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Abstract: Mevacor/Poly(vinyl acetate-co-2-hydroxyethyl methacrylate) drug carrier systems (MVR/
VAC-HEMA) containing different Mevacor (MVR) contents were prepared in one pot by free radical
copolymerization of vinyl acetate with 2-hydroxyethyl methacrylate using an LED lamp light in the
presence of camphorquinone as a photoinitiator and Mevacor as a drug filler. The prepared material
was characterized by FTIR, 1H NMR, DSC, SEM and XRD methods. Different parameters influencing
the efficiency in the Mecvacor-water solubility and the drug delivery of this system, such as the
swelling capacity of the carrier, the amount of Mevacor loaded and the pH medium have been widely
investigated. The results obtained revealed that the Mevacor particles were uniformly dispersed in
their molecular state in the copolymer matrix forming a solid solution; the cell toxicity of the virgin
poly(vinyl acetate-co-2-hydroxy ethyl methacrylate) (VAC-HEMA) and MVR/VAC-HEMA drug
carrier system exhibited no significant effect on their viability when between 0.25 and 2.00 wt% was
loaded in these materials; the average swelling capacity of VAC-HEMA material in water was found
to be 45.16 wt%, which was practically unaffected by the pH medium and the solubility of MVR
deduced from the release process reached more than 22 and 37 times that of the powder dissolved
directly in pH 1 and 7 media, respectively. The in vitro MVR release kinetic study revealed that the
MVR/VAC-HEMA system containing 0.5 wt% MVR exhibited the best performance in the short
gastrointestinal transit (GITT), while that containing 2.0 wt% is for the long transit as they were able
to considerably reduce the minimum release of this drug in the stomach (pH1).

Keywords: Mevacor/poly(vinyl acetate-co-2-hydroxyl methyl methacrylate); solid solution; photo-
copolymerization; LED light; Mevacor delivery; solubility enhancement

1. Introduction

Today, polymer materials occupy practically all sectors of industry. In the biomedical
field, these materials are now involved in several formulations, particularly in the drug
delivery domain in order to obtain desirable pharmacokinetics and therapeutic indices.
Controlling the amount of drug released over time and its rate are key elements in the
development of drug delivery systems—the rapid release of medication can have adverse
effects on the body, and too little can prevent this drug from achieving the desired ef-
fectiveness. Therefore, drug carriers must be designed in a fashion that allows them to
deliver the optimal dosage for the optimal duration of time in order to render drugs more
effective [1–3].

Hydrogel-based drug delivery systems provide an alternative to the conventional
drug formulations. They have been utilized in recent years to tackle the inadequate
bioavailability of drugs. Hydrogels are highly water-absorbent mesh networks that are
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formed naturally or synthetically. The chains of polymers in these systems are crosslinked
physically by means of many intermolecular forces (e.g., hydrogen bonding, dispersion
interaction) or bound to each other covalently [4]. In many studies, researchers made
use of polymer hydrogels as carriers due to their biocompatibility and physicochemical
tolerability [5,6]. Among these studies, several investigations have been conducted in
which polymer hydrogels were employed to enhance bioavailability and controlled the
amount of drugs being released.

Mevacor (MVR) (Scheme 1), sold under the brand name “Lovastatin” or “Altoprev”
among others, belongs to a class of drugs called HMG-CoA reductase inhibitors, also
known as statins. This medication is used to treat high cholesterol and reduce the risk of
cardiovascular disease [7]. This medication which is orally administered is recommended
with lifestyle changes. As side effects, this medication can cause serious muscle damage,
among other things, and also increases the risk of liver disease [8]. MVR is poorly soluble
in water; according to the Biopharmaceutics Classification System (BCS) its solubility in
water is 0.4 µg mL−1 [9]. It is highly permeable, and the rate of its oral absorption is
often controlled by the dissolution in the gastrointestinal rate. When drugs are orally
administered, their water solubility is one of the factors most affecting their efficacy [10],
because a limited solubility of an active ingredient in water considerably reduces the
dynamics of the drug absorption. Therefore, an enhancement in its dissolution in water
leads to the improving of its bioavailability. Among the techniques used to improve the
solubility of the lovastatin in water, solid dispersion has been shown to be an effective and
practical method by different researchers in this field [11–13].
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Poly(2-hydroxyethyl methacrylate) (PHEMA) swells but does not dissolve in water
when its polymerization degree, Dp, is greater than 20 [14,15] and its swelling capacity
is moderate (~40 wt%) [16]. With a Dp lower than 20, this polymer is soluble at all
temperatures. Those with Dp localized between 20 and 45 exhibit cloud points. According
to Armes et al. [15], the insolubility of PHEMA in water is mainly due to intra- and inter-
chain H-bonding between polymeric hydroxy groups. The short chains may H-bond
less efficiently, leaving a greater fraction of hydroxy groups to interact with water, or the
H-bonding may simply not be sufficient to overcome the increased entropy of the short
chains. As long as this polymer is soluble in other solvents such as dimethylformamide and
dimethyl sulfoxide, this proves that the PHEMA is crosslinked physically (formation of
inter-chain hydrogen bonds) and not chemically (formation of interchain covalent bonds).

PHEMA hydrogel was employed for the first time in the biological field by Wichterle
and Lim [17]. Due to its safe tolerance, good biocompatibility, non-toxicity and non-
antigenic properties, this hydrophilic material is widely studied in biomedical applica-
tions [18]. For example, this hydrogel was also developed as a carrier for water-soluble
anticancer drugs, such as 5-fluorouracil [19], topical mitomycin-C [20], and cytarabine [21].

Poly(vinyl acetate) (PVAc) belongs to the family of shape memory polymers (SMP)
which are smart materials that can be temporarily modeled and return to their original
shape when an external stimulus is applied to them. PVAc is a hydrophobic and inexpensive
polymer. It can be easily transformed into a hydrophilic biopolymer by hydrolysis in an
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acidic or basic medium by removing the molecules of acetic acid as a by-product giving
poly(vinyl alcohol). This polymer, similarly to PHEMA, which is synthesized mainly
by the free radical polymerization route, is biocompatible, biodegradable, non-toxic and
non-carcinogenic [22–24]. However, its application as a shape memory polymer in the
biomedical field is limited due to its weak mechanical properties such as the resistance
modulus [22,25]. Due to its biological nature which respects the environment in which it is
applied, it is used in various medical fields including cardiovascular devices, implants of
artificial organs, cartilage skin and contact lenses. It is also used in wound dressings and
various drug delivery applications [23,24].

In order to improve its mechanical properties and broaden its application in the
medical field, PVAc is blended with others polymers having desirable properties [23,25–27]
or employed as copolymers [28–30].

