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Abstract: This study presents an experimental framework with seventeen beams to investigate
the impact of loading type, configuration, and through-bolt anchorage on LC-GFRP (Low-Cost
Glass-Fiber-Reinforced Polymer) confinement performance. Beams underwent three-point and
four-point bending, with LC-GFRP applied in various ways, including U-shaped, side-bonded,
and fully wrapped, with and without anchors. The performance of LC-GFRP was compared to
CFRP (Carbon-Fiber-Reinforced Polymer) and sisal wraps. LC-GFRP in side-bonded and U-shaped
configurations without anchors under three-point bending showed no shear failure, while those
under four-point bending without anchors experienced shear failure. With anchors, U-shaped
configurations successfully prevented shear failure. The side-bonded, U-shaped, and U-shaped
configurations along the full span with anchors demonstrated peak capacity enhancements of 72.11%,
43.66%, and 68.39% higher improvements than the corresponding configurations without anchors,
respectively. Wrapping all sides of the beam with LC-GFRP or CFRP prevented shear failure without
additional anchors, with complete wrapping being the most efficient method. When anchors were
used, significant capacity enhancements were observed. Existing shear strength prediction models
were evaluated, highlighting the need for more tailored expressions for LC-GFRP confinement,
especially for non-U-shaped configurations.

Keywords: shear; strengthening; GFRP; configurations; u-shaped; side-bonded; models

1. Introduction

The need to meet the higher strength requirements of revised design codes and the
degradation of structures over time due to environmental effects are among the various
factors driving the reinforcement of existing infrastructures around the world. Old concrete
structures often fail to comply with modern seismic design codes, showing inadequate
shear capacity and ductility. This was evident in the Hyogoken-Nanbu Earthquake of
1995, where concrete structures, especially reinforced concrete piers and rigid frames in
elevated highways, suffered considerable damage. Upgrading these structures is essential
to improve their resilience against future natural disasters [1,2].

Reinforced concrete (RC) elements that experience shear stresses are vulnerable to
brittle failures. The resistance of these elements depends mainly on the transfer of shear
stresses through a rough crack, which is commonly termed as “aggregate interlock” [3,4].
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The complex nature of the shear phenomenon makes it difficult to be predicted accurately.
Therefore, empirical or semi-empirical expressions are utilized by many practical codes to
determine the shear capacity of RC beams [5]. The shear capacity of an RC beam comprises
contributions from concrete and internal transverse reinforcements to transform the brittle
behavior to ductile. Recently, Fiber-Reinforced Polymers (FRPs) have gained significance
over conventional steel reinforcement, ascribed to them being lightweight, resistant to
corrosion, and easy to apply, as well as having more dependable bond line strength than
steel [6].

The debonding of FRP from the concrete surface has been a typical failure [7]. Since the
1990s, numerous studies have employed FRPs for the strengthening of RC members [8–11].
The findings suggest that when beams are strengthened, the primary modes of shear failure
are either through the tensile rupture of the FRP or due to the debonding of the FRP from
the sides of the RC beam. The specific mode of failure is affected by the method employed
in the beam-strengthening process [12]. The bond strength between FRP and concrete
governs the maximum stress developed in FRP, and this bond strength is determined to be
significantly lower than the strength of FRP [13]. In addition, it is worth noting that FRP
debonding failure tends to be brittle, resulting in catastrophic failure with relatively low
structural deformation [14,15]. Consequently, current design guidelines for FRP strength-
ening recommend the use of additional anchorage systems in combination with FRP wraps
to inhibit their debonding [16].

