPE)-Waste-Modified Lube Oil Nanocomposites as Pour Point Depressants. ACS Omega 2021, 6, 31926–31934. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, M.; Wang, W. Experimental study of the effects of a nanocomposite pour point depressant on wax deposition. Energy Fuels 2020, 34, 12239–12246. [Google Scholar] [CrossRef]
- Jia, X.; Fu, M.; Xing, X. Submicron carbon-based hybrid nano-pour-point depressant with outstanding pour point depressant and excellent viscosity depressant. Arab. J. Chem. 2022, 15, 104157. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, F.; Sun, B. Effect of nanocomposite as pour point depressant on the cold flow properties and crystallization behavior of diesel fuel. Chin. Chem. Lett. 2022, 33, 2677–2680. [Google Scholar] [CrossRef]
- Li, H.; Chen, C.; Huang, Q. Effect of pour point depressants on the impedance spectroscopy of waxy crude oil. Energy Fuels 2020, 35, 433–443. [Google Scholar] [CrossRef]
- Li, X.; Yuan, M.; Xue, Y. Tetradecyl methacrylate-N-methylolacrylamide Copolymer: A low concentration and high-efficiency pour point depressant for diesel. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128672. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, Y.; Sjöblom, J. Polymeric wax inhibitors and pour point depressants for waxy crude oils: A critical review. J. Dispers. Sci. Technol. 2015, 36, 213–225. [Google Scholar] [CrossRef]
- Li, N.; Mao, G.L.; Shi, X.Z. Advances in the research of polymeric pour point depressant for waxy crude oil. J. Dispers. Sci. Technol. 2018, 39, 1165–1171. [Google Scholar] [CrossRef]
- Hao, L.Z.; Al-Salim, H.S.; Ridzuan, N. A Review of the Mechanism and Role of Wax Inhibitors in the Wax Deposition and Precipitation. Pertanika J. Sci. Technol. 2019, 27, 499–526. [Google Scholar]
- Liu, T.; Fang, L.; Liu, X. Preparation of a kind of reactive pour point depressant and its action mechanism. Fuel 2015, 143, 448–454. [Google Scholar] [CrossRef]
- Huang, H.; Wang, W.; Peng, Z. The influence of nanocomposite pour point depressant on the crystallization of waxy oil. Fuel 2018, 221, 257–268. [Google Scholar] [CrossRef]
- Cao, J.; Liu, L.; Liu, C. Phase transition mechanisms of paraffin in waxy crude oil in the absence and presence of pour point depressant. J. Mol. Liq. 2022, 345, 116989. [Google Scholar] [CrossRef]
- El Mehbad, N. Efficiency of N-Decyl-N-benzyl-N-methylglycine and N-Dodecyl-N-benzyl-N-methylglycine surfactants for flow improvers and pour point depressants. J. Mol. Liq. 2017, 229, 609–613. [Google Scholar] [CrossRef]
- Yao, B.; Li, C.; Yang, F. Organically modified nano-clay facilitates pour point depressing activity of polyoctadecylacrylate. Fuel 2016, 166, 96–105. [Google Scholar] [CrossRef]
- Oliveira, L.M.S.L.; Nunes, R.C.P.; Melo, I.C. Evaluation of the correlation between wax type and structure/behavior of the pour point depressant. Fuel Process. Technol. 2016, 149, 268–274. [Google Scholar] [CrossRef]
- Xie, M.; Chen, F.; Liu, J. Synthesis and evaluation of benzyl methacrylate-methacrylate copolymers as pour point depressant in diesel fuel. Fuel 2019, 255, 115880. [Google Scholar] [CrossRef]
- Steckel, L.; Nunes, R.C.P.; Rocha, P.C.S. Pour point depressant: Identification of critical wax content and model system to estimate performance in crude oil. Fuel 2022, 307, 121853. [Google Scholar] [CrossRef]
- Xue, Y.; Zhao, Z.; Xu, G. Effect of poly-alpha-olefin pour point depressant on cold flow properties of waste cooking oil biodiesel blends. Fuel 2016, 184, 110–117. [Google Scholar] [CrossRef]
- Wu, Y.; Ni, G.; Yang, F. Modified maleic anhydride co-polymers as pour-point depressants and their effects on waxy crude oil rheology. Energy Fuels 2012, 26, 995–1001. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, X.; Ma, J. Investigation into a pour point depressant for Shengli crude oil. Ind. Eng. Chem. Res. 2012, 51, 11605–11612. [Google Scholar] [CrossRef]
- Xu, G.; Xue, Y.; Zhao, Z. Influence of poly (methacrylate-co-maleic anhydride) pour point depressant with various pendants on low-temperature flowability of diesel fuel. Fuel 2018, 216, 898–907. [Google Scholar] [CrossRef]
- GB/T3535-83; Determination of Oil Pour Point. China Standards Press: Beijing, China, 1983.
