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Abstract: With the rapid advancement of intelligent electronics, big data platforms, and other cutting-
edge technologies, traditional low dielectric polymer matrix composites are no longer sufficient
to satisfy the application requirements of high-end electronic information materials, particularly
in the realm of high integration and high-frequency, high-speed electronic communication device
manufacturing. Consequently, resin-based composites with exceptional low dielectric properties
have garnered unprecedented attention. In recent years, benzoxazine-based composites have piqued
the interest of scholars in the fields of high-temperature-resistant, low dielectric electronic materials
due to their remarkable attributes such as high strength, high modulus, high heat resistance, low
curing shrinkage, low thermal expansion coefficient, and excellent flame retardancy. This article
focuses on the design and development of modification of polybenzoxazine based on low dielectric
polybenzoxazine modification methods. Studies on manufacturing polybenzoxazine co-polymers
and benzoxazine-based nanocomposites have also been reviewed.

Keywords: low dielectric; polybenzoxazine; copolymerization; nanoparticles

1. Introduction

The electronic information industry has witnessed rapid growth, particularly with the
advent of the 5G era. As a result, there has been an unprecedented surge in research focus
on high-performance and low dielectric materials, essential for meeting the demanding
requirements of the high-end electronic information sector [1–3]. The advancement of
ultra-large-scale integrated circuits has necessitated higher performance standards for low
dielectric materials. These requirements include exceptional strength, elevated thermal
stability, minimal hygroscopicity, low thermal swelling coefficient, and strong adhesion
properties [4]. In general, low dielectric materials have dielectric constants below 3.9,
which fall between the values for air and silica. These materials are commonly employed
in microelectronics. Low dielectric polymer materials, such as polytetrafluoroethylene
(PTFE) [5], liquid crystal polymers (LCP) [6], and polyimide (PI) [7,8], are extensively
utilized in electrical and electronic engineering, printed circuit boards and communication
materials due to their notable processability, thermal stability, and electrical insulation
properties [9]. Polytetrafluoroethylene exhibits a comparatively low dielectric constant
due to its highly symmetric molecular structure and the presence of low polar C−F bonds.
However, its practical applications are restricted due to its inferior mechanical strength and
high expansion coefficient [10]. Polyimide, on the other hand, demonstrates remarkable
mechanical properties, good processability, high-temperature resistance, and low dielectric
characteristics. Nevertheless, its limited water and alkali resistance hampers its use in
low dielectric applications [11]. Additionally, phenylpropylene cyclobutene resins, which
also possess low dielectric constants, present challenges in controlling the film formation
process, often yielding brittle cured films [9,12]. Polybenzoxazines exhibit remarkable
properties such as low cure shrinkage [13], high modulus [14,15], low coefficient of thermal
expansion [16], exceptional heat resistance [17,18], and adequate flame retardancy [19,20].
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These desirable attributes are attributed to the Mannich bridge structure and hydrogen
bonding present in the molecular composition of polybenzoxazines [21]. These advantages
make benzoxazine resins promising for use in high-end electronic information materials.
However, benzoxazine resins need to be cured at moderately high temperatures, and the
inherent polymerization mechanism of benzoxazine resins causes them to be brittle [22].
The good news is that due to the flexible molecular design of benzoxazines, the brittleness
problem can be solved by introducing flexible chains into benzoxazines, and reactive chemi-
cal groups can be introduced to reduce the polymerization temperature [23–26]. Based on
this, benzoxazine resins have attracted the research interest of a wide range of scholars in
the field of high-temperature resistant high-performance low dielectric materials.

The dielectric constant decreases as the molecular polarizability and the number of polar-
ized molecules per unit volume decrease [27]. Consequently, the dielectric constant can be
reduced by increasing the free volume of polymer material and decreasing the molecular po-
larization rate. The methods for increasing the free volume in polymeric materials encompass
various strategies such as incorporating fluorine atoms using molecular design [28,29] and
hyperbranched molecular chains [30], preparing polymers as mesoporous materials [31,32],
and introducing mesoporous nanoparticles [33]. Decreasing the molecular polarizability can
be achieved via molecular design approaches like incorporating C−F bonds with smaller
dipole moments [29], siloxane chains [34], and alkyl chains [35], as well as via blending and
copolymerization with low dielectric polymeric materials [36,37]. Furthermore, it is known
that the lower hygroscopic nature of dielectric materials can increase their dielectric constant
by enhancing orientation polarization within the matrix due to moisture presence [38,39].
Consequently, reducing the water absorption of a material is feasible by introducing less polar
functional groups, simultaneously reducing its dielectric properties. The molecular design of
low dielectric benzoxazines, the design and preparation of low dielectric benzoxazine-based
copolymer resins, and low dielectric benzoxazine-based nanocomposites are reviewed based
on previous studies by scholars and general low dielectric modification methods.