The issue with the debonding of FRP within shear dominant regions has been high-
lighted in previous studies. Several researchers have documented attempts to enhance the
shear capacity of shallow [17–21] and deep beams [22,23] via the application of externally
bonded FRPs. Triantifillou [24] performed shear strengthening of eleven RC beams using
epoxy-bonded FRP composites. The performance of strengthened beams was superior to
the reference specimens. Nevertheless, FRP debonding was observed in all beams, reducing
the efficiency of FRP composites. Monti et al. [25] performed an experimental framework
on twenty-four RC beams with shear-deficient characteristics. The shear strengthening
was performed by employing FRP composites in various configurations. Interestingly,
the debonding of FRP composites was observed in all strengthened beams, irrespective
of the type of FRP configuration. Baggio et al. [26] employed FRP systems composed of
carbon, glass, and a fiber-reinforced cementitious matrix. A total of nine shear-deficient RC
slender beams were tested. It was observed that the presence of anchors in combination
with FRP wraps significantly enhanced the ductility, and the debonding of FRP wraps was
prevented. In Boyd’s study [27], the influence of different types of sprayed FRP (SFRP)
strengthening schemes on the shear strength of shallow RC beams was investigated. Three
schemes were considered: A, C, and D. Scheme A involved SFRP applied only to the two
sides of the beam, scheme C comprised SFRP applied to the sides and bottom faces, and
scheme D encompassed SFRP applied to all faces of the beam. The results demonstrated
that schemes C and D were more effective in enhancing the shear strength compared to
scheme A. Regarding failure modes, beams strengthened with schemes A and C failed
due to the debonding of the SFRP, while specimens with scheme D experienced failure
through the rupture of the SFRP. Arslan et al. [28] utilized anchored and non-anchored
CFRP fabrics for the shear strengthening of T-beams and observed up to a 54% increase
in shear capacity using a combination of anchors and CFRP strips. Aksoylu et al. [29] en-
hanced the shear capacity of beams with circular openings by employing CFRP composites
and found CFRP composites to be ineffective when the ratio of the hole diameter to beam
height reached 0.64.

Soleimani and Banthia [30] investigated the performance of a SFRP for the shear
strengthening of RC beams. To enhance the bond between the concrete surface and the
SFRP, they employed an anchoring technique using bolts and nuts along with a roughened
concrete surface. The proposed anchorage technique was relatively cheaper and easier to
install than conventional FRP anchorages. The research findings determined that a rough-
ened concrete surface, in conjunction with a bolt anchoring system, proved to be effective
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in increasing the bond between the concrete and the SFRP. Hussain and Pimanmas [31]
extended the application of the through-bolt anchorage system to enhance the shear per-
formance of RC deep beams. The type of SFRP, its thickness and configuration, and the
compressive strength of concrete were the parameters of interest. The findings revealed that
a strengthened beam without additional anchorage demonstrated similar behavior as that
of the unstrengthened beam, whereas the provision of through-bolt anchorages substan-
tially enhanced the shear capacity. In another study, Hussain and Pimanmas [32] conducted
experiments on twenty-nine RC deep beams with openings. The combination of SFRP with
mechanical anchorages was found to be effective in enhancing the shear capacity.

The findings mentioned above suggest that the combination of through-bolt anchors
and external wraps could effectively enhance the shear capacity by preventing premature
debonding of the wraps. However, the use of through-bolt anchors has been limited to
deep beams thus far. This study aims to evaluate the performance of through-bolt anchors
in preventing the debonding of carbon FRP (CFRP) or low-cost glass FRP (LC-GFRP) wraps
when applied to resist brittle shear failure in shallow beams. LC-GFRP offers several
advantages, such as its relatively low cost, easy availability, and high tensile strength.
Yoddumrong et al. [33] demonstrated the use of LC-GFRP in strengthening RC columns,
while Rodsin et al. [34] utilized LC-GFRP to enhance the compressive strength of extremely
low-strength concrete. Later, Rodsin et al. [35] observed significant improvements in the
compressive behavior of recycled aggregate concrete through the use of LC-GFRP. Joyklad
et al. [36] also noticed significant improvements in the compressive behavior of recycled
brick aggregate concrete via the application of external LC-GFRP sheets. These studies
have shown that LC-GFRP can serve as an effective and viable alternative to CFRP in
strengthening applications. However, its potential in shear-strengthening applications has
not been explored. Another important property of LC-GFRP is that it offers a bidirectional
layout of fibers that has proven to be more effective than unidirectional fibers in improving
the shear resistance of RC members [37,38]. Therefore, this study aims to employ LC-
GFRP for the shear strengthening of shallow beams. For comparison, shear strengthening
with CFRP and natural sisal FRP jackets will also be conducted. Sisal fiber is one of the
most widely used natural fibers and is very easily cultivated. Sisal fiber is a hard fiber
extracted from the leaves of the sisal plant (Agave sisalana). In Thailand, the recent market
price of the LC-GFRP is USD 1.0, which is 60.0% and 350.0% less than the conventional
natural sisal FRP and CFRP, respectively [34]. Furthermore, different configurations of
CFRP and LC-GFRP will be utilized under three-point or four-point bending to assess
their performance. At present, LC-GFRP has only been utilized for strengthening the axial
compressive properties of concrete. The authors acknowledge that the efficacy of LC-GFRP
needs to be explored for structural applications, especially for RC members subjected
to flexure-dominated or shear-dominated forces. This will help in identifying the true
potential of LC-GFRP and its applicability for structural strengthening.