Several studies were performed to improve the dissolution properties and bioavail-
ability of MVR, thereby increasing its drug efficacy. For example, Lin et al. [31] prepared
nanoparticles involving poly(d, l-lactide-co-glycolide acid) (PLGA) and Mevacor using the
double emulsion technique for its application in the dentistry field in the direct capping of
pulp. It was found that these systems released MVR over a period of 44 days. In another
study published by Tarafder et al. [32] on the release behavior of this same molecule from a
coating of poly (ε-caprolactone) (PCL) on β-tricalcium phosphate (β-TCP), it was revealed
that the hydrophilic-hydrophobic and hydrophobic-hydrophobic interactions that exist
between MVR and PCL were the key factors controlling the diffusion dominated release
kinetics of this medication from PCL coating. Recently, Madhavi et al. [33] studied the
improvement of MVR absorption and its oral bioavailability. These researchers attempted
to formulate floating drug delivery systems using Mevacor as a drug candidate using
Methocel of different grades, e.g., K4 and K5. According to the results obtained, the F6
formulation containing 20 mg of MVR, xanthum gum was revealed as the optimized
formulation and the result obtained was a release of more than 98.9% of this drug in 12 h.

To reduce the undesirable side effects of this very beneficial medication mainly used
to treat high cholesterol and reduce the risk of cardiovascular disease, controlling the
amount of MVR released, its uniformity, location, speed and duration of release must be
well controlled.

In this work, to control the fraction of Mevacor released in a targeted medium over
time, the reduction of the swelling rate of the PHEMA support and the improvement of its
flexibility must be considered. To achieve this goal, a small amount of vinyl acetate unit (hy-
drophobic monomer) was incorporated into these PHEMA chains by copolymerization of
HEMA with Vac comonomers. A series of Mevacor/poly(vinyl acetate-co-2-hydroxyethyl
methacrylate) (MVR/VAC-HEMA) solid solutions with different MVR contents was pre-
pared in one pot by the free radical photo-copolymerization reaction in the presence of this
medication using camphorquinone as a photo-initiator under LED light. The structures of
copolymer and solid solutions obtained were highlighted by FTIR and 1H NMR spectrome-
try and the distribution of MVR particles in the VAC-HEMA matrix was investigated by
DSC, XRD and SEM techniques. The “in vitro” release kinetics were carried out in different
pH media and the percentage of Mevacor released was evaluated by the UV-visible method.
Different parameters influencing the release dynamics of this medication were widely
studied such as the swellability of the copolymer material, the amount of the MVR loaded
and the pH medium. Among others, the solubility enhancement of Mecavor in acidic and
neutral pH media and the estimated distribution of the cumulative MVR released from
MVR/VAC-HEMA hydrogel systems on the principal digestive organs timed according to
Belzer et al.'s approach [34] were also investigated in this work.

2. Materials and Methods
2.1. Chemicals

Camphorquinone (CQ) (purity, 97%), vinyl acetate (VAc) (purity, 99%), and 2-hydroxyethyl
methacrylate (HEMA) (purity, 99%) were supplied by Sigma Aldrich (KGaA, Germany).
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Mevacor (MVR) was provided from TCI America (Portland, OR, USA). Before usage,
monomers were held under nitrogen gas after being purified by distillation at a reduced
pressure. Photo-initiator (CQ) was used without purification. The human epithelial cell
(HEC) line, GMSM-K prepared by Gilchrist et al. (2000) was offered by Dr Grenier of Laval
Universitéy (Quebec, QC, Canada). Dulbecco’s Modified Eagle’s Medium (DMEM) was
provided from Corning, Manassas, VA, USA. Fetal bovine serum (FBS) was purchased from
Gibco (New York, NY, USA) and 1% of penicillin/streptomycin solution was supplied from
Sigma Aldrich (St. Louis, MO, USA). A lactate dehydrogenase (LDH) detection kit was
provided by BioVision (BioVision, Milpitas, CA, USA).

2.2. Preparation of PHEMA and PVAc Homopolymers

PHEMA and PVAc homopolymers were prepared by free radical polymerization of
HEMA and Vac, respectively, under a lamp light led (6 × 5 watts) using CQ as photo-
initiator. Initially, 5.35 g (0.041 mol) of HEMA, 3.530 g (0.041 mol) of VAc and 0.008 g of
CQ were mixed in a beaker by stirring at an ambient temperature (~25 ◦C) until complete
dissolution of the photo-initiator. The obtained solution was placed in a cylindrical mold
made of Teflon and exposed to the LED lamp light during the polymerization reaction.
The polymerization reaction was carried out under a moderated flux of nitrogen gas
(3 mL·min−1) passing through the reactor fabricated as described by Alqahtani et al. [35,36].
The polymer was easily detached from the molder and dried in the open air for 12 h
followed by the same duration in a vacuum oven at 40 ◦C. Both the resulting polymeric
materials are a cylindrical sheet that is thin, transparent and flexible.

2.3. Preparation of MVR/VAC-HEMA Solid Solution

MVR/VAC-HEMA solid solution was prepared in one pot by free radical copolymer-
ization of Vac with HEMA in presence of MVR as filler and CQ as photo-initiator. First,
0.041 mol (5.35 g) of HEMA and 0.007 mol (0.62 g) of VAc were mixed in a beaker by
stirring at an ambient temperature (∼25 ◦C), then 0.008 g of CQ was added to the reaction
mixture. The copolymerization reaction was carried out as shown in Scheme 2 in the same
conditions as described in the Section 2.2. As in the previous case, the copolymer was easily
detached from the molder and dried in the open air for 12 h followed by a same duration
in a vacuum oven at 40 ◦C. The resulting polymeric material is a cylindrical sheet that is
thin, transparent and flexible. A series of MVR/VAC-HEMA containing 0.5 wt% (0.03 g),
1.0 wt% (0.06 g), 1.5 wt% (0.09 g) and 2.0 wt% (0.12 g) MVR contents was prepared by this
same procedure.
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2.4. Characterization
2.4.1. FTIR Analysis

A Perkin Elmer Spectrum GX FTIR spectrometer (Waltham, MA, USA) operating in
attenuated total reflection mode, in a wave number range of 4000 to 650 cm−1. Thirty-two
(32) cycles of scanning, and a resolution of 2 cm−1 was used to record the Fourier transform
infrared (FTIR) spectra of pure MVR, PVAc, PHEMA homopolymers, and VAC-HEMA
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copolymer. The samples were analyzed in the form of thin transparent films except that of
MVR which was analyzed as powder diluted in dehydrated KBr.

2.4.2. HNMR Analysis

A JEOL FX 90 Q NMR spectrometer, (Tokyo, Japan) at 500 MHz was used to charac-
terize the 1HNMR copolymer and their corresponding homopolymers were dissolved in
DMSO-d6.

2.4.3. SEC Analysis

The SEC chromatogram of VAC-HEMA was performed on a Varian apparatus equipped
with JASCO type 880-PU HPLC pump, refractive index, UV detectors and TSK gel columns
calibrated with polystyrene standards. Dimethylformamide (DMF) was used as an eluent
at 30 ◦C.