2. Low Dielectric Fluorinated Polybenzoxazines

The strong electronegativity of the fluorine atom in C−F bonds results in low po-
larizabilities compared to C−C bonds. Additionally, trifluoromethyl groups increase the
free volume within the molecule, further decreasing its dielectric properties [28]. These
factors contribute to the widespread popularity of fluorinated benzoxazines. Based on
their distinct chemical structures, benzoxazine monomers can be divided into phenolic
and amine benzoxazines. Phenolic benzoxazine monomers are typically synthesized by
combining bisphenols, amines, and formaldehyde. To obtain fluorinated polybenzoxazines,
fluorination can be applied to the bisphenol, the amine, or both components of the structure.
As early as two decades ago, Su et al. [40] pioneered incorporating trifluoromethyl groups
into bisphenol A and aniline, synthesizing fluorinated benzoxazine monomers designated
as F-1 benzoxazine (Figure 1a). These monomers were subsequently copolymerized with
fluorine-free benzoxazine monomer, denoted as B-a benzoxazine, allowing for the prepara-
tion of low dielectric benzoxazine resin via the precise modulation of the monomer ratio,
termed as co-PZZ (Figure 1b). Remarkably, the co-PZZ resin with an F-1:B-a weight ratio
of 1:1 exhibited a dielectric constant of 2.36 and a minimal dielectric loss of 0.0044 at a
frequency of 0.1 MHz. Meanwhile, robust C−F bonds within the polymer structure confer
thermal stability enhancement. Building upon these advancements, Pattharasiriwong
et al. [41] extended the utilization of fluorinated bisphenol-based benzoxazine (BAF-a)
by copolymerizing it with fluorinated dicarboxylic anhydride (6FDA) in various ratios
(Figure 1c). Their study demonstrated that the incorporation of BAF-a facilitated the for-
mation of ester bonds, which not only enhanced the toughness of the polymer but also
increased the cross-linking density. Notably, the copolymer of BAF-a:6FDA with a 1:1
mole ratio exhibited a dielectric constant of 2.61 at a frequency of 0.1 MHz. These findings
underscore the potential of such fluorinated polybenzoxazines in developing low dielectric
materials with improved properties in the electronic information industry.
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Figure 1. (a) The synthesis of F-1 benzoxazine [40]. (b) The ring opening process of co-PBZZ [40].
(c) A possible copolymerization between BAF-a and 6FDA [41].

Aromatic amine-type benzoxazine monomers can be synthesized by condensing aro-
matic diamines, phenols, and formaldehyde. However, this conventional method often
yields low quantities of the desired monomers. An alternative synthetic approach involves
the reductive amination of bisphenols containing azomethine groups, followed by con-
densation with formaldehyde to produce aromatic amine-type benzoxazine monomers.
Despite the additional steps involved in the imine reduction–condensation process, it
offers a straightforward and efficient means to obtain these monomers in high yields [42].
Lin et al. [43] synthesized three fluorinated benzoxazines (Figure 2a) using the method
above from three fluorinated aromatic diamines and conducted a comparative analysis of
three polybenzoxazines with different fluorinated structures. The presence of bulky −CF3
substituents resulted in an increased free volume, which was expected to lead to a lower
dielectric constant of P(16) compared to P(14). Surprisingly, the dielectric constant of P(16)
was slightly higher than that of P(14). It was discovered that the neighboring −CF3 sub-
stituent spatially obstructed the ring opening of the benzoxazine, leaving some unreacted
oxazine rings. This unreacted portion increased the polybenzoxazines’ polarity, resulting in
a higher dielectric constant for P(16). Kobzar et al. [44] synthesized an aromatic amine-type
benzoxazine (BOZ-1) using 1,4-tetrafluorobenzene (TFB) (Figure 2b). The resulting poly-
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benzoxazine exhibited high crosslink density, remarkably low dielectric properties, and
frequency stability. Specifically, at frequencies ranging from 102 Hz to 105 Hz, the dielectric
constant remained stable at around 2.3, while the dielectric loss was maintained at approx-
imately 0.004. Expanding upon these findings, Kobzar et al. [45] further synthesized an
aromatic amine-type benzoxazine (BOZ-3) with a central unit of 4,4-octafluorobiphenylene
dioxyphenylene (Figure 2c). This polybenzoxazine also displayed favorable low dielectric
properties. Additionally, the Introduction of highly electronegative fluorine atoms de-
creased surface free energy and increased hydrophobicity, further reducing the polymer’s
effective dielectric constant due to the presence of water, which will enhance the orientation
polarization of these polybenzoxazines throughout the matrix [38,39]. Wu et al. [46] syn-
thesized fluorinated aromatic diamines via the addition-elimination reaction mechanism
of perfluoro cyclopentene (OFCP) with 4-aminophenol. They further prepared aromatic
amine-type fluorinated benzoxazines (M2) via a one-step synthesis involving condensation
with 4-fluorophenol and paraformaldehyde (Figure 2d). The resulting arylamine-type
fluorinated benzoxazine resin exhibited favorable low dielectric properties, with a dielectric
constant of 2.61 at a frequency of 1 MHz, while demonstrating good frequency stability.
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3. Bio-Based Low Dielectric Polybenzoxazine