- Pucko, I.; Racar, M.; Faraguna, F. Synthesis, characterization, and performance of alkyl methacrylates and tert-butylaminoethyl methacrylate tetra polymers as pour point depressants for diesel Influence of polymer composition and molecular weight. Fuel 2022, 324, 124821. [Google Scholar] [CrossRef]
Properties | Shengli Crude Oil |
---|---|
Density at 20 °C (g/cm3) | 0.85 |
Pour point (°C) | 32 |
Wax content (wt%) | 21.23 |
Resin content (wt%) | 2.17 |
Asphaltene content (wt%) | 0.89 |
IBP (°C) | 60.5 |
Monomer A | Monomer B | Monomer C | Products |
---|---|---|---|
Acrylic acid | Propyl acrylate | None | PPD-1 |
Acrylic acid | Propyl acrylate | Maleic anhydride | PPD-2 |
Methyl methacrylate | Propyl acrylate | Maleic anhydride | PPD-3 |
Acrylic acid | Octadecyl acrylate | Maleic anhydride | PPD-4 |
Methyl acrylate | Nonadecyl acrylate | Maleic anhydride | PPD-5 |
Methyl methacrylate | Propyl acrylate | Diethyl succinate | PPD-6 |
Methyl methacrylate | Propyl acrylate | Dibenzyl maleate | PPD-7 |
Methyl acrylate | Nonadecyl acrylate | EsterDibenzyl | PPD-8 |
Additive | Mw (g/mol) | Yield (%) |
---|---|---|
PPD-1 | 34,958 | 90 |
PPD-2 | 38,458 | 88 |
PPD-3 | 41,520 | 89 |
PPD-4 | 41,330 | 91 |
PPD-5 | 42,339 | 87 |
PPD-6 | 39,415 | 81 |
PPD-7 | 38,965 | 82 |
PPD-8 | 40,134 | 85 |
Additive | Pour Point with PPD/°C | Pour-Point Depression/°C |
---|---|---|
PPD-1 | 26 | 6 |
PPD-2 | 28 | 4 |
PPD-3 | 27 | 5 |
PPD-4 | 25 | 7 |
PPD-5 | 24 | 8 |
PPD-6 | 26 | 6 |
PPD-7 | 23 | 9 |
PPD-8 | 20 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, D.; Liu, Q.; Zhang, W.; Liu, R.; Jiang, C.; Chen, H.; Yan, J.; Gu, Y.; Yang, B. Synthesis and Performance Testing of Maleic Anhydride–Ene Monomers Multicomponent Co-Polymers as Pour Point Depressant for Crude Oil. Polymers 2023, 15, 3898. https://doi.org/10.3390/polym15193898
Yuan D, Liu Q, Zhang W, Liu R, Jiang C, Chen H, Yan J, Gu Y, Yang B. Synthesis and Performance Testing of Maleic Anhydride–Ene Monomers Multicomponent Co-Polymers as Pour Point Depressant for Crude Oil. Polymers. 2023; 15(19):3898. https://doi.org/10.3390/polym15193898
Chicago/Turabian StyleYuan, Dong, Qingfeng Liu, Wenhui Zhang, Ran Liu, Chenxi Jiang, Hengyu Chen, Jingen Yan, Yongtao Gu, and Bingchuan Yang. 2023. "Synthesis and Performance Testing of Maleic Anhydride–Ene Monomers Multicomponent Co-Polymers as Pour Point Depressant for Crude Oil" Polymers 15, no. 19: 3898. https://doi.org/10.3390/polym15193898
APA StyleYuan, D., Liu, Q., Zhang, W., Liu, R., Jiang, C., Chen, H., Yan, J., Gu, Y., & Yang, B. (2023). Synthesis and Performance Testing of Maleic Anhydride–Ene Monomers Multicomponent Co-Polymers as Pour Point Depressant for Crude Oil. Polymers, 15(19), 3898. https://doi.org/10.3390/polym15193898