Effectiveness of Different Application Modalities on the Bond Performance of Four Polymeric Adhesive Systems to Dentin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bonding and Sample Preparations
2.3. Micro-Tensile Bond Strength Testing
2.4. Failure Mode Analysis
2.5. Scanning Electron Microscopy of Resin–Dentin Interface
2.6. Adhesive Contact Angle
2.7. Statistical Analysis
3. Results
3.1. Micro-Tensile Bond Strength Testing
3.2. Failure Mode Analysis
3.3. Scanning Electron Microscopy of Resin–Dentin Interface
3.4. Adhesive Contact Angle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourgi, R.; Hardan, L.; Cuevas-Suárez, C.E.; Scavello, F.; Mancino, D.; Kharouf, N.; Haikel, Y. The Use of Warm Air for Solvent Evaporation in Adhesive Dentistry: A Meta-Analysis of In Vitro Studies. J. Funct. Biomater. 2023, 14, 285. [Google Scholar] [CrossRef] [PubMed]
- Kharouf, N.; Ashi, T.; Eid, A.; Maguina, L.; Zghal, J.; Sekayan, N.; Bourgi, R.; Hardan, L.; Sauro, S.; Haikel, Y. Does Adhesive Layer Thickness and Tag Length Influence Short/Long-Term Bond Strength of Universal Adhesive Systems? An in-Vitro Study. Appl. Sci. 2021, 11, 2635. [Google Scholar] [CrossRef]
- Paken, G.; Çömlekoğlu, M.E.; Sonugelen, M. Detection of the Hybrid Layer Biodegradation Initiation Factor with a Scanning Electron Microscope. Microsc. Res. Tech. 2021, 84, 2166–2175. [Google Scholar] [CrossRef] [PubMed]
- Pashley, D.H.; Tay, F.R.; Breschi, L.; Tjäderhane, L.; Carvalho, R.M.; Carrilho, M.; Tezvergil-Mutluay, A. State of the Art Etch-and-Rinse Adhesives. Dent. Mater. 2011, 27, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Nagaoka, N.; Hayakawa, S.; Okihara, T.; Yoshida, Y.; Van Meerbeek, B. Chemical Interaction of Glycero-Phosphate Dimethacrylate (GPDM) with Hydroxyapatite and Dentin. Dent. Mater. 2018, 34, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Migliau, G. Classification Review of Dental Adhesive Systems: From the IV Generation to the Universal Type. Ann. Stomatol. 2017, 8, 1–17. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.; De Munck, J.; Van Landuyt, K. State of the Art of Self-Etch Adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef]
- Kharouf, N.; Eid, A.; Hardan, L.; Bourgi, R.; Arntz, Y.; Jmal, H.; Foschi, F.; Sauro, S.; Ball, V.; Haikel, Y.; et al. Antibacterial and Bonding Properties of Universal Adhesive Dental Polymers Doped with Pyrogallol. Polymers 2021, 13, 1538. [Google Scholar] [CrossRef]
- Bourgi, R.; Daood, U.; Bijle, M.N.; Fawzy, A.; Ghaleb, M.; Hardan, L. Reinforced Universal Adhesive by Ribose Crosslinker: A Novel Strategy in Adhesive Dentistry. Polymers 2021, 13, 704. [Google Scholar] [CrossRef]
- Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Zarow, M.; Kharouf, N.; Mancino, D.; Villares, C.F.; Skaba, D.; Lukomska-Szymanska, M. The Bond Strength and Antibacterial Activity of the Universal Dentin Bonding System: A Systematic Review and Meta-Analysis. Microorganisms 2021, 9, 1230. [Google Scholar] [CrossRef]
- Triani, F.; Pereira da Silva, L.; Ferreira Lemos, B.; Domingues, J.; Teixeira, L.; Manarte-Monteiro, P. Universal Adhesives: Evaluation of the Relationship between Bond Strength and Application Strategies—A Systematic Review and Meta-Analyses. Coatings 2022, 12, 1501. [Google Scholar] [CrossRef]