Petroleum resources currently serve as the foundation of the chemical industry.
However, with the escalating environmental challenges and potential future scarcity of
petroleum energy, researchers are growing interested in developing materials derived
from renewable biobased sources. Feng et al. [47] synthesized biobased phenolic benzox-
azines (DF) using a one-pot method and diphenolic acid (DPA), furfural amine (FU), and
paraformaldehyde as raw materials (Figure 3a). The carboxyl group in DPA and the furan
ring in FU underwent esterification and electrophilic substitution reactions, respectively.
These reactions resulted in a decrease in polar groups and an increase in cross-linking
degree. The enhanced cross-linking density not only improved thermal stability but also
restricted the movement of polar groups along the molecular chain, leading to a decrease in
the dielectric constant. Additionally, the furan ring reduced molecular polarity by forming
intramolecular hydrogen bonds, further contributing to the reduction in the dielectric
constant. Ultimately, the polybenzoxazine resin achieved a remarkably low dielectric con-
stant of 2.90 at 15 GHz. Liu et al. [48] synthesized fully biobased benzoxazines, including
benzoxazine DM and benzoxazine DG, using dehydroabietic amine, 4-methylumbelliferyl
ketone, guaiacol, and paraformaldehyde (Figure 3b). They prepared polybenzoxazines
PDM and PDG using these benzoxazines, respectively. A large phenanthrene ring structure
in these polybenzoxazines increased the free volume. Additionally, the phenanthrene ring
acted as an electron-donating group, reducing the polarity of C−N bonds and subsequently
lowering the dielectric constants of the polybenzoxazines. At 25 ◦C and 1 kHz, the dielectric
constants of PDM and PDG were 3.15 and 3.30, respectively. Remarkably, both biobased
polybenzoxazines exhibited excellent low dielectric properties at a high temperature of
200 ◦C. Notably, due to 4-methylumbelliferone larger structure, 4-methylumbelliferone
further increased the free volume, resulting in PDM displaying a lower dielectric con-
stant compared to PDG. Sha et al. [35] developed a bio-based benzoxazine named E-dea
(Figure 3c) using eugenol and 1,10-diaminodecane, along with paraformaldehyde, and
by using a solvent-free method. To mitigate the potential negative impact of long decane
chains on the heat resistance of the polymer, the researchers copolymerized E-dea with
bismaleimide (BMI). The copolymerization process involved the initial polymerization of
the allyl group of eugenol with maleimide, followed by the occurrence of the ring-opening
polymerization of benzoxazines and Diels–Alder reaction when the temperature was raised
above 200 ◦C. The copolymers exhibited reduced dielectric properties due to the low polar-
ity of the flexible long decane chains. The resulting poly(E-dea/BMI) exhibited a dielectric
constant of 2.79 at 1 MHz. Periyasamy et al. [49] synthesized three bio-based benzoxazines,
which named POSS-EBzo, POSS-Gbzo, and POSS-Vbzo (Figure 3d). They then utilized
these benzoxazines to synthesize three fully renewable polybenzoxazine nanocomposites
(POSS-EPBZ, POSS-GPBZ, and POSS-VPBZ) with exceptional properties. The dielectric
constants of POSS-EPBZ, POSS-GPBZ, and POSS-VPBZ were remarkably low, measuring
only 1.98, 1.85, and 1.88, respectively, at 1 MHz. This can be attributed to the low polarity
of the POSS molecule itself, combined with the homogeneous distribution of POSS within
the matrix, which increased the free volume of the polybenzoxazines. These findings
demonstrate the potential of these bio-based polybenzoxazine as promising materials with
low dielectric constants.
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4. Other Low Dielectric Benzoxazines