2.4.4. DSC Analysis

The DSC thermograms of MVR, virgin VAC-HEMA and MVR/VAC-HEMA solid
solutions containing different MVR contents were plotted on a DSC device (Shimadsu
DSC 60, Tokyo, Japan) previously calibrated with indium. Between 10 and 12 mg of
samples were packaged in aluminum DSC capsules before being placed in the DSC cell.
Samples were scanned by heating from −25 to 250 ◦C with a heating rate of 10 ◦C·min−1.
The glass transition temperatures (Tgs) of homopolymers, copolymer and copolymers
containing medication with different contents were taken from the inflection point of the
thermal curves, which characterizes the sliding of about 50% of the polymer chains. The
melting temperature of MVR powder was determined from the top of the endothermic
peak corresponding to its enthalpy of fusion.

2.4.5. XR-Diffraction Analysis

An advanced BRUKER D8 diffractometer (Germany) was used to perform the samples
X-ray spectrographs of pure and mixed materials. Patterns were run with Cu Kα radiation
at 40 mA and 40 kV with a 2θ scan rate of 2◦ min−1.

2.4.6. SEM Analysis

Before and after the release procedure, the micrographs of MVR powder, virgin VAC-
HEMA, and MVR/VAC-HEMA dried films of various MVR contents coated with gold
grid were investigated by scanning electron microscope (SEM) using a Hitachi S4700 Field
emission (Tokyo, Japan).

2.4.7. Cell Toxicity and Cell Adhesion

According to Semlali et al. [37], the LDH assay was used to assess the cellular cyto-
toxicity of all specimens. On 24-well plates for 24 h, 2 × 105 cells containing a specimen
were seeded. Fifty (50) µL of duplicate LDH mix solution was added to an equal volume
of each supernatant. These solutions were placed in a 96-well plate and incubated for
20 min at room temperature in the dark until the yellow color appeared. The reading
was taken at 490 nm with an iMark Microplate Absorbance Spectrophotometer (Bio-Rad,
Mississauga, ON, Canada). A percentage was used to represent the cell toxicity. Next,
2 × 105 cells treated with 1% of Triton X-100 were used as a positive control for LDH and
which corresponds to 100% cytotoxicity. This experiment was replicated three times for
each specimen.

According to our previous works, the MTT test was used to measure cell adhesion for
each specimen placed on 24-well plates [38,39]. Briefly, 2 × 105 GMSMK cells/specimen
were seeded in 24-well plate, cultured for adhesion overnight. Each cell culture was then
given a 1/10 volume addition of a 5 mg·mL−1 MTT solution for 3 h of incubation at 37 ◦C
in the dark before using 300 µL of isopropanol 0.05N of HCL solution to lyse the cells. Next,
2 × 100 µL of lysed solution was poured into a 96-well microplate to assess absorbance



Polymers 2023, 15, 3927 6 of 25

at 550 nm by an iMark reader (Bio-Rad, Mississauga, ON, Canada). The percentage cell
viability was used to assess the percentage of viable, proliferating cells. In addition, 0%
adhesion corresponds to Absorbance (A) at 550 nm for a cell-free specimen.

2.4.8. Swellability

At 37 ◦C, distilled water was used to test the copolymer hydrogel’s swelling degree
until saturation (swelling equilibrium). A square film sample of copolymer measuring
3 cm × 3 cm × 3 mm was completely immersed into a beaker that had been filled with
100 mL of distillate water. The entire system was kept at a temperature of 37 ◦C with
moderate agitation. After being withdrawn from the beaker at regular intervals, the
specimen was gently wiped of the droplets that had been left on the film specimen’s two
surfaces with absorbent paper before being weighed on a precision balance. The identical
conditions were used to conduct this experiment three times, and the swelling degree, SD
(wt%), was calculated from the mean arithmetic values obtained using Equation (1)

SD(wt%) =
mt −mo

mo
× 100, (1)

where mo and mt are the masses of the film specimen weighted before and at t time of the
swelling process, respectively.

2.4.9. In Vitro Release Dynamic

MVR/VAC-HEMA film samples of different MVR contents were immersed separately
in 20 mL of bi-distilled water maintained at pH levels of 1, 3, 5, and 7 at body temperature
(37 ◦C) for 72 h with a stirring rate of 100 rpm. To monitor the amount of MVR released,
aliquots of 0.5 mL are taken at time intervals and immediately returned to the media
after analysis. This operation allows for a constant volume of media during the release
process. The concentration of MVR released during a given period time was determined
by UV-visible analysis using a double beam U-2910 Hitachi spectrophotometer(New York,
NY, USA).

The cumulative mass of MVR released was obtained from the calibration curve in-
dicating the variation in medication concentration versus absorbance. A buffer solution
does not need to be added to the water in this situation since the small amount of MVR
produced (pKa = 13.49) [36] during the release process has practically no impact on the
stability of the pH medium.

3. Results and Discussion
3.1. Characterization
3.1.1. FTIR Analysis

The FTIR spectra of pure MVR, virgin VAC-HEMA and MVR/VAC-HEMA solid
solution with different MVR contents are gathered in Figure 1. The comparison of the
spectrum of VAC-HEMA with those of PHEMA and PVAc reveals the presence of the
combination of the signals attributed to these two homopolymers. The absorption band of
the signals attributed to the carbonyl groups of the HEMA and VAc units is observed at
1704.70 cm−1 and that of the hydroxyl group at 3365.04 cm−1. Given the small amount of
MVR loaded into the MVR/VAC-HEMA system, the spectra of the solid solution containing
0.5 and 1.0 wt% of this medication do not show additional signals characterizing the
structure of this drug, such as that of the signal at 801 cm−1 which is assigned to the δ(CH)
rocking mode [40]. The comparison of these spectra also reveals shifts in the carbonyl
groups from 1704.70 to 1716.08 cm−1 and another shift in the hydroxyl groups of the
copolymer from 3365 to 3358.27 cm−1, thus revealing the presence of hydrogen bonds
between the hydroxyl and the carbonyl groups of the HEMA unit and those of MVR
medication. This confirms the uniform dispersion of this medication in its molecule level
in the copolymer matrix.
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3.1.2. NMR Analysis

The structure of the VAC-HEMA was demonstrated by 1H NMR analysis in the
light of the comparison of its spectrum with those of their corresponding PHEMA and
PVAc homopolymers as shown in Figure 2. Indeed, the spectrum of VAC-HEMA overlap
the signals of the two different homopolymers, thus indicating the presence of the two
monomers involved in the copolymerization reaction. The multiplets that appear between
0.35 and 1.0 ppm are assigned to the methyl group of the HEMA sequence isomers in the
copolymer chain, and those between 1.3 and 2.1 ppm are attributed to the ethylenyl groups
of the isomers of the two different units involved in the copolymer [41]. The percentage
of the VAc and HEMA monomeric units in the VAC-HEMA copolymer was determined
on the basis of the areas of the signals attributed to the three protons of the methylene
group (a) and those of the signals of the ethynyl group (d + d′) common to the two different
monomeric units using Equation (2),

HEMA(mol%) =
2δCH3(a)

3δCH2(d+d′)
× 100 (2)
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where δCH3(a) and δCH2(d+d′) are the surface areas of the three protons of –CH3 (a) and
the two protons of –CH2-(d + d’) common to the two monomeric units, respectively. The
determination of the composition in HEMA units in the VAC-HEMA copolymer indicates
84.22% by mole taken as the arithmetic mean of three spectra for this same copolymer. This
composition is desirable in order to maintain the affinity of the MVR with the resulting
material (miscibility) while limiting its swelling to a rate allowing it to be used as an
adequate carrier in the ACR/VAC-HEMA drug carrier system.
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Figure 2. 1HNMR spectra of PHEMA, PVAc and VAC-HEMA copolymer.