2. Experimental Program
2.1. Material Properties

Ready-mix concrete was used to cast all beams. The target compressive strength was
30 MPa. Ordinary Portland cement was used, whereas the maximum size of coarse aggre-
gates was 19 mm. LC-GFRP sheets were developed using locally available bidirectional
glass fibers (600 g/m2), as shown in Figure 1a. Standard tensile coupons were prepared
from LC-GFRP sheets to evaluate their mechanical properties. The failure mode of LC-
GFRP sheets is depicted in Figure 1b. Five coupons of LC-GFRP and sisal FRP were tested,
following the guidelines of ASTM D3013-13 [39]. The length and width of tensile coupons
were 200 mm and 20 mm, respectively. A computer-controlled universal testing machine
M500-50AT manufactured by Testometric, Rochdale, England, was used to perform tensile
tests. The tests were performed using the displacement control method. The mechanical
properties of LC-GFRP sheets, sisal FRP, and epoxy resin are summarized in Table 1. The
tensile coupons were prepared using a single layer of each fiber. The thicknesses of the
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tensile coupons were approximately 2–3 mm along with epoxy adhesion. The properties of
CFRP were provided by the manufacturer, as listed in Table 1. Carbon fibers have very high
tensile strength as compared to the fibers in LC-GFRP, resulting in a significantly greater
elastic modulus than that of LC-GFRP.
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Table 1. Properties of LC-GFRP, CFRP, Sisal, and epoxy resin.

Composite Ultimate Strength
(MPa) Ultimate Strain (%) Elastic Modulus

(GPa)

Epoxy 17.20 0.63 2.72
LC-GFRP 377.64 2.04 18.70

CFRP 350.00 1.50 250.00
Sisal 79.43 5.65 13.79

The top longitudinal reinforcement comprised two 12 mm diameter deformed rebars,
whereas three 12 mm diameter deformed rebars were used for the bottom longitudinal
reinforcement. The transverse reinforcement comprised 6 mm plain rebars placed at 90 mm
and 140 mm at the center in Group A and Group B, respectively. In groups A and B, the
longitudinal reinforced ratio was 0.0313 and the balanced reinforcement ratio was 0.0283.
Further, in group B, the stirrup volumetric ratio was 0.0395.