Besides the mentioned molecular design strategies for achieving low dielectric benzox-
azines, other approaches include incorporating large hydrocarbon groups, bulky groups,
and heterocycles and designing hyperbranched benzoxazines. Chen et al. [50] synthe-
sized two prepolymers for polybenzoxazines, one based on long-chain aliphatic diamine
(DAH) and the other based on rigid aromatic diamine (DAM) (Figure 4a). The aliphatic
diamine-based polybenzoxazines showed lower dielectric constant and dielectric loss than
the aromatic diamine-based benzoxazines due to DAH’s low polarity alkane chain. The
prepolymerization followed by curing increased the crosslink density of polybenzoxazine,
thereby restricting the movement of polar groups and reducing the dielectric constant.
Additionally, the bulky −C(CH3)3 group effectively increased the free volume and de-
creased the dipole density, resulting in a lower dielectric constant. Consequently, both
benzoxazines achieved low dielectric constants (2.26/2.66, 10 GHz) and low dielectric
losses (0.0047/0.0091, 10 GHz) at high frequencies. Zeng et al. [51] synthesized a benzox-
azine (PTBP-fu) with bulky groups and an active furan ring. They then copolymerized it
with a benzoxazine prepolymer (DAM-1) (Figure 4b) to create a polybenzoxazine with a
multi-structured network. This network had denser regions near the furan ring and looser
regions near the bulky groups. The loose network portions increased the free volume,
while the dense network portions increased the cross-linking density, effectively restricting
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the movement of molecular chains and limiting the polarization of polar groups. The bulky
group (−C(CH3)3) significantly increased the free volume, and the Introduction of the furan
ring reduced molecular polarity while increasing the cross-linking density. These factors
synergistically contributed to a reduction in the dielectric constant of the polybenzoxazine.
Additionally, the incorporation of low-polarity and bulky hydrocarbon groups weakened
the polarization of space charge and electrons, leading to a decrease in dielectric loss.
Experimental data revealed that the PTBP-fu/DAM-1 (5:1) copolymer demonstrated low
dielectric constant (2.81) and dielectric loss (0.0067) at a high frequency of 10 GHz. Zhang
et al. [52] developed a benzoxazine with a benzoxazole moiety using a non-solvent method
(Figure 4c). The resulting polybenzoxazine displayed a low dielectric constant of 2.4 at a
high temperature of 200 ◦C and a high frequency of 10 MHz. Cai et al. [53] synthesized two
hyperbranched benzoxazine prepolymers (Figure 4d) by carefully controlling the addition
time of the capping agent. The raw materials included 1,1,1-tris(4-hydroxyphenyl)ethane
(THPE), p-phenylenediamine (PPA), paraformaldehyde, and phenol as the capping agent.
Subsequently, polybenzoxazines were prepared. The study demonstrated that both poly-
benzoxazines exhibited low dielectric constants ranging from 2.15 to 2.21, as well as low
dielectric losses ranging from 0.0010 to 0.0208 in the high-frequency range of 2–18 GHz.

Polymers 2023, 15, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 4. (a) The synthesis of benzoxazine ring-containing prepolymers with large hydrocarbon end 
groups [50]. (b) The chemical structure of PTBP-fu and DAM-1 [51]. (c) The chemical structure of 
Benzoxazines containing benzoxazole groups [52]. (d) Schematic structure of hyperbranched ben-
zoxazine prepolymers [53]. 

5. Design of Low Dielectric Benzoxazine-Based Copolymers 
Blending and copolymerizing polybenzoxazines with other polymers offer cost-ef-

fective and simplified approaches to designing low dielectric benzoxazine resins. These 
strategies not only reduce costs but also bring unexpected synergistic effects, leading to 
improved dielectric and other properties of polybenzoxazines. Ye et al. [54] synthesized 
benzoxazine (MBF) using melamine and furanamine as amine sources. Copolymerization 
with epoxy resin (E51) was performed to produce copolymers (Figure 5a). The study 
demonstrated that by adjusting the MBF: E51 weight ratio to 1:0.6, the copolymer achieved 

Figure 4. (a) The synthesis of benzoxazine ring-containing prepolymers with large hydrocarbon
end groups [50]. (b) The chemical structure of PTBP-fu and DAM-1 [51]. (c) The chemical structure
of Benzoxazines containing benzoxazole groups [52]. (d) Schematic structure of hyperbranched
benzoxazine prepolymers [53].