The deconvolution of these signals between 0.5 and 2.3 ppm in Laurentzien curves, as
shown in Figure 3, permitted to determine the average tacticity (%) of the triad, tetrahedral
and pentahedral sequences distributed in the VAC-HEMA chains. The results obtained
revealed that this copolymer has a mainly heterotactic microstructure with atactic pentaeds
mrrr (31.26%), rmrr (15.72%) and mmmr (10.14%), and the rest are mainly syndiotactic
tetraheds rrr (21.42%) and atactics rmr + mmr (11.62%).
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These values were taken from the calculations of triplicate spectra for each sample, and
the results obtained revealed that the microstructure of VAC-HEMA copolymer obtained
practically reflects that of the PHEMA homopolymer which is mainly heterotactic as
shown in this figure. These results are not surprising, because it is well known that in
general, the polymerization of vinyl or acrylic monomers by the free radical route leads to
mainly heterotactic microstructures due to the uncontrollable free radicals resulted during
the reaction.

3.1.3. XR-Diffraction

The XR-Diffraction spectra of MVR powder, virgin VAC-HEMA and MVR/VAC-
HEMA solid solutions are grouped for comparison in Figure 4. The spectrograph of
the virgin VAC-HEMA shows an amorphous structure by the absence of sharp signals
characterizing a crystalline structure. The spectrum of MVR powder shows a crystalline
structure through the appearance of sharp signals at 7.90, 9.31, 11.35, 15.00, 16.80, 19.21 and
26.50◦ 2 theta, which agree with the literature [12]. The disappearance of these signals in the
spectra of MVR/VAC-HEMA systems indicates that the MVR are homogeneously dispersed
in the VAC-HEMA matrix in its molecular level. Noting that, the presence of aggregated
particles in an amorphous polymer is evidenced by the appearance of signals specific to the
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crystalline structure of the filler in the spectrum of the MVR/VAC-HEMA solid solution or
by their shift in the event of modification of the geometry of the resulted crystals.
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3.1.4. SEC Analysis

The SEC chromatogram of VAC-HEMA in Figure 5 indicates a relatively high molecu-
lar weight (Mn =4.12 × 105 g·mol−1 and Mw = 6.25 × 105 g·mol−1) characterized by a
relatively narrow molecular distribution, in which the polydispersity index (PDI) was 1.52.
This indicates that there was an important reduction in the transfer reactions during the
copolymerization reaction. Note that a large PDI indicates the presence of a small fraction
of low macromolecular weight in the polymers. According to different authors [15,16],
PHEMA chains having degrees of polymerization lower than 20 are soluble in water at
all temperatures. This is not desirable as a carrier for use in the drug release fields. The
incorporation of 15.78 mol% of VAC hydrophobic units in the PHEMA chains considerably
reduce the water solubility of this copolymer.

3.1.5. DSC Analysis

The DSC curves of the MVR/VAC-HEMA solid solutions and their pure components
are grouped together in Figure 6. As can be observed from the thermogram of pure MVR,
this medication shows a melting temperature at 173 ◦C, which agrees with the literature
(173.4 ◦C) [11] and the profile of the thermal curve of the virgin VAC-HEMA shows a Tg
of 113 ◦C for this copolymer. On the other hand, when 0.5 wt% of MVR was incorporated
in the VAC-HEMA matrix, a drop in the Tg of 25 ◦C was observed which passed from
113 to 88 ◦C. As the content of MVR incorporated into the copolymer becomes greater, a
significant increase in the Tg of the copolymer is noted reaching a maximum of 145 ◦C
when 2.0 wt% of this drug was loaded. Regarding the MVR/VAC-HEMA systems, the
total disappearance of the endothermic peak characterizing the fusion of MVR in their
thermograms indicates that this drug is indeed uniformly dispersed in the copolymer
matrix in its molecular level. This confirms the formation of a solid solution involving the
MVR as solute and the VAC-HEMA as solvent.
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3.1.6. SEM Analysis

The surface morphologies of the MVR/VAC-HEMA drug carrier systems and their
pure components were examined by the scanning electron microscopy and the images of
pure MVR, virgin VAC-HEMA and their mixtures containing 0.5 and 2.0 wt% medication
are shown as examples in Figure 7. The image of the pure MVR (A) shows smooth
rectangular rod-shaped particles on the corners of different dimensions. A similar photo of
this medication was also obtained by Guan et al. [42]. The micrograph of the virgin VAC-
HEMA (B) shows a smooth, slightly rugged surface devoid of any particles deposited on the
surface, resembling a snowy mountain descent. Before the release process, the image of the
MVR/VAC-HEMA0.5 system (C) shows a slightly undulating surface resembling muddy
ground. As can also be seen in this photo, this surface is devoid of any particles deposited
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or embedded on the copolymer material. This indicates that the Mevacor particles are
well dispersed homogeneously in their molecular level in the VAC-HEMA matrix. This
confirms the results obtained by DSC and XR-D analysis. This same film sample, after the
release process, shows a surface containing a high density of well-dispersed circular and
oval-shaped pores with an average diameter varying between 0.3 and 16 µm, testifying to
a massive release of MVR medication. On the other hand, before the release process, the
image of MVR/VAC-HEMA2.0 drug carrier system, which contains the maximum amount
of MVR (D), shows a smooth surface containing plaice formed during the vacuum drying
of the sample. After release, this same sample, as in the case of the MVR/VAC-HEMA0.5
specimen, shows a high density of pores, but sometimes of a much larger size testifying to
the release of a significant amount of drug.
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3.1.7. Swellability