- Meerbeek, B.V.; Yoshihara, K.; Van Landuyt, K.; Yoshida, Y.; Peumans, M. From Buonocore’s Pioneering Acid-Etch Technique to Self-Adhering Restoratives. A Status Perspective of Rapidly Advancing Dental Adhesive Technology. J. Adhes. Dent. 2020, 22, 7–34. [Google Scholar] [PubMed]
- Hardan, L.; Bourgi, R.; Kharouf, N.; Mancino, D.; Zarow, M.; Jakubowicz, N.; Haikel, Y.; Cuevas-Suárez, C.E. Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis. Polymers 2021, 13, 814. [Google Scholar] [CrossRef] [PubMed]
- Bourgi, R.; Hardan, L.; Rivera-Gonzaga, A.; Cuevas-Suárez, C.E. Effect of Warm-Air Stream for Solvent Evaporation on Bond Strength of Adhesive Systems: A Systematic Review and Meta-Analysis of in Vitro Studies. Int. J. Adhes. Adhes. 2021, 105, 102794. [Google Scholar] [CrossRef]
- Takamizawa, T.; Imai, A.; Hirokane, E.; Tsujimoto, A.; Barkmeier, W.W.; Erickson, R.L.; Latta, M.A.; Miyazaki, M. SEM Observation of Novel Characteristic of the Dentin Bond Interfaces of Universal Adhesives. Dent. Mater. 2019, 35, 1791–1804. [Google Scholar] [CrossRef]
- Ayres, A.P.; Bonvent, J.J.; Mogilevych, B.; Soares, L.E.S.; Martin, A.A.; Ambrosano, G.M.; Nascimento, F.D.; Van Meerbeek, B.; Giannini, M. Effect of Non-Thermal Atmospheric Plasma on the Dentin-Surface Topography and Composition and on the Bond Strength of a Universal Adhesive. Eur. J. Oral Sci. 2018, 126, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.F.; Sutil, E.; Malaquias, P.; de Paris Matos, T.; de Souza, L.M.; Reis, A.; Perdigao, J.; Loguercio, A.D.; Gutiérrez, M.F.; Sutil, E.; et al. Effect of Self-Curing Activators and Curing Protocols on Adhesive Properties of Universal Adhesives Bonded to Dual-Cured Composites. Dent. Mater. 2017, 33, 775–787. [Google Scholar] [CrossRef]
- Sano, H.; Chowdhury, A.F.M.A.; Saikaew, P.; Matsumoto, M.; Hoshika, S.; Yamauti, M. The Microtensile Bond Strength Test: Its Historical Background and Application to Bond Testing. JPN Dent. Sci. Rev. 2020, 56, 24–31. [Google Scholar] [CrossRef]
- Beloica, M.; Goracci, C.; Carvalho, C.A.; Radovic, I.; Margvelashvili, M.; Vulicevic, Z.R.; Ferrari, M. Microtensile vs. Microshear Bond Strength of All-in-One Adhesives to Unground Enamel. J. Adhes. Dent 2010, 12, 427–433. [Google Scholar]
- Mokeem, L.S.; Garcia, I.M.; Balhaddad, A.A.; Cline, K.; Rakovsky, G.; Collares, F.M.; Melo, M.A.S. Dental Adhesives: State-of-the-Art, Current Perspectives, and Promising Applications. Adhes. Biomed. Appl. 2023, 33, 253–277. [Google Scholar]
- Liber-Kneć, A.; Łagan, S. Surface Testing of Dental Biomaterials—Determination of Contact Angle and Surface Free Energy. Materials 2021, 14, 2716. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-H.; Jeon, B.-K.; Mo, S.Y.; Park, M.; Choi, D.; Choi, K.-K.; Kim, D.-S. Effect of Various Agitation Methods on Adhesive Layer Formation of HEMA-Free Universal Dentin Adhesive. Dent. Mater. J. 2018, 38, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Santana, F.R.; Pereira, J.C.; Pereira, C.A.; Fernandes Neto, A.J.; Soares, C.J. Influence of Method and Period of Storage on the Microtensile Bond Strength of Indirect Composite Resin Restorations to Dentine. Braz. Oral Res. 2008, 22, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Dikova, T.; Maximov, J.; Todorov, V.; Georgiev, G.; Panov, V. Optimization of Photopolymerization Process of Dental Composites. Processes 2021, 9, 779. [Google Scholar] [CrossRef]