Polymers 2023, 15, 3933 8 of 18

5. Design of Low Dielectric Benzoxazine-Based Copolymers

Blending and copolymerizing polybenzoxazines with other polymers offer cost-effective
and simplified approaches to designing low dielectric benzoxazine resins. These strategies
not only reduce costs but also bring unexpected synergistic effects, leading to improved
dielectric and other properties of polybenzoxazines. Ye et al. [54] synthesized benzoxazine
(MBF) using melamine and furanamine as amine sources. Copolymerization with epoxy
resin (E51) was performed to produce copolymers (Figure 5a). The study demonstrated
that by adjusting the MBF: E51 weight ratio to 1:0.6, the copolymer achieved a reduced
dielectric constant of 2.94 while simultaneously enhancing its toughness. Incorporating
epoxy resin in the copolymer resulted in a depletion of polar amino groups in benzoxazine,
leading to decreased molecular polarity. This, in turn, increased the crosslink density
of the polymer and contributed to the reduction in the dielectric constant. Krishnadevi
et al. [55] prepared a copolymer (ATCP/FRHA/Bz-Ep) by incorporating telamidophospho-
nitrile (ATCP) and aminosiloxane-functionalized rice husk ash (FRHA) into a copolymer
of benzoxazine and epoxy resin (Bz-Ep) (Figure 5b). This approach aimed to enhance
the copolymer’s flame retardancy and dielectric properties. The copolymer with 15 wt%
ATCP and 5 wt% FRHA showed an exceptionally low dielectric constant of 1.62 within the
frequency range of 1 MHz to 20 MHz. The observed reduction in dielectric constant was
attributed to the multiple cross-linking densities and intramolecular hydrogen bonding
in the copolymer, which reduced the overall polarity of the polymer network. Addition-
ally, the presence of low-polarity siloxane structures further contributed to reducing the
copolymer’s dielectric constant.

Polymers 2023, 15, x FOR PEER REVIEW 10 of 20 
 

 

a reduced dielectric constant of 2.94 while simultaneously enhancing its toughness. Incor-
porating epoxy resin in the copolymer resulted in a depletion of polar amino groups in 
benzoxazine, leading to decreased molecular polarity. This, in turn, increased the cross-
link density of the polymer and contributed to the reduction in the dielectric constant. 
Krishnadevi et al. [55] prepared a copolymer (ATCP/FRHA/Bz-Ep) by incorporating 
telamidophosphonitrile (ATCP) and aminosiloxane-functionalized rice husk ash (FRHA) 
into a copolymer of benzoxazine and epoxy resin (Bz-Ep) (Figure 5b). This approach 
aimed to enhance the copolymer’s flame retardancy and dielectric properties. The copol-
ymer with 15 wt% ATCP and 5 wt% FRHA showed an exceptionally low dielectric con-
stant of 1.62 within the frequency range of 1 MHz to 20 MHz. The observed reduction in 
dielectric constant was attributed to the multiple cross-linking densities and intramolecu-
lar hydrogen bonding in the copolymer, which reduced the overall polarity of the polymer 
network. Additionally, the presence of low-polarity siloxane structures further contrib-
uted to reducing the copolymer’s dielectric constant. 

 
Figure 5. (a) Curing reaction between MBF and E51 [54]. (b) Schematic structure of FRHA; The 
chemical structure of ATCP; curing reactions between reactive amino and hydroxyl groups and 
epoxy groups [55]. 

Zhang et al. [56] developed a benzoxazine (oHPNI-oda) containing imide and o-nor-
bornene, which was copolymerized with polydimethylsiloxane (PDMS). The double bond 
in o-norbornene reacted with PDMS to form a prepolymer (oHPNI-oda-PDMS) (Figure 
6a). This prepolymer was subsequently crosslinked via a ring-opening reaction of the ben-
zoxazine ring, forming a copolymer, poly(oHPNI-oda-PDMS). The copolymer, oHPNI-
oda-PDMS, exhibited very low dielectric constants (2.36–2.29) and low dielectric losses 
(0.007–0.002) over a wide frequency range (1 Hz–1 MHz). Incorporating low-polarity 
PDMS reduced the overall molecular polarity, while the crosslinked network formed by 

Figure 5. (a) Curing reaction between MBF and E51 [54]. (b) Schematic structure of FRHA; The
chemical structure of ATCP; curing reactions between reactive amino and hydroxyl groups and epoxy
groups [55].