To study the dynamics of a drug released from a drug carrier system in an aqueous
media, knowledge of the swellability of a material used as a carrier is a key factor that
must be taken into account. According to the literature, at body temperature (37 ◦C),
this parameter is influenced by different factors such as the nature of the used carrier,
the crosslinking degree of the polymer [43,44] and the pH medium in which the drug
will be released [45,46]. In this work, the variation in the swelling degree of VAC-HEMA
copolymer versus time, carried out at 37 ◦C during one week in different pH media, is
plotted in Figure 8. As can be observed from the profiles of these curves obtained after
triplicate experiments, usual exponential functions are obtained and the values of the
swelling capacity of the specimen in pH media 1, 3, 5 and 7 varied between 42.2 ± 0.3 and
45.8 ± 0.5 wt%, which reveal no significant change in the swelling capacity of VAC-HEMA
material in this pH range. This result was predicted, because the nature of the copolymer
in question does not a seat of acid-base interaction with the pH medium. Based on this
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principle, the release dynamics of the MVR will depend only on a synergy involving the
properties of VAC-HEMA copolymer and those of the medication loaded and not on the
pH medium.
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3.1.8. Water Diffusion

According to Comyn [47], the diffusion of small molecules such as water through a
polymer material for a short period of diffusion and when the wt/w∞ is less than 0.5 is
expressed by the following relationship:

wt

w∞
= 2

(
D

πl2 × t
)0.5

, (3)

where wt and w∞ are the weight of the sorbed molecules during a t time and the total
weight absorbed, respectively. l and D are the polymer film thickness and the diffusion
coefficient of the molecules sorbed, respectively. The linearization of Equation (4) leads to
Equation (5)

Ln
(

wt

w∞

)
= lnk + nLnt, with k =

2
l

(
D
π

)0.5
, (4)

The slope of the linear portion of the curve indicating the change in the Ln( wt/w∞)
as function of the square root of time (Figure 9) give the D value of water molecules through
the VAC-HEMA hydrogel. Indeed, the profile of the curves obtained reveals straight line
for this hydrogel in all pH media investigated. This reveals that the diffusion of water
molecules through the VAC-HEMA matrix obeys a Fickian model. The basic equation
allowing to obtain the mass of molecules absorbed by a polymeric material is given by the
following equation [48],

wt

w∞
= ktn, (5)

where n and k are the type of the diffusion mechanism and a constant relating the swelling
rate, which depends on the film thickness and the diffusion coefficient, respectively. In
this work, the n and k values are deducted from the slope and the intercept of these linear
curves and the results obtained are gathered in Table 1.
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Table 1. Kinetics parameters deducted from the straight lines of the curves Ln(mt/m∞) of virgin
VAC-HEMA hydrogel versus Ln(t) at 37 ◦C obtained in different pH media.

VAC-HEMA Hydrogel

pH Medium 1 3 5 7

n 0.488 ± 0.087 0.492 ± 0.086 0.502 ± 0.073 0.493 ± 0.072
k(h)−1 0.222 ± 0.120 0.256 ± 0.111 0.243 ± 0.121 0.289 ± 0.118

D·10−3(mm2·h−1) 1.901 ± 0.054 2.273 ± 0.034 2.435 ± 0.028 2.792 ± 0.025

In general, the values of n are close to those of the exponent in Equation (6), thus
characterizing the order 0.5 of the diffusion of water molecules in the VAC-HEMA carrier.
On the other hand, the values of k and D slowly increase with the pH of the medium. This
indicates that, during the swelling process, the water diffusion rate increased with the pH
of the medium and reached about 1.5 times that in the neutral medium. This seems to
indicate that in a neutral medium the hydrogen bonds between the molecules of water and
those of the copolymer are more favorable. This can be interpreted as a small reduction
in the hydrophilicity of the copolymer due to a reduction in the density of the inter- and
intra-chain hydroxyl bonds of the copolymer in acidic media. This is probably due to
intra- and inter-chain etherification reactions involving two adjacent hydroxyl groups of
the HEMA units that result in the elimination of water molecules by forming hydrophobic
ether bonds. Consequently, this leads to a reduction in the diffusion rate of water molecules
inside the copolymer matrix.

3.1.9. MVR Solubility Enhancement

The maximum solubility of MVR in media pH 1 and 7 was deduced from the maximum
amount of this medication released from the MVR/VAC-HEMA drug carrier systems over
time using the shake flask method [49]. The solubility of MVR powder in water at pH 1
and 7 was measured at saturation characterized by the beginning of the appearance of
turbidity in which the reflectance in the UV-visible range increased sharply indicating a
supersaturation of the resulted solution. The supersaturated solution is centrifuged at
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ambient temperature (~25 ◦C) and the liquid supernatant is filtered. To avoid crystallization
of MVR in the medium, 0.5 mL of the supernatant is taken and then diluted with the same
medium. The measurements of the absorbance and reflectance were performed at 37 ◦C
and the solubility at equilibrium of MVR in neutral pH and pH medium 1 were taken from
the arithmetic average of three experiments. The maximum solubility deducted from the
maximum release of MVR from the MVR/VAC-HEMA drug carrier systems in these same
media are gathered with that dissolved directly as powder in Table 2. As can be seen from
these data, the maximum solubility of MVR increased significantly when dispersed at its
molecular level in the VAC-HEMA matrix (Scheme 3). Indeed, the solubility of this same
medication obtained by this method increased more than 22 and 37 times that dissolved as
powder in media pH 1 and pH 7, respectively. This is due to a significant increase in the
contact surface between the dispersed MVR molecules and those of the aqueous medium
inside the carrier matrix. According to the results obtained on the physico-chemical and
thermal characterization of MVR/VAC-HEMA systems by XRD (Section 3.1.3) and DSC
(Section 3.1.4), it was revealed that the MVR was effectively homogeneously distributed in
the carrier matrix in its molecular state, this implies that the solvation of this drug was in
its maximum state.

Table 2. Comparison between the maximum solubility (mg·mL−1) of MVR released from the
MVR/VAC-HEMA system with that directly dissolved as powder at 37 ◦C in pH media 1 and 7.

MVR (mg·mL−1)

pH 1 7

Powder 0.0060 ± 0.0013 0.0038 ± 0.0015
MVR/VAC-HEMA1.5 0.1313 ± 0.0010 0.1407 ± 0.0012
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3.1.10. Cytotoxicity

The cell toxicity of VAC-HEMA and MVR/VAC-HEMA materials was measured at
490 nm from triplicated tests and the percentage toxicity taken from their average values is
visualized in a histogram in Figure 10A. As can be observed from these results, the normal
HEC appear to be unaffected by the virgin specimen (VAC-HEMA) and no significant
effect on their viability is observed when between 0.25 and 2.00 wt% was loaded in this
material. Although the cytotoxicity of this material was not significant, increasing the MVR
content in the MVR/VAC-HEMA system from 0.25 to 2.00 wt% leads to increase the cell
cytotoxicity from 19.2 to 58.3%. This appears to be due to the effect of this drug as an
antiviral agent on healthy cells.
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Figure 10. (A) The effect of MVR/VAC-HEMA materials on the HEC toxicity examined by the LDH
assay and (B) HEC adhesion on the virgin VAC-HEMA and MVR/VAC-HEMA specimens. The
positive control used in this experiment is the collagen membrane (collapse) giving 100% adhesion.