2.2. Details of Test Specimens

This study comprised an experimental program on seventeen RC beams, categorized
mainly into two groups, as presented in Table 2. The details of beams are shown in
Figure 2. Larger beam specimens representing actual beam dimensions in structural frames
could provide more realistic and reliable results; however, in this study, the sizes of beam
specimens were adopted following the ultimate load capacity of the load cell, hydraulic
jack, and reaction frame. The two groups were formed on the basis of the configuration
of stirrups, as shown in Figure 2. Beams in Group A comprised stirrups within the
middle zone, i.e., no stirrups were provided within shear spans. In comparison, beams in
Group B incorporated stirrups within shear spans. Moreover, seven beams were tested
in Group A. Three beams were tested under three-point bending, whereas the remaining
four beams were tested under four-point bending. The details of beams tested in Group
A are as follows: for beams tested under three-point bending, one beam was tested in
as-built conditions, whereas the remaining two beams were strengthened with two layers
of LC-GFRP. However, the configuration of LC-GFRP differed in two beams, i.e., one
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beam was strengthened with LC-GFRP bonded to the sides only (SB), whereas a U-shaped
configuration was adopted in the other beam. For beams tested under four-point bending,
one was tested in as-built conditions, whereas SB, U-shaped (U), and U-shaped along the
whole span (UF) configurations were adopted for the remaining three beams. It must be
noted that LC-GFRP was used for the strengthening of beams in Group A.

Table 2. Summary of all specimens.

Group Beam Type Beams Fiber Fiber Layers Anchor

A Type-01

1P-CON - - -
1P-GFRP-SB GFRP 2 Layers No
1P-GFRP-U GFRP 2 Layers No
2P-CON-01 - - -
2P-GFRP-SB GFRP 2 Layers No
2P-GFRP-U GFRP 2 Layers No
2P-GFRP-UF GFRP 2 Layers No

B Type-02

2P-CON-02 - - -
2P-GFRP-SB-A GFRP 2 Layers Yes
2P-GFRP-SBF-A GFRP 2 Layers Yes
2P-GFRP-U-A GFRP 2 Layers Yes
2P-GFRP-UF-A GFRP 2 Layers Yes
2P-GFRP-SW GFRP 2 Layers Yes
2P-GFRP-FW GFRP 2 Layers No
2P-CFRP-SB-A CFRP 1 Layer Yes
2P-CFRP-SW CFRP 1 Layer No
2P-SISAL-SB-A Sisal 2 Layers Yes

Note: SB stands for side-bonded within the shear span, U stands for U-shaped within the shear span, UF stands
for U-shaped along the full span, SBF stands for side-bonded along the full span, SW stands for strips within the
shear span, and FW stands for full wraps within the shear span.
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Group B comprised ten beams tested under four-point bending. One beam was
tested in as-built conditions. Six beams were strengthened with LC-GFRP using different
configurations, including SB, U, UF, side-bonded along the whole span (SBF), strips within
the shear span (SW), and fully wrapped (FW). Two beams were strengthened with CFRP in
SB and SW configurations, whereas one beam was strengthened with sisal FRP in the SB
configuration. Sisal fiber production involves harvesting mature sisal leaves, decorticating
them to extract fibers, grading and sorting the fibers, and then baling and packaging them
for distribution [40]. It is noteworthy that the strengthening was performed using two
layers for LC-GFRP and sisal jackets, whereas a single layer was used in the case of CFRP.
Further, no anchors were used for SW and FW configurations. In addition, strengthening
with CFRP and sisal jackets did not accompany anchors. The locations of anchors are
depicted in Figure 3 for each configuration type.
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2.3. Instrumentation and Test Setup

Three-point and four-point loads were applied to specimens in Group A, whereas
specimens in Group B experienced four-point bending only. The load was applied in a
reaction that had a capacity of 2000 kN. The load was applied using a hydraulic jack with a
capacity of 500 kN. The vertical deflection was monitored using a linear variable differential
transducer placed concentrically under the beams. A typical test setup is shown in Figure 4.
One strain gauge was attached to the bottom longitudinal bar at the centerline of each beam.
The beam installation was performed using an overhead crane and it took approximately
1 h to install the beam on the supports. The LVDT settlements were recorded using a data
logger and a computer. In this study, the middle data of middle LVDT were used to plot
load versus deflection graphs because of maximum deflection at this LVDT. The shear span
to depth ratios were 4.2 and 3.2 for beams in Group A and B, respectively.
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2.4. Strengthening Process