- Elizalde-Hernández, A.; Hardan, L.; Bourgi, R.; Isolan, C.P.; Moreira, A.G.; Zamarripa-Calderón, J.E.; Piva, E.; Cuevas-Suárez, C.E.; Devoto, W.; Saad, A. Effect of Different Desensitizers on Shear Bond Strength of Self-Adhesive Resin Cements to Dentin. Bioengineering 2022, 9, 372. [Google Scholar] [CrossRef]
- Georgiev, G.; Dikova, T. Hardness Investigation of Conventional, Bulk Fill and Flowable Dental Composites. J. Achiev. Mater. Manuf. Eng. 2021, 109, 68–77. [Google Scholar] [CrossRef]
- Armstrong, S.; Breschi, L.; Özcan, M.; Pfefferkorn, F.; Ferrari, M.; Van Meerbeek, B. Academy of Dental Materials Guidance on in Vitro Testing of Dental Composite Bonding Effectiveness to Dentin/Enamel Using Micro-Tensile Bond Strength (ΜTBS) Approach. Dent. Mater. 2017, 33, 133–143. [Google Scholar] [CrossRef]
- Kharouf, N.; Arntz, Y.; Eid, A.; Zghal, J.; Sauro, S.; Haikel, Y.; Mancino, D. Physicochemical and Antibacterial Properties of Novel, Premixed Calcium Silicate-Based Sealer Compared to Powder–Liquid Bioceramic Sealer. J. Clin. Med. 2020, 9, 3096. [Google Scholar] [CrossRef]
- Ekambaram, M.; Yiu, C.K.Y.; Matinlinna, J.P. An Overview of Solvents in Resin–Dentin Bonding. Int. J. Adhes. Adhes. 2015, 57, 22–33. [Google Scholar] [CrossRef]
- Irmak, Ö.; Yaman, B.C.; Orhan, E.O.; Ozer, F.; Blatz, M.B. Effect of Rubbing Force Magnitude on Bond Strength of Universal Adhesives Applied in Self-Etch Mode. Dent. Mater. J. 2018, 37, 139–145. [Google Scholar] [CrossRef]
- Kameyama, A.; Haruyama, A.; Abo, H.; Kojima, M.; Nakazawa, Y.; Muramatsu, T. Influence of Solvent Evaporation on Ultimate Tensile Strength of Contemporary Dental Adhesives. Appl. Adhes. Sci. 2019, 7, 4. [Google Scholar] [CrossRef]
- Koike, K.; Takamizawa, T.; Aoki, R.; Shibasaki, S.; Ishii, R.; Sai, K.; Kamimoto, A.; Miyazaki, M. Comparison of Dentin Bond Durability in Different Adhesive Systems Containing Glycerol-Phosphate Dimethacrylate (GPDM) Functional Monomers under Long-Term Water Storage. Int. J. Adhes. Adhes. 2023, 124, 103366. [Google Scholar] [CrossRef]
- Han, F.; Dai, S.; Yang, J.; Shen, J.; Liao, M.; Xie, H.; Chen, C. Glycerol Phosphate Dimethacrylate: An Alternative Functional Phosphate Ester Monomer to 10-Methacryloyloxydecyl Dihydrogen Phosphate for Enamel Bonding. ACS Omega 2020, 5, 24826–24837. [Google Scholar] [CrossRef] [PubMed]
- Thalacker, C. Dental Adhesion with Resin Composites: A Review and Clinical Tips for Best Practice. Br. Dent. J. 2022, 232, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Hoshika, S.; Kameyama, A.; Suyama, Y.; De Munck, J.; Sano, H.; Van Meerbeek, B. GPDM- and 10-MDP-Based Self-Etch Adhesives Bonded to Bur-Cut and Uncut Enamel—“Immediate” and “Aged” ΜTBS. J. Adhes. Dent. 2018, 20, 113–120. [Google Scholar] [CrossRef]
- Tsujimoto, A.; Fischer, N.G.; Barkmeier, W.W.; Latta, M.A. Bond Durability of Two-Step HEMA-Free Universal Adhesive. J. Funct. Biomater. 2022, 13, 134. [Google Scholar] [CrossRef]