Zhang et al. [56] developed a benzoxazine (oHPNI-oda) containing imide and o-
norbornene, which was copolymerized with polydimethylsiloxane (PDMS). The double
bond in o-norbornene reacted with PDMS to form a prepolymer (oHPNI-oda-PDMS)
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(Figure 6a). This prepolymer was subsequently crosslinked via a ring-opening reaction
of the benzoxazine ring, forming a copolymer, poly(oHPNI-oda-PDMS). The copolymer,
oHPNI-oda-PDMS, exhibited very low dielectric constants (2.36–2.29) and low dielectric
losses (0.007–0.002) over a wide frequency range (1 Hz–1 MHz). Incorporating low-polarity
PDMS reduced the overall molecular polarity, while the crosslinked network formed by
the combination of rigid aromatic and flexible PDMS segments reduced the dielectric con-
stant by increasing free volume and decreasing water absorption in the copolymers. Yang
et al. [57] synthesized a copolymer (PBO-AI-alPDMS) by copolymerizing polydimethyl-
siloxane (PDMS) with benzoxazine (AI-al), which has allyl and amide-bond, followed by
high-temperature curing that converted the o-hydroxyl and amide groups into benzoxazole
structures (Figure 6b). The obtained data revealed that the copolymer exhibited a remark-
ably low and stable dielectric constant of 2.51–2.13 within the frequency range of 1 Hz–1
MHz. The low dielectric constant was attributed to the depletion of polar hydroxyl groups
via the formation of benzoxazole, as well as the incorporation of PDMS, which reduced
the molecular polarity and water absorption of the polymer. Zhang et al. [58] synthesized
a benzoxazine (oHPMI-ddm) (Figure 6c) that contained a maleimide group at the end. A
benzoxazole structure was formed by utilizing an amide bond in the adjacent bismaleimide
(BMI). Incorporating the bismaleimide group increased the crosslinking density, and the
formation of benzoxazole between the maleimide and hydroxyl groups converted the
polarizable phenolic hydroxyl group into a less polarized benzoxazole functionality. This
conversion led to a significantly low dielectric constant in this polybenzoxazine.
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Lin et al. [59] achieved cross-linking curing by blending and copolymerizing bisphe-
nol A bis(cyanurate) (BACY) with diaminobenzoxazine (Pddm). The copolymerization
occurred via the co-reaction of the triazine ring with the benzoxazine ring, forming alkyl
isocyanurate and diphenyl ether bonds (Figure 7). The less polar diphenyl ether moiety
contributed to a lower dielectric constant, and the copolymer exhibited the lowest Dk
values of 2.78/1 GHz when the mass ratio of BACY to Pddm was 1:0.3.
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The dielectric constant can be achieved by increasing crosslink density, depleting
polar hydroxyl groups, forming intramolecular hydrogen bonds, introducing low-polarity
groups, and incorporating large-site-resistance groups in copolymerizing. These ap-
proaches indirectly reduce the polarity of polybenzoxazines or decrease the density of
dipole moments. Additionally, increasing material voids can directly reduce the density of
dipole moments in polybenzoxazine resins. Su et al. [31] synthesized multihollow polyben-
zoxazines by copolymerizing poly(3-caprolactone) (pa-PCL) of different molecular weights
with benzoxazines using poly(benzoxazine) (PBZZ) of type B-a as a substrate. The multi-
hollow polybenzoxazines were obtained by washing away the pa-PCL in a weak alkaline
solution. It was observed that adding 25 wt% pa-PCL resulted in a dielectric constant of
1.95 at 0.1 MHz for the multihollow polybenzoxazines.