External wraps were applied using a wet layout process, as shown in Figure 5. The
surface of the beams was roughened uniformly using a hammer and chisel to enhance the
bond between external wraps and the concrete surface. Also, the sharp corners of beams
were rounded (corner radius 13 mm) to avoid stress accumulation at the shared corners.
Then, the epoxy resin was applied using a hand brush. The epoxy resin was formed of
two parts, i.e., resin and hardener. Resin and hardener were mixed using a ratio of 2:1
(resin/hardener). Then, fully epoxy-impregnated fiber sheets were applied at the marked
locations. For the application of subsequent layers, the surface of already-applied layers
was soaked with epoxy using a hand roller, followed by the application of second layers.
During the epoxy application, proper care was taken to ensure that the fibers were 100%
fully saturated with the epoxy resin.
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epoxy-impregnated CFRP strips, and (c) impregnating the surface of the existing layer before the
application of the second layer.

The application of anchors was performed via the following steps: the location of
anchors was clearly marked on external wraps (see Figure 6a), holes were drilled at the
marked locations (see Figure 6b), anchor holes were cleaned using air compressor pres-
sure, threaded rods of 8 mm diameter were inserted within holes, and washers and nuts
were placed and manually tightened (see Figure 6c). See the properties of the anchorage
system below.
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Figure 6. Installation of anchors (a) marking the exact locations, (b) drilling holes, (c) tightening nuts,
and (d) through-bolt anchors installed.

3. Experimental Results
3.1. Failure Modes

The failure modes of beams in Group A subjected to three-point bending are shown in
Figure 7. It must be noted that no anchors were used to comprehend LC-GFRP confinement
in Group A beams. The failure of Beam 1P-CON was shear failure attributed to the
sudden formation of diagonal cracks, leading to the drop in load-carrying capacity, as
shown in Figure 7a. On the contrary, the failure of beams 1P-GFRP-SB and 1P-GFRP-U
exhibited flexural failure without demonstrating debonding of the GFRP layers, as shown
in Figure 7b.
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The failure modes of beams in Group A subjected to four-point bending are shown in
Figure 8. The control beam, as expected, demonstrated brittle shear failure characterized
by large diagonal cracks originating from the bending point to the supports (see Figure 8a).
The failure of beams 2P-GFRP-SB, 2P-GFRP-U, and 2P-GFRP-UF was characterized by the
debonding of LC-GFRP layers and large shear cracks. It is important to observe that SB
and U-shaped configurations (without anchors) did not debond under three-point bending
in addition to altering the shear failure to flexural failure. In comparison, SB and U-shaped
configurations (without anchors) could not prevent debonding and shear failure under
four-point bending. This can be attributed to the smaller shear spans under the four-point
bending as compared to three-point bending, leading to higher shear demand in the case
of four-point bending (Figure 8b).
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Figure 8. Failure modes of beams in Group A subjected to four-point bending: (a) 2P-CON-01,
(b) typical of 2P-GFRP-SB, 2P-GFRP-U, and 2P-GFRP-UF.

The failure modes of beams in Group B with LC-GFRP strengthening are shown in
Figure 9. The control Beam 2P-CON-02 exhibited brittle shear failure with noticeable shear
cracks. The failure of beams 2P-GFRP-SB-A and 2P-GFRP-SBF-A was accompanied by
debonding of LC-GFRP on one end, and noticeable shear cracks were observed, suggesting
that only a partial improvement in the shear behavior was obtained. The failure of Beam
2P-GFRP-U-A did not exhibit debonding or shear cracks. This indicates that two layers of
GFRP applied in a U-shaped configuration and supplemented with through-bolt anchors
effectively prevented brittle shear failure. It is noteworthy that Beam 2P-GFRP-U (i.e.,
strengthened with U-shaped LC-GFRP without anchors) had failed in shear strength, and
debonding was observed. This emphasizes the importance and efficacy of through-bolt
anchors in preventing the debonding of LC-GFRP layers that prevented the premature
capacity loss of Beam 2P-GFRP-U-A. The performance of beams 2P-GFRP-SW and 2P-
GFRP-FW was also flexure-dominated and did not exhibit debonding or shear cracks.
Unlike Beam 2P-GFRP-U-A, the failure of 2P-GFRP-UF-A was triggered by debonding
and ultimately failed in shear strength. This can be attributed to the enhanced flexural
capacity within the constant moment region in Beam 2P-GFRP-UF-A due to the presence
of LC-GFRP layers and anchors.
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The failure of the CFRP-strengthened beams is shown in Figure 10. It must be noted
that Beam 2P-CFRP-SW was strengthened with strips of CFRP on four sides. The corre-
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sponding flexure-dominated behavior that was exhibited was characterized by numerous
vertical cracks within the constant moment region, as shown in Figure 10. A few minor shear
cracks were observed, whereas concrete crushing was observed within the constant mo-
ment region. On the contrary, the behavior of Beam 2P-CFRP-SB-A was shear-dominated,
as characterized by the formation of large shear cracks. It is interesting to observe that a
single wrap of CFRP could not prevent shear failure in a side-bonded configuration. The
performance of the sisal-strengthened beam was subpar and demonstrated shear failure
without the debonding of the sisal FRP, as shown in Figure 11.
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3.2. Load versus Deflection Response