- Peutzfeldt, A.; Vigild, M. A Survey of the Use of Dentin-Bonding Systems in Denmark. Dent. Mater. 2001, 17, 211–216. [Google Scholar] [CrossRef]
- Tjäderhane, L.; Nascimento, F.D.; Breschi, L.; Mazzoni, A.; Tersariol, I.L.; Geraldeli, S.; Tezvergil-Mutluay, A.; Carrilho, M.R.; Carvalho, R.M.; Tay, F.R. Optimizing Dentin Bond Durability: Control of Collagen Degradation by Matrix Metalloproteinases and Cysteine Cathepsins. Dent. Mater. 2013, 29, 116–135. [Google Scholar] [CrossRef]
- Tjäderhane, L.; Nascimento, F.D.; Breschi, L.; Mazzoni, A.; Tersariol, I.L.S.; Geraldeli, S.; Tezvergil-Mutluay, A.; Carrilho, M.; Carvalho, R.M.; Tay, F.R.; et al. Strategies to Prevent Hydrolytic Degradation of the Hybrid Layer—A Review. Dent. Mater. 2013, 29, 999–1011. [Google Scholar] [CrossRef]
- Garcia, R.N.; de Araújo Neto, V.G.; Silva, C.R.; Miguel, L.C.M.; Giannini, M. Microshear Bond Strength of Universal Adhesives to Enamel and Dentin: An Eighteen-Month in Vitro Study. Braz. Dent. Sci. 2021, 24, 1–9. [Google Scholar] [CrossRef]
- Carvalho, R.M.; Chersoni, S.; Frankenberger, R.; Pashley, D.H.; Prati, C.; Tay, F.R. A Challenge to the Conventional Wisdom That Simultaneous Etching and Resin Infiltration Always Occurs in Self-Etch Adhesives. Biomaterials 2005, 26, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, N.; Pashley, D. Acid Conditioning and Hybridization of Substrates. In Hybridization of Dental Hard Tissues; Quintessence Publishing Company: Tokyo, Japan, 1998; pp. 37–56. [Google Scholar]
- Yoshida, Y.; Yoshihara, K.; Nagaoka, N.; Hayakawa, S.; Torii, Y.; Ogawa, T.; Osaka, A.; Meerbeek, B.V. Self-Assembled Nano-Layering at the Adhesive Interface. J. Dent. Res. 2012, 91, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Carrilho, E.; Cardoso, M.; Marques Ferreira, M.; Marto, C.M.; Paula, A.; Coelho, A.S. 10-MDP Based Dental Adhesives: Adhesive Interface Characterization and Adhesive Stability—A Systematic Review. Materials 2019, 12, 790. [Google Scholar] [CrossRef]
- Perdigão, J.; Kose, C.; Mena-Serrano, A.P.; De Paula, E.A.; Tay, L.Y.; Reis, A.; Loguercio, A.D. A New Universal Simplified Adhesive: 18-Month Clinical Evaluation. Oper. Dent. 2014, 39, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Nagaoka, N.; Okihara, T.; Kuroboshi, M.; Hayakawa, S.; Maruo, Y.; Nishigawa, G.; De Munck, J.; Yoshida, Y.; Van Meerbeek, B. Functional Monomer Impurity Affects Adhesive Performance. Dent. Mater. 2015, 31, 1493–1501. [Google Scholar] [CrossRef]
- Loguercio, A.D.; Luque-Martinez, I.; Muñoz, M.A.; Szesz, A.L.; Cuadros-Sánchez, J.; Reis, A. A Comprehensive Laboratory Screening of Three-Step Etch-and-Rinse Adhesives. Oper. Dent. 2014, 39, 652–662. [Google Scholar] [CrossRef]
- Sanghvi, M.R.; Tambare, O.H.; More, A.P. Performance of Various Fillers in Adhesives Applications: A Review. Polym. Bull. 2022, 79, 10491–10553. [Google Scholar] [CrossRef]
- Nagarkar, S.; Theis-Mahon, N.; Perdigão, J. Universal Dental Adhesives: Current Status, Laboratory Testing, and Clinical Performance. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 2121–2131. [Google Scholar] [CrossRef]
- Kenshima, S.; Reis, A.; Uceda-Gomez, N.; Tancredo, L.D.L.F.; Filho, L.E.R.; Nogueira, F.N.; Loguercio, A.D. Effect of Smear Layer Thickness and PH of Self-Etching Adhesive Systems on the Bond Strength and Gap Formation to Dentin. J. Adhes. Dent. 2005, 7, 117–126. [Google Scholar]