6. Low Dielectric Benzoxazine-Based Nanocomposites

Doping nanomaterials into polymers is a common and effective method to modify
polymers’ optical, thermal, electrical, magnetic, and mechanical properties. In the context
of improving the low dielectric properties of benzoxazines, commonly utilized nanoma-
terials include polyhedral oligomeric silsesquioxane (POSS), graphene (GO), and silicon
dioxide (SiO2). POSS nanoparticles have been utilized to enhance the dielectric properties
of polymers due to their distinct structure, exceptional thermal stability, monodisperse
molecular weight, low dielectric constant, and adaptable molecular design [60]. Sethura-
man et al. developed a benzoxazine-based nanocomposite with low dielectric properties
by designing and synthesizing an allyl-capped benzoxazine and a thiol-functionalized
polyhedral oligomeric sesquicarbazone (SH-POSS) (Figure 8a). The composite material
was fabricated via a combination of photopolymerization and thermal curing, involving
thiol–alkene reactions under ultraviolet (UV) irradiation and ring-opening polymerization
of the benzoxazine ring. When 50 wt% of SH-POSS was added, the composite exhibited a
dielectric constant of 2.0 at 1 MHz. The decrease in dielectric constant was attributed to
the creation of voids and increased free volume facilitated by the rigid and bulky nature of
SH-POSS. Additionally, the low-polarity Si−O−S bond also contributed to the reduction
in dielectric constant. Li et al. [61] synthesized a benzoxazine-modified POSS(BZPOSS)
(Figure 8a) and copolymerized it with epoxy resin. Incorporating 20 wt% of BZPOSS
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resulted in a minimum dielectric constant of 2.28 in the composites. Zhang et al. [62] pre-
pared nanocomposites by synthesizing a benzoxazine-modified POSS (OPS-BZ) (Figure 8a)
containing benzoxazole and copolymerizing it with benzoxazine. The nanocomposites
exhibited a dielectric constant of 2.15 at 1 MHz with 30 wt% OPS-BZ content. The rigid
benzoxazole moiety increased intermolecular distance, increased free volume, and reduced
inter-nanoparticle agglomeration (Figure 9a). Li et al. [63] synthesized an epoxy-modified
POSS(EPPOSS) (Figure 8a) and copolymerized it with bisphenol A cyanate (BADCy) and
bisphenol A benzoxazine (BA-a) (Figure 9b). The dielectric constant decreased to 2.72
with 15 wt% EPPOSS, but severe agglomeration occurred at 20 wt%, leading to decreased
cross-linking density and increased dielectric constant. Sun et al. [64] synthesized a bifunc-
tional epoxy group modified POSS (DDSQ-EP) (Figure 8b) and doped it into benzoxazine
to prepare nanocomposites (Figure 9c). Incorporating 4 wt% of DDSQ-EP reduced the
dielectric constant from 3.75 to 3.45, with good dispersion of DDSQ-EP in the composite.
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Hariharan et al. [65] synthesized two nanocomposites by incorporating GPTMS-
modified rice husk ash as biosilica into bio-based benzoxazine co-monomers: biosilica/Chal-
Bz/CrAb and biosilica/Chal-Bz/EuAb. Adding 10 wt% biosilica at 1 MHz reduced the
dielectric constants to 2.1 and 2.3 for the biosilica/Chal-Bz/CrAb and biosilica/Chal-
Bz/EuAb composites, respectively. SEM analysis revealed a fabric-continuous weft struc-
ture in both composites, with the biosilica-reinforced composites exhibiting rough surfaces,
silica nanoparticle clusters, and nanometer-sized pores (Figure 10). These findings high-
light the ability of biosilica to diminish dipole–dipole interactions, lower surface energy
via Si−O−Si bonds, and decrease dipole moment density via the presence of pores. As
a result, the composites exhibit a low dielectric constant and reduced water absorption.
Latha et al. [66] also utilized GPTMS-modified biosilica and synthesized benzoxazines
(C-ima and BF-ima) using imidazolium nucleated monoamine (ima) with cashew phenol
(C) and bisphenol-F (BF), respectively. Nanocomposites were prepared by incorporating
the biosilica into C-ima and BF-ima and subsequent copolymerization. Adding 10 wt%
biosilica resulted in a reduced dielectric constant of 2.3 at 1 MHz. Hariharan et al. [67] syn-
thesized nanocomposites by combining cashew phenol, formaldehyde, and three different
amine sources (aniline (CrAb), N,N-dimethylaminopropylamine (CrDb), and caprolactam-
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modified N,N-dimethylaminopropylamine (CrCb)). Three benzoxazines were synthesized,
and biosilica was doped into these benzoxazines during copolymerization. Adding 10 wt%
biosilica reduced the dielectric constants to 1.92 and 1.89 at 1 MHz for the CrDb-based and
CrCb-based nanocomposites, respectively.
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Springer Nature, 2019.

MCM-41, a versatile mesoporous silica material, shows potential in improving the
dielectric properties of polymers via the development of porous structured polymer com-
posites [68]. The nano-voids present in porous silica can accommodate macromolecules,
leading to enhanced polymer–nanoparticle interactions [69]. This, in turn, reduces dielec-
tric loss. Silane coupling agents such as 3-Aminopropyltrimethoxysilane (3-APTMS) or
3-aminopropyltriethoxysilane (3-APTES) can be employed to strengthen the interactions
between polymers and nanomaterials. The amino groups present in both 3-APTMS and
3-APTES enable the synthesis of benzoxazines, further enhancing the binding of benzox-
azines to inorganic nanofillers. Sasi Kumar et al. [70] synthesized a benzoxazine-capped
polydimethylsiloxane (PDMS-Bz) structure and benzoxazine-capped mesoporous MCM-41
silica (BTMS). They doped BTMS into PDMS-Bz and prepared composites via copolymer-
ization. The addition of 7 wt% BTMS decreased the dielectric constant of the composites
to 2.06 at 1 MHz frequency. However, further addition of BTMS resulted in an increased
dielectric constant due to nanoparticle agglomeration. The incorporation of mesoporous
BTMS effectively increased the porosity of the composites (Figure 11A), contributing to
a reduction in the dielectric constant. Kurinchyselvan et al. [71] successfully synthesized
two benzoxazines, BFCL-PBz and BSCL-PBz, along with benzoxazine-functionalized meso-
porous MCM-41 silica (APMS). These benzoxazines were based on cashew nut phenol (CL)
and two types of diamines: bisphenol-AF (BF)-based diamine and bisphenol-S (BS)-based
diamine. The researchers copolymerised APMS with each of these two benzoxazines to
prepare two nanocomposites, APMS/BFCL-PBz, and APMS/BSCL-PBz. Remarkably, the
dielectric constants of these composites, APMS/BFCL-PBz and APMS/BSCL-PBz, were
found to be 1.78 and 2.16, respectively, at a frequency of 1 MHz, when 7.5 wt% of APMS
was added. This reduction in dielectric constant can be attributed to the long alkyl chains
in cashew nut phenol, which lower the molecular polarity, and the increased porosity of the
composites due to the presence of APMS. Notably, fluorine atoms in APMS/BFCL-PBz fur-
ther diminish the molecular polarity, resulting in an even lower dielectric constant of 1.78.
Selvaraj et al. [72] synthesized a benzoxazine (CBz) using cashew phenol and caprolactam
and also prepared thiol-functionalized mesoporous silica (TSBA-15), which is similar to
MCM-41. They incorporated TSBA-15 into the copolymerization process of CBz to form
nanocomposites. The addition of 5 wt% TSBA-15 resulted in a decrease in the dielectric
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constant to approximately 2 at 1 MHz. The presence of alkyl chains from caprolactam and
cashew phenol contributed to a reduction in the molecular polarity of the composites. The
TSBA-15 exhibited a long chain-like structure within the composites (Figure 11B), which
was attributed to the cylindrical pores of TSBA-15 and the linking effect of thiol groups.
This long chain-like structure with ordered cylindrical pores created free volume, leading
to a significant reduction in the dielectric constant of the composites.
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Asrafali et al. [73] synthesized two benzoxazines with nitrile and carbonyl groups and
prepared nanocomposites by incorporating 5 wt% nano-SiO2 into each benzoxazine. The
addition of nano SiO2 reduced the composites’ dielectric constants to 2.6 and 3.2 at 1 MHz,
respectively. The strong surface energy and large contact area of nano SiO2 facilitated
a strong interaction with the polymer matrix, limiting the chain movement of polymer
molecules and effectively increasing the cross-linking density, which ultimately led to a
reduction in the dielectric constant of the composites.