The load versus deflection curves for GFRP-strengthened Group B beams are shown in
Figure 12, in comparison to the corresponding control Beam 2P-CON-02. It can be seen that
beams 2P-GFRP-SB-A (side-bonded configuration within shear span) and 2P-GFRP-SBF-A
(side-bonded configuration along full span) demonstrated higher peak loads than the
control beam. In comparison, the ductility of Beam 2P-GFRP-SBF-A was lower than Beam
2P-GFRP-SB-A. Nonetheless, both beams suffered shear failure, as can be seen in their
abrupt drop in capacities. This implies that the application of side-bonded LC-GFRP was
insufficient in altering the brittle failure to be a ductile failure. Next, the load–deflection
curves of beams 2P-GFRP-U-A (U-shape configuration within shear span) and 2P-GFRP-
UF-A (U-shape configuration along full span) are compared in Figure 12c,d, respectively.
The failure mode of Beam 2P-GFRP-U-A exhibited neither debonding nor shear failure.
This is reflected in the corresponding load–deflection curve in Figure 12c, where an abrupt
drop in capacity was not observed. On the contrary, a U-shaped configuration along the full
span could not prevent shear failure (see Figure 12d). Finally, the load–deflection curves of
beams 2P-GFRP-SW and 2P-GFRP-FW are shown in Figure 12e,f, respectively. Both of these
beams were wrapped on their four sides. However, the behavior of a fully wrapped beam
(i.e., 2P-GFRP-FW) was not superior to that of the strip-wrapped beam (i.e., 2P-GFRP-SW).
Finally, a comparison of load–deflection curves of all LC-GFRP-strengthened beams is
shown in Figure 13. The following observations could be made: the performance of the
side-bonded configuration, either along the full span or within the shear span only, was
inferior to the U-shaped configuration, especially in terms of the ductility achieved. A
U-shaped configuration along the full span imparted a significant increase in the peak load,
but it increased the shear demand as well, resulting in an abrupt drop in load capacity. It
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may be noted that the provision of either U-shaped or side-bonded configurations outside
the shear stress had adverse effects on the performance of LC-GFRP confinement.
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Figure 13. Comparison of load–deflection response of LC-GFRP-strengthened Group B beams.