- Cuevas-Suárez, C.E.; Ramos, T.S.; Rodrigues, S.B.; Collares, F.M.; Zanchi, C.H.; Lund, R.G.; da Silva, A.F.; Piva, E. Impact of Shelf-Life Simulation on Bonding Performance of Universal Adhesive Systems. Dent. Mater. 2019, 35, e204–e219. [Google Scholar] [CrossRef]
- Reis, A.; Pellizzaro, A.; Dal-Bianco, K.; Gomes, O.; Patzlaff, R.; Loguercio, A.D. Impact of Adhesive Application to Wet and Dry Dentin on Long-Term Resin-Dentin Bond Strengths. Oper. Dent. 2007, 32, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.; Carrilho, M.; Breschi, L.; Loguercio, A. Overview of Clinical Alternatives to Minimize the Degradation of the Resin-Dentin Bonds. Oper. Dent. 2013, 38, E103–E127. [Google Scholar] [CrossRef] [PubMed]
- Amaral, R.; Stanislawczuk, R.; Zander-Grande, C.; Gagler, D.; Reis, A.; Loguercio, A.D. Bond Strength and Quality of the Hybrid Layer of One-Step Self-Etch Adhesives Applied with Agitation on Dentin. Oper. Dent. 2010, 35, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Do Amaral, R.C.; Stanislawczuk, R.; Zander-Grande, C.; Michel, M.D.; Reis, A.; Loguercio, A.D. Active Application Improves the Bonding Performance of Self-Etch Adhesives to Dentin. J. Dent. 2009, 37, 82–90. [Google Scholar] [CrossRef]
- Feitosa, V.P.; Sauro, S.; Ogliari, F.A.; Ogliari, A.O.; Yoshihara, K.; Zanchi, C.H.; Correr-Sobrinho, L.; Sinhoreti, M.A.; Correr, A.B.; Watson, T.F. Impact of Hydrophilicity and Length of Spacer Chains on the Bonding of Functional Monomers. Dent. Mater. 2014, 30, e317–e323. [Google Scholar] [CrossRef]
- Takamizawa, T.; Hirokane, E.; Sai, K.; Ishii, R.; Aoki, R.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Bond Durability of a Two-Step Adhesive with a Universal-Adhesive-Derived Primer in Different Etching Modes under Different Degradation Conditions. Dent. Mater. J. 2023, 42, 121–132. [Google Scholar] [CrossRef]
- Bagis, B.; Turkarslan, S.; Tezvergil-Mutluay, A.; Uctasli, S.; Vallittu, P.K.; Lassila, L.V. Effect of Ultrasonic Agitation on Bond Strength of Self-Etching Adhesives to Dentin. J. Adhes. Dent. 2008, 10, 441–445. [Google Scholar]
- Dal-Bianco, K.; Pellizzaro, A.; Patzlaft, R.; de Oliveira Bauer, J.R.; Loguercio, A.D.; Reis, A. Effects of Moisture Degree and Rubbing Action on the Immediate Resin–Dentin Bond Strength. Dent. Mater. 2006, 22, 1150–1156. [Google Scholar] [CrossRef]
- Münchow, E.A.; Bossardi, M.; Priebe, T.C.; Valente, L.L.; Zanchi, C.H.; Ogliari, F.A.; Piva, E. Microtensile versus Microshear Bond Strength between Dental Adhesives and the Dentin Substrate. Int. J. Adhes. Adhes. 2013, 46. [Google Scholar] [CrossRef]
- El Zohairy, A.; De Gee, A.; De Jager, N.; Van Ruijven, L.; Feilzer, A. The Influence of Specimen Attachment and Dimension on Microtensile Strength. J. Dent. Res. 2004, 83, 420–424. [Google Scholar] [CrossRef]
- Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Devoto, W.; Zarow, M.; Monteiro, P.; Jakubowicz, N.; Zoghbi, A.E.; Skaba, D.; Mancino, D. Effect of Different Application Modalities on the Bonding Performance of Adhesive Systems to Dentin: A Systematic Review and Meta-Analysis. Cells 2023, 12, 190. [Google Scholar] [CrossRef] [PubMed]