3.1.11. Cell Adhesion

The cell adhesion testing on virgin VAC-HEMA and MVR/VAC-HEMA drug carrier
systems was performed by the standard MTT assay and the results obtained were taken
from triplicated tests and the average percentages of cell adhesion for each sample are
presented in the histogram of Figure 10B. These data, compared to the negative control,
indicate a significant cell adhesion rate for all prepared samples. These data also reveal that
the absorbance of the virgin VAC-HEMA increased by more than three fold that without
cells, however no significant difference is noted when this hydrogel is loaded with 0.25 to
2.00 wt% of the MVR content.

3.2. In Vitro Release Dynamic

For non-porous (dense) and asymmetric drug-carrier systems, the mechanism of a
drug released in aqueous medium involves three principal phenomena: (i) the penetration
of the release medium into the drug-support system takes place under the action of the
osmosis phenomenon (the water passes from the least concentrated medium to the most
concentrated medium), and its rate of diffusion depends mainly on the affinity between the
release medium and the drug-carrier system, (ii) the dissolution of the drug inside the drug-
carrier system and this depends mainly on its solubility in this medium, (iii) the release of
the drug which is performed in solution under the action of a thermodynamic imbalance
caused by the large difference between the free enthalpies of the mixture inside and outside
the drug-carrier system due to the large difference between the drug concentration inside
and outside the system.

In this present work, the release of MVR from the MVR/VAC-HEMA drug carrier
systems was carried out at 37 ◦C during 72 h in media pH 1, 3, 5 and 7, separately, and the
results obtained are plotted in Figure 11. For all samples, the release dynamics of this drug
follows a logarithmic pattern with a variable slope depending on the MVR content in the
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drug carrier system. These data reveal, for any pH medium, that the maximum cumulative
of MVR released is reached with the MVR/VAC-HEMA0.5 specimen containing the lower
percentage of MVR initially loaded (0.5 wt%) in the copolymer matrix. In terms of the
amount released, the maximum drug release is obtained with the system that contains the
most MVR loaded in the VAC-HEMA carrier (2.0 wt%). The decrease in the percentage of
the drug released when the initial amount of MVR loaded in the VAC-HEMA matrix seem
to be due to the limit solubility of MVR in water inside the copolymer matrix, because a
small amount of medication is much easier to dissolve than a larger amount. As can be seen
from these results, for all MVR/VAC-HEMA compositions, the release percentage of this
medication decreased with the pH of the medium. The explanation of this phenomenon
will be amply presented in Section 3.3.
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Figure 11. Change in the cumulative MVR released from the MVR/VAC-HEMA drug carrier systems
containing 0.5 (A), 1.0 (B), 1.5 (C) and 2.0 (D) wt% of MVR versus time.

3.2.1. Diffusion Behavior of MVR

In order to understand the release dynamics of MVR over time, the diffusion behavior
of this medication through MVR/VAC-HEMA drug carrier systems was investigated. The
MVR released from these materials in different pH media does not exceed 60 wt% of this
medication initially loaded in these drug carrier systems. Therefore, the Fickian model is
applicable to describe the diffusion mechanism of MVR through the VAC-HEMA material.
According to Masaro et al. [48], the relationship between the amount of drug released as a
function of time resulting from the Fick model is given by Equation (6)

mt

mo
= k′
√

t (6)
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where mt/m0 and k′ are the weight ratio of MVR released at t time of the release process
and a constant related to the drug carrier system, respectively.

If the drug molecules diffuse through the MVR/VAC-HEMA system according to the
Fick model, the graph indicating the variation in the drug fraction released mt/m0 as a
function of the square root of time would give a straight line with a slope corresponding
to the value of the k′ constant. Once the k′ for a drug carrier system is determined, the D’
value is easily calculated using Equation (7):

k′ = 4

√
D′

πl2 , (7)

where l is the thickness of the MVR/VAC-HEMA film sample. As shown in Figure 12, the
variation in the weight fraction of the MVR (mt/m0) released as function of the square
root of time describes a straight line and the k’ and D’ values, deducted for all MVR/VAC-
HEMA drug-carrier systems, are gathered for comparison in Table 3. As can be seen from
these data, the D’ value of the MVR molecules through the MVR/VAC-HEMA drug carrier
system increased slowly with the MVR content.
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Table 3. k′ and D′ values deducted from the kinetic curves indicating the variation in (mt/m0) versus
the square root of time.

System pH k′·102

(h−0.5) R2 D′·10−3

(mm2·h−1) System k′·102

(h−0.5) R2 D′·10−3

(mm2·h−1)

I

1 3.29 0.9966 3.394

III

2.00 0.9900 0.788
3 3.58 0.9454 4.473 2.59 0.9969 1.979
5 6.11 0.9874 9.221 2.64 0.9961 1.741
7 5.57 0.9818 7.793 2.81 0.9881 1.961

II

1 2.11 0.9883 1.348

IV

1.46 0.9839 0.629
3 2.79 0.9844 2.203 1.85 0.9785 0.984
5 3.65 0.9952 3.850 2.05 0.9909 1.266
7 3.79 0.9898 4.130 2.17 0.9913 1.298

I: MVR/VAC-HEMA0.5; II: MVR/VAC-HEMA1.0; III: MVR/VAC-HEMA1.5; IV: MVR/VAC-HEMA2.0.

3.2.2. Effect of the Initial Amount of MVR

The effect of the MVR amount initially loaded in the VAC-HEMA carrier was carried
out over 3 days in different pH media and the results obtained are presented in Figure 13.
The profile of the curves obtained shows a significant decrease in the MVK released in any
pH medium when this medication initially loaded in the VAC-HEMA increased. This is
undoubtedly due to the limited solubility of MVR in water inside the VAC-HEMA matrix,
which was found in this investigation to equal 0.131 and 0.141 mg·mL−1 in pH media
1 and 7, respectively. Indeed, as demonstrated in Section 3.1.6, the swelling capacity of
the VAC-HEMA carrier remains unchanged regardless of the pH medium. Therefore, the
concentration of the dissolved drug inside the VAC-HEMA matrix also remains unchanged
regardless of the amount of MVK initially loaded into this material. Therefore, an excess
of this medication leads to decrease the percentage released. This can also be interpreted
by the diffusion coefficient of this drug in these different media inside the copolymer
matrix (Table 3). Indeed, this parameter was faster in the case of drug carrier systems
containing 0.5 and 1.0 wt% MVR which varies between 3.394 and 7.793 mm2·h−1 for the
MVR/VAC-HEMA0.5 system and between 1.348 and 4.130 mm2·h−1 for the MVR/VAC-
HEMA1.0 system, depending on the pH medium. On the other hand, this parameter is less
rapid in the case of the two other systems containing 1.5 and 2.0 wt% MVR with diffusion
coefficients varying between 0.788 and 1.961 mm2·h−1 for the MVR/VAC-HEMA1.5 system
and between 0.629 and 1.298 mm2·h−1 for the MVR/VAC-HEMA system.