Graphene oxide (GO) has demonstrated its potential in preparing low dielectric
nanocomposites, as revealed by research findings [74,75]. Kurinchyselvan et al. [76] synthe-
sized a benzoxazine coupling agent using cashew phenol, 3-aminopropyltriethoxysilane,
and paraformaldehyde to prepare functionalized GO-C-aps. They also prepared nanocom-
posites (GO-BAF-a) by incorporating GO-C-aps into a copolymerization process of fluori-
nated benzoxazine (BAF-a) derived from bisphenol-AF, aniline, and paraformaldehyde.
The addition of 10 wt% GO-C-aps resulted in reduced dielectric constants below 2.4 and
a dielectric loss around 0.007. The presence of cashew phenol-based benzoxazines with
long alkyl chains and graphene oxide significantly reduced polarization. Furthermore,
the sp and sp2 carbon atoms in graphene oxide also contributed to reducing polarization
behavior. Collectively, these factors contributed to the low dielectric constant observed in
the composites.

The incorporation of nanofillers in benzoxazines significantly reduces the dielectric
constant of polybenzoxazines. This reduction is attributed to the increased porosity of
the composites caused by the nanoparticles and strong interaction forces between the
nanoparticles and polymer molecules that limit the movement of polar groups. The low
polarity of the nanoparticles themselves also contributes to the decrease in the dielectric
constant. However, careful attention must be given to nanoparticle dispersion in the
polymer as nanoparticles tend to agglomerate due to their high surface tension. This
agglomeration leads to increased dielectric loss (interfacial loss) and adversely affects
the mechanical properties of the composites, thus limiting their application. To address
this issue, coupling agents can be introduced into benzoxazines or directly bonded to
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nanoparticles to enhance the bonding between nanoparticles and polybenzoxazines, as
well as improve nanoparticle dispersion in polybenzoxazines.

7. Summary and Outlook

This paper presents a comprehensive review of low dielectric benzoxazine-based
materials and examines the molecular design of fluorinated benzoxazines, bio-based ben-
zoxazines, and other types, as well as the development of low dielectric benzoxazine-based
copolymers and nanocomposites. These advancements have greatly improved the low
dielectric properties of polybenzoxazines, thus they have broad application prospects
in high-end electronic information materials, particularly in the manufacturing of high-
integration, high-frequency, and high-speed electronic communication devices. However,
challenges persist in balancing dielectric properties and other essential characteristics such
as mechanical strength, heat resistance, and processability. Additionally, the understanding
of the structure–property relationship in low dielectric polybenzoxazines and benzoxazine-
based composites remains incomplete. Further research should explore multifunctional low
dielectric benzoxazine-based composites with flame retardancy, thermal conductivity, and
other desirable properties to expand their application areas. In addition, as environmental
concerns escalate, the development of environmentally friendly and green low dielectric
bio-based benzoxazine materials becomes increasingly important. Integrating low dielectric
benzoxazine-based materials with energy storage, intelligent sensing, and biocompatibility
research holds tremendous potential. In conclusion, the research and development of low
dielectric benzoxazine-based materials offer broad prospects and significant potential for
the future.
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