- Prati, C.; Chersoni, S.; Mongiorgi, R.; Pashley, D.H. Resin-Infiltrated Dentin Layer Formation of New Bonding Systems. Oper. Dent. 1998, 23, 185–194. [Google Scholar] [PubMed]
- Sinhoreti, M.A.C.; Soares, E.F.; Abuna, G.F.; Correr, L.; Roulet, J.-F.; Geraldeli, S. Microtensile Bond Strength of Adhesive Systems in Different Dentin Regions on a Class II Cavity Configuration. Braz. Dent. J. 2017, 28, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, C.; Ortiz, P.A.; Pashley, D.H. Preservation of Resin–Dentin Interfaces Treated with Benzalkonium Chloride Adhesive Blends. Eur. J. Oral Sci. 2015, 123, 108–115. [Google Scholar] [CrossRef]
- Ruyter, I. The Chemistry of Adhesive Agents. Oper. Dent. 1992, 5, 32–43. [Google Scholar]
- Marshall, S.J.; Bayne, S.C.; Baier, R.; Tomsia, A.P.; Marshall, G.W. A Review of Adhesion Science. Dent. Mater. 2010, 26, e11–e16. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, A.; Iwasa, M.; Shimamura, Y.; Murayama, R.; Takamizawa, T.; Miyazaki, M. Enamel Bonding of Single-Step Self-Etch Adhesives: Influence of Surface Energy Characteristics. J. Dent. 2010, 38, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Pazinatto, F.B.; Marquezini, L., Jr.; Atta, M.T. Influence of Temperature on the Spreading Velocity of Simplified-Step Adhesive Systems. J. Esthet. Restor. Dent. 2006, 18, 38–46. [Google Scholar] [CrossRef]
- Rosales, J.; Marshall, G.; Marshall, S.; Watanabe, L.; Toledano, M.; Cabrerizo, M.; Osorio, R. Acid-Etching and Hydration Influence on Dentin Roughness and Wettability. J. Dent. Res. 1999, 78, 1554–1559. [Google Scholar] [CrossRef]
- Rosales-Leal, J.I.; Osorio, R.; Holgado-Terriza, J.A.; Cabrerizo-Vıȷlchez, M.A.; Toledano, M. Dentin Wetting by Four Adhesive Systems. Dent. Mater. 2001, 17, 526–532. [Google Scholar] [CrossRef]
- Nakabayashi, N.; Takarada, K. Effect of HEMA on Bonding to Dentin. Dent. Mater. 1992, 8, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Mazzoni, A.; Monticelli, F.; Breschi, L.; Osorio, E.; Osorio, R. ElectroBond Application May Improve Wetting Characteristics of Etched Dentine. J. Dent. 2011, 39, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Mendoza, J.A.; Rosales-Leal, J.I.; Rodríguez-Valverde, M.A.; González-López, S.; Cabrerizo-Vílchez, M.A. Wettability and Bonding of Self-Etching Dental Adhesives: Influence of the Smear Layer. Dent. Mater. 2008, 24, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Peutzfeldt, A.; Asmussen, E. Adhesive Systems: Effect on Bond Strength of Incorrect Use. J. Adhes. Dent. 2002, 4, 233–242. [Google Scholar] [PubMed]
- Dreweck, F.; Burey, A.; de Oliveira Dreweck, M.; Fernandez, E.; Loguercio, A.D.; Reis, A. Challenging the Concept That OptiBond FL and Clearfil SE Bond in NCCLs Are Gold Standard Adhesives: A Systematic Review and Meta-Analysis. Oper. Dent. 2021, 46, E276–E295. [Google Scholar] [CrossRef]
Material | pH | Composition * | Manufacturer | Material Application | Active Application According to the Manufacturer Instructions |
---|---|---|---|---|---|