3.3. Effect of pH Medium

The effect of the pH medium on the release dynamic of MVR from the MVR/VAC-
HEMA systems was studied over a period of 3 days of the release process and the results
obtained are presented out in Figure 14. These curves reveal an increase in the percentage
of the cumulative MVR released with the pH of medium, passing through an acceleration
step between pH 3 and 5, which increased with the amount of MVR loaded except that
of the drug carrier system containing the maximum amount of MVR (2.0 wt%) which
stabilized in this pH range.

As stated earlier in Section 3.1.6, the swelling capacity of the VAC-HEMA carrier
is virtually unaffected by the pH of the absorbed medium. In this case, the variation in
the percentage of MVR released depends mainly on the interactions between pH and
its solubility in the medium where it will be released. Indeed, the solubility of MVR in
pH media 1 and 7 obtained in this work (Section 3.1.8) was found equal to 0.1313 and
0.1407 mg·mL−1, respectively. This seems to explain why the release of MVR increased
with the pH of medium increased from 1 to 7.
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Figure 14. The change in the cumulative MVR released from MVR/VAC-HEMA0.5 (A), MVR/VAC-
HEMA1.0 (B), MVR/VAC-HEMA1.5 (C) and MVR/VAC-HEMA2.0 (D) systems versus the pH of the
medium taken at 3 days of the release time.

The presence of MVR in the VAC-HEMA matrix made it possible to reduce the
percentage of MVR released in media pH acid. This can be explained by a reduction in
the swelling capacity of the MVR/VAC-HEMA system due to a rearrangement of the
inter-chain hydrogen bonds of the hydroxyl-hydroxyl and hydroxyl-carbonyl type in this
medium, thus reducing the affinity between VAC-HEMA and water molecules in favor of
that between MVR and the copolymer. In this situation, fewer water molecules penetrate the
copolymer matrix due to the hydrophobicity of the MVR physically linked to this material,
resulting in less solvation of the drug and consequently less release in this environment.
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3.4. Performance of the MVR/VAC-HEMA Drug Carrier System

The study of the effectiveness of the MVR/VAC-HEMA drug carrier system in the
delivery of MVR in the different PH media investigated was carried out in this work on
the basis of three essential factors: (i) the cumulative amount of MVR released, (ii) the
stability of the release rate and iii) the duration of the release process. In general, the
most effective system is the one that releases the greatest amount of drug in a neutral pH
medium (intestinal) and little in an acidic pH medium (stomach) with a uniform release
rate and for a long period. The profile of each kinetic curve in Figure 10 reveals three main
pseudo-linear steps, the durations of which depend on the pH of the medium and the
amount of drug initially loaded into the VAC-HEMA carrier.

The percentage of MVR released and its instantaneous release velocity for each period
and each system are deduced from the coordinates and slope of each corresponding pseudo-
linear curve, respectively, and the results obtained are gathered for comparison in Table 4.
The first step, which is the fastest and the shortest, occurs during the first 2 to 5 h of the
release process is characterized by a significant release percent of MVR in these different
media (8.0–37.7 wt%) with a stable release rate mainly of 6.0 wt%·h−1. The second stage,
which comes just after, is medium and goes from 8 to 31 h of the release process. During
this period, between 6.0 and 26.5 wt% of MVR were uniformly released with a release
rate varying between 0.34 and 1.54 wt%·h−1, depending on the pH medium and the MVR
initially loaded in the VAC-HEMA carrier. The third stage of the release process is the
longest (36 to 59 h) during which a small percent of MVR are released (0.3–8 wt%) with a
stable release rate oscillating between 0.10 and 0.72 wt%·h−1, depending on the pH of the
medium and the MVR initially loaded in the carrier. The performance of the MVR/VAC-
HEMA drug carrier systems was estimated according to the criteria cited above which are:
(i) an adequate fraction of drug released in the intestinal transit (neutral pH medium), (ii) a
minimum fraction of drug released in the stomach (acidic pH medium) and iii) a stability
in the drug release rate over a long period of time. Considering these criteria, it was found
that the MVR/VAC-HEMA systems containing 0.5 and 1.0 wt% MVR contents seemed
to give the best performances with 62.2 and 45.0 wt% of this drug released in neutral pH
medium and 36 and 28.3% by weight in the acidic media (pH 1 and 3), respectively.

According to the literature [34], it was found that the mean gastrointestinal transit
time (GITT) which depends on the age, sex and weight of the person is between 53 and
88 h distributed over three main steps: (i) gastric transition time between 1 and 4 h (pH
1.5–3.5), (ii) intestinal transit time between 4 and 12 h (pH 7–9) and (iii) colon transit time
between 48 and 72 h (pH 5–7 h). Taking into account the release of the MVR in different pH
media of Table 4 and the GITT distribution on the different digestive organs approached by
Beltzer et al. [34], it was possible to approximately estimate the percentages of cumulative
MVR released from the MVR/VAC-HEMA drug carrier systems in different organs. The
average stomach/digestive organs rate (SDO) was evaluated, disregarding the effects of
microorganisms and enzymes, using Equation (8) and the data obtained are illustrated in
Table 5.

SDO(wt%) =
rSt

rst + rsint + rcol
× 100, (8)

where rst, rsint and rcol are the MVK in wt% released in the stomach, small intestine and
colon, respectively, during a certain transit time.
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Table 4. Distribution of the cumulative MVR released from the MVR/VAC-HEMA on the different
pseudo stable zones.

System pH
Pseudo-
Stable

Zone (h)

Cumulative
MVR Released

(wt%)

Release
Rate

(wt%/h)
System

Pseudo-
Stable

Zone (h)

Cumulative
MVR Released

(wt%)

Release
Rate

(wt%/h)

I

1
0–3 22.0 ± 0.3 7.33 ± 0.10

III

0–3 18.0 ± 0.5 06.0 ± 0.17
5–36 12.0 ± 0.3 0.41 ± 0.01 7–36 10.0 ± 0.4 0.34 ± 0.01

36–72 02.0 ± 0.2 0.07 ± 0.01 36–72 0.3 ± 0.2 0.01 ± 0.01

3
0–5 24.0 ± 0.3 4.80 ± 0.06 0–3 18.0 ± 0.5 06.0 ± 0.17
5–36 26.5 ± 0.6 0.85 ± 0.02 3–35 15.0 ± 0.5 0.47 ± 0.02

36–72 06.5 ± 0.3 0.18 ± 0.01 36–72 01.0 ± 0.2 0.03 ± 0.01

5
0–5 32.0 ± 0.4 6.40 ± 0.08 0–3 19.0 ± 0.5 6.33 ± 0.17
5–22 25.0 ± 0.3 1.47 ± 0.02 3–16 13.0 ± 0.4 01.0 ± 0.03