Prime&Bond Universal/Mild universal adhesive | pH = 2.5 | 10-MDP, PENTA, isopropanol, water, photoinitiator, bi- and multifunctional acrylate | Dentsply DeTrey GmbH, Konstanz, Germany | Adhesive was applied using the self-etch technique. One layer of adhesive was applied according to the modalities tested in this study for 20 s, and then mild air-blowing was carried out for 5 s. Adhesive was light irradiated for 20 s. | “Keep Prime&Bond Universal slightly agitated for 20 s”. |
OptiBond Universal/Universal adhesive | pH = 2.5–3.0 | Acetone, HEMA, GDMA, ethanol, GPDM | Kerr Co., Orange, CA, USA | Adhesive was applied using the self-etch technique. One layer of adhesive was applied according to the modalities tested in this study for 20 s, and then mild air-blowing was carried out for 5 s. Adhesive was light irradiated for 20 s. | “Apply a generous amount of OptiBond Universal adhesive to the enamel/dentin surface. Scrub the surface with a brushing motion for 20 s”. |
OptiBond FL/Three-step etch-and-rinse adhesive | pH = Primer: 1.9; Bonding: 6.9 | Etchant: 37.5% H3PO4 Primer: HEMA, GPDM, MMEP, water, ethanol, CQ and BHT Adhesive: Bis-GMA, HEMA, GDMA, CQ, and filler (fumed SiO2, barium aluminoborosilicat, Na2SiF6), coupling factor A174 | Kerr Co., Orange, CA, USA | Etching for 15 s using a 37% phosphoric DENTOETCH acid (Itena Clinical, Paris, France). Rinsing with distilled water for 15–30 s. Air-drying for 15 s to obtain a moist dentin. One layer of primer and adhesive was applied according to the modalities tested in this study for 20 s. Mild air-blowing was carried out for 5 s after primer application and after adhesive application. In the case of the adhesive, this was light irradiated for 20 s. | “Apply material to the prepared enamel/dentin surfaces with a light scrubbing motion for 15 s”. |
Clearfil SE Bond/Two-step self-etch adhesive | pH primer = 1.76 pH bond = 2 | Primer: 10-MDP, HEMA, hydrophilic dimethacrylate, CQ, DEPT, water, ethanol. Bond: MDP, HEMA, bis-GMA, hydrophobic dimethacrylate, CQ, DEPT, silanized colloidal silica | Kuraray Noritake Dental Inc., Tokyo, Japan | One layer of acidic primer and adhesive was applied according to the modalities tested in this study for 20 s, and then mild air-blowing was carried out for 5 s after acidic primer and adhesive application. In the case of the adhesive, this was light irradiated for 20 s. | “Not specified”. |
Technique | CSE | OBFL | OBU | PBU |
---|---|---|---|---|
AA | A 19.0 (3.2) ab | A 29.7 (5.2) a | A 28.3 (5.0) a | A 26.2 (8.9) a |
CV | A 18.2 (6.1) ab | A 24.1 (6.8) a | A 25.1 (9.1) a | A 18 (5.6) ab |
CVM | A 21.3 (3.9) a | A 27.3 (4.1) a | A 24.8 (2.8) a | A 17.5 (9.4) ab |
PA | B 13.6 (3.8) b | A 30.3 (5.9) a | A 29.6 (5.2) a | B 10.9 (3.4) b |
Technique | CSE | OBFL | OBU | PBU |
---|---|---|---|---|
AA | A 17.6 (3.8) a | A 14.9 (2) a | A 17.2 (6.6) a | A 21.1 (2.9) a |
CV | A 9.5 (2.5) b | A 11.3 (3.4) a | A 7.9 (6.5) b | A 13.4 (6.8) b |
CVM | A 18.3 (3.8) a | A 15.5 (2.1) a | B 7.9 (2.8) b | B 9.8 (3.4) b |
PA | A 11.7 (6.3) ab | A 12.5 (1.3) a | A 12.4 (3.6) a | A 7.7 (2.8) b |
Technique/CSE | 24 h | 6 Months |
---|---|---|
AA | 19.0 (3.2) A | 17.6 (3.8) A |
CV | 18.2 (6.1) A | 9.5 (2.5) B |
CVM | 21.3 (3.9) A | 18.3 (3.8) A |
PA | 13.6 (3.8) A | 11.7 (6.3) A |
Technique/PBU | 24 h | 6 months |
AA | 26.2 (8.9) A | 21.1 (2.9) A |
CV | 18 (5.6) A | 13.4 (6.8) A |
CVM | 17.5 (9.4) A | 9.8 (3.4) B |
PA | 10.9 (3.4) A | 7.7 (2.8) A |
Technique/OBU | 24 h | 6 months |
AA | 28.3 (5.0) A | 17.2 (6.6) B |
CV | 25.1 (9.1) A | 7.9 (6.5) B |
CVM | 24.8 (2.8) A | 7.9 (2.8) B |
PA | 29.6 (5.2) A | 12.4 (3.6) B |
Technique/OBFL | 24 h | 6 months |
AA | 29.7 (5.2) A | 14.9 (2) B |
CV | 24.1 (6.8) A | 11.3 (3.4) B |
CVM | 27.3 (4.1) A | 15.5 (2.1) B |
PA | 30.3 (5.9) A | 12.5 (1.3) B |
Technique/Material Fracture Mode (Adhesive/Mixed/Cohesive in Dentin or Resin) | CSE 24 h–6 Months | OBFL 24 h–6 Months | OBU 24 h–6 Months | PBU 24 h–6 Months |
---|---|---|---|---|
AA | 16 adhesive/18 mixed/1 cohesive-18 adhesive/17 mixed/0 cohesive | 11 adhesive/19 mixed/5 cohesive-17 adhesive/16 mixed/2 cohesive | 11 adhesive/17 mixed/7 cohesive-17 adhesive/16 mixed/2 cohesive | 11 adhesive/21 mixed/3 cohesive-16 adhesive/18 mixed/1 cohesive |
CV | 15 adhesive/17 mixed/3 cohesive-25 adhesive/10 mixed/0 cohesive | 11 adhesive/22 mixed/2 cohesive-16 adhesive/17 mixed/2 cohesive | 14 adhesive/19 mixed/2 cohesive-21 adhesive/10 mixed/4 cohesive | 16 adhesive/17 mixed/2 cohesive-19 adhesive/15 mixed/1 cohesive |
CVM | 17 adhesive/15 mixed/3 cohesive-19 adhesive/16 mixed/0 cohesive | 13 adhesive/22 mixed/0 cohesive-15 adhesive/15 mixed/5 cohesive | 15 adhesive/18 mixed/2 cohesive-20 adhesive/14 mixed/1 cohesive | 5 adhesive/28 mixed/2 cohesive-22 adhesive/12 mixed/1 cohesive |
PA | 20 adhesive/13 mixed/2 cohesive-21 adhesive/14 mixed/0 cohesive | 14 adhesive/20 mixed/1 cohesive-17 adhesive/18 mixed/0 cohesive | 13 adhesive/17 mixed/5 cohesive-15 adhesive/18 mixed/2 cohesive | 23 adhesive/10 mixed/2 cohesive-27 adhesive/7 mixed/1 cohesive |
CSE | OBFL | OBU | PBU | |
---|---|---|---|---|
PA (°) | B 37 (1.4) a | B 32.5 (5.1) a | A 16.3 (0.1) | A 12.9 (0.6) |
AA (°) | A 25.3 (1.8) b | A 23.4 (5.7) b | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourgi, R.; Hardan, L.; Cuevas-Suárez, C.E.; Devoto, W.; Kassis, C.; Kharma, K.; Harouny, R.; Ashi, T.; Mancino, D.; Kharouf, N.; et al. Effectiveness of Different Application Modalities on the Bond Performance of Four Polymeric Adhesive Systems to Dentin. Polymers 2023, 15, 3924. https://doi.org/10.3390/polym15193924
Bourgi R, Hardan L, Cuevas-Suárez CE, Devoto W, Kassis C, Kharma K, Harouny R, Ashi T, Mancino D, Kharouf N, et al. Effectiveness of Different Application Modalities on the Bond Performance of Four Polymeric Adhesive Systems to Dentin. Polymers. 2023; 15(19):3924. https://doi.org/10.3390/polym15193924
Chicago/Turabian StyleBourgi, Rim, Louis Hardan, Carlos Enrique Cuevas-Suárez, Walter Devoto, Cynthia Kassis, Khalil Kharma, Ryan Harouny, Tarek Ashi, Davide Mancino, Naji Kharouf, and et al. 2023. "Effectiveness of Different Application Modalities on the Bond Performance of Four Polymeric Adhesive Systems to Dentin" Polymers 15, no. 19: 3924. https://doi.org/10.3390/polym15193924
APA StyleBourgi, R., Hardan, L., Cuevas-Suárez, C. E., Devoto, W., Kassis, C., Kharma, K., Harouny, R., Ashi, T., Mancino, D., Kharouf, N., & Haikel, Y. (2023). Effectiveness of Different Application Modalities on the Bond Performance of Four Polymeric Adhesive Systems to Dentin. Polymers, 15(19), 3924. https://doi.org/10.3390/polym15193924