26–72 08.0 ± 0.2 0.17 ± 0.01 16–72 06.0 ± 0.3 0.11 ± 0.01

7
0–5 32.7 ± 0.5 6.54 ± 0.10 0–3 19.0 ± 0.6 6.33 ± 0.02
5–26 22.5 ± 0.3 1.07 ± 0.01 3–16 20.0 ± 0.6 1.54 ± 0.05

26–72 07.0 ± 0.3 0.15 ± 0.01 16–72 06.0 ± 0.4 0.11 ± 0.01

II

1
0–2 10.0 ± 0.3 5.00 ± 0.15

IV

0–2 05.0 ± 0.2 2.50 ± 0.10
2–12 11.3 ± 0.3 1.13 ± 0.03 2–10 08.0 ± 0.3 1.00 ± 0.04

17–72 4.0 ± 0.2 0.72 ± 0.01 10–72 08.0 ± 0.4 0.13 ± 0.01

3
0–2 11.0 ± 0.4 5.50 ± 0.20 0–2 08.0 ± 0.4 4.00 ± 0.20
2–14 15.0 ± 0.5 1.25 ± 0.04 2–16 10.0 ± 0.4 0.71 ±0.03

14–72 3.0 ± 0.2 0.05 ± 0.01 16–72 06.0 ± 0.4 0.11 ± 0.01

5
0–2 13.0 ± 0.3 06.5 ± 0.15 0–2 09.0 ± 0.2 4.50 ± 0.10
2–17 15.0 ± 0.4 01.0 ± 0.03 2–11 09.0 ± 0.4 1.00 ± 0.04

19–72 7.0 ± 0.3 0.13 ± 0.01 13–72 06.0 ± 0.3 0.10 ± 0.01

7
0–2 14.0 ± 0.2 07.0 ± 0.10 0–2 10.0 ± 0.2 5.00 ± 0.10
2–19 6.0 ± 0.4 0.35 ± 0.02 2–13 11.5 ± 0.3 1.06 ± 0.03

19–72 6.0 ± 0.3 0.11 ± 0.01 13–72 06.5 ± 0.3 0.11 ± 0.01

I: MVR/VAC-HEMA0.5; II: MVR/VAC-HEMA1.0; III: MVR/VAC-HEMA1.5; IV: MVR/VAC-HEMA2.0.

Table 5. Distribution of the total MVR released from MVR/VAC-HEMA drug carrier systems on the
principal digestive organs timed according to the Belzer approach.

MVR/VAC-HEMA
System Stomach Transit (wt%) Small Intestine

Transit (wt%) Colon Transit (wt%) SDO (wt%)

Transit Time Min
(1 h)

Max
(4 h)

Min
(4 h)

Max
(12 h)

Min
(48 h)

Max
(72)

Min
(48 h)

Max
(72)

MVR/VAC-HEMA0.5 6.07 13.37 26.16 40.19 33.06 36.66 10.86 14.81
MVR/VAC-HEMA1.0 6.00 18.41 20.00 28.10 42.52 45.82 8.76 19.90
MVR/VAC-HEMA1.5 5.25 10.13 14.70 17.50 23.19 25.83 12.17 18.95
MVR/VAC-HEMA2.0 6.25 8.21 12.12 20.60 25.35 28.00 14.38 14.45

For the short gastro intestinal transit, these data reveal that the MVR/VAC-HEMA
drug system delivers in the stomach between 8.76 and 14.38 wt% of the initial MVR
loaded and between 14.81 and 19.00 wt% for the long gastro intestinal transit. The systems
containing 0.5 and 1.0 wt% of this medication show the best performance because they
were able to reduce the minimum percentage release of MVR in the stomach to 8.76
and 14.38 wt% for MVR/VAC-HEMA0.5 and MVR/VAC-HEMA1.0, respectively. This
is beneficial because among the goals in the drug delivery field is their delivery in the
intestines, which are the main seat of absorption and not the stomach which is the seat of
the chemical and mechanical crushing of food. Sometimes, when a drug is administered
directly orally, a considerable amount will be destroyed in the stomach under the effect of
enzymes and the acidity of the environment and therefore only a part of the drug will reach
its objective (the intestines). In addition, the products resulting from the breakdown of this
drug in the stomach can cause several side effects. In this case, the smaller the amount
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of drug released into the stomach, the more these side effects are reduced. On the other
hand, the incorporation of medication in the copolymer used as carrier such as VAC-HEMA
also allows the reduction in the prescribed dose for the patient, and this is performed by
subtracting a destroyed part of the drug in the stomach. The dosage of MVR prescribed for
a patient according to sex, age, weight and health can be easily controlled by the amount of
MVR/VAC-HEMA drug carrier system administered.

4. Conclusions

The objectives of this work were successfully achieved. Indeed, the photo-copolymerization
of 2-hydroxyethyl methyl methacrylate with vinyl acetate in a desired percentage (~15 wt%
vinyl acetate) in the presence of desired ratios of AVR was successfully performed under
LED light. The uniform dispersion of the Mevacor particles at their molecular level in the
VAC-HEMA matrix, confirming the obtaining of a solid solution, has been demonstrated by
the DSC and XRD and SEM analysis methods. The swelling investigation of VAC-HEMA
material in pH medium ranged between 1 and 7 demonstrated that the swellability of this
material was 45.20 ± 0.82 wt% which is practically unaffected by the pH of the medium.
No significant cytotoxicity of virgin VAC-HEMA and MVR/VAC-HEMA drug carrier
systems was revealed by the LDH test and the percentage of the cell adhesion on these
systems examined by MTT assay indicated much higher than the negative control. The
“in vitro” of the Mevacor released from these systems revealed a maximum increase of
22- and 37-fold that dissolved as powder under the same temperature and media. These
data also indicate that the highest Mevacor release occurs when the drug carrier system
initially contained 0.5% MVR. In any pH medium, the incorporation of MVR into the
copolymer matrix drastically decreased the percentage of the drug released. It was also
found from these results that the cumulative MVR released increased with the pH medium.
The MVR/VAC-HEMA drug delivery system containing 0.5 and 1.0 wt% MVR appears
to provide the best performance with 62.2 and 45.0 wt% of this drug evenly released in
neutral pH medium, respectively, and 36 and 28.3 wt% in pH medium 1, respectively.

Utilizing the Belzer approach, the results of average stomach/digestive organs rate
indicated that the MVR/VAC-HEMA drug carrier system delivers between 8.76 and
14.38 wt% of Mevacor in the stomach during the short GITT and between 14.81 and
19.00 wt% during the long GITT. The drug carrier systems including 0.5 and 1.0 wt% MVR
demonstrate the highest performance, reducing the minimum release of this medication
in the stomach to 8.76 and 14.38 wt%, respectively. This is advantageous, because one of
the intended targets in the field of drug delivery is their release directly into the intestines,
which is the main site of food and drug absorption.
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