The load–deflection curves of CFRP-strengthened beams in Group B are shown in
Figure 14a. The side-bonded configuration did not impart a significant improvement,
mainly in terms of ductility, whereas a noticeable improvement in peak load capacity was
observed. On the contrary, CFRP strips (applied on all four sides) imparted significant
improvements in ductility as well as peak load capacity. The application of sisal in a side-
bonded configuration also resulted in subpar structural behavior, as shown in Figure 14. It
is noteworthy that the maximum deflection encountered in sufficiently confined beams,
i.e., 2P-GFRP-SW, 2P-GFRP-FW, 2P-GFRP-U-A, and 2P-CFRP-SW, was limited by the
stroke limit of the used LVDTs. Nonetheless, the large deflection without a drop in load-
carrying capacity suggests the usefulness of fully wrapped and U-shaped configurations
in altering the brittle shear failure. In particular, the application of U-shaped confinement
supplemented with through-bolt anchors is useful, particularly considering the practical
aspects of RC beams, as it becomes difficult to wrap beams in existing structures from all
four sides due to the presence of slabs.
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The load–deflection curves of beams in Group A subjected to three-point bending are
shown in Figure 15. It is vital to recall that no anchors were used to supplement LC-GFRP
sheets in Group A beams. Despite the absence of anchors, stable load–deflection curves
were observed until there were large deflections. However, this is mainly ascribed to the
nature of loading, i.e., three-point bending, which constitutes large shear spans, resulting
in lower shear demands. The consequence is reflected in Figure 15, demonstrating that as
the length of the shear span is increased, the demand for through-bolt anchors to prevent
debonding and shear failures is reduced.
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The load–deflection curves of beams in Group A that experienced four-point bending
are shown in Figure 16. The post-peak behavior of the curves demonstrated a drop in capac-
ity that can be attributed to the debonding of LC-GFRP, as presented in their corresponding
failure modes. Nonetheless, the improvement in ductility was negligible, highlighting the
importance of through-bolt anchorage to supplement LC-GFRP confinement.

3.3. Improvement in Peak Loads

A summary of experimental results is presented in Table 3. The shear capacity cal-
culated using ACI 318-19 [3] recommendations was 37 kN and 33 kN for Group A and
Group B beams, respectively. This corresponds to the measured compressive strength of
38 MPa and 32 MPa, respectively. The shear-dominated behavior often undermines the
load-carrying capacities of RC members. The strengthening of shear-critical members in-
volves two objectives: to improve the load-carrying capacities and to improve the structural
behavior by altering the brittle failure to become a ductile failure. The improvement in
the load-carrying capacities due to the application of LC-GFRP, CFRP, or sisal wraps on
Group A beams is depicted in Figure 17a. It can be seen that Group A beams subjected to
three-point bending exhibited a slight improvement, whereas the same beams (i.e., sim-
ilar configuration) under four-point bending exhibited a slightly lower improvement in
peak capacity. For example, Beam 1P-GFRP-SB had a 15.18% improvement in its capacity,
whereas the same beam tested under four-point bending (i.e., Beam 2P-GFRP-SB) had
a 7.22% improvement in its capacity. Beams in Group B demonstrated relatively higher
improvements in peak capacities. The greatest improvement was observed in the case of a
U-shaped configuration of LC-GFRP applied along the full span and supplemented with
through-bolt anchors.
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Table 3. Summary of experimental results.

Beams
Shear
Capacity
(kN)

Increase in
Capacity (%) Failure Mode

Dissipated
Energy
(kN-mm)

Increase in
Dissipated
Energy (%)

Initial
Stiffness
(kN/mm)

1P-CON 39.50 - Shear failure 1618 - 5.04

1P-GFRP-SB 45.50 15.18 Flexural failure, no
debonding 3075 90 5.57

1P-GFRP-U 49.40 25.06 Flexural failure, no
debonding 3460 114 5.80

2P-CON-01 42.35 - Shear failure 1669 - 5.92
2P-GFRP-SB 47.46 7.22 Shear failure, debonding 1707 2 8.50
2P-GFRP-U 50.44 20.16 Shear failure, debonding 2009 20 8.70
2P-GFRP-UF 56.06 41.91 Shear failure, debonding 2180 31 10.74
2P-CON-02 36.20 - Shear failure 431 - 8.93

2P-GFRP-SB-A 56.57 78.33 Debonding at one end,
shear cracks 1527 254 8.60

2P-GFRP-SBF-A 56.83 56.99 Debonding at one end,
shear cracks 953 121 8.52

2P-GFRP-U-A 59.30 63.82 Flexural, no debonding 2253 423 8.71
2P-GFRP-UF-A 76.16 110.30 Shear failure, debonding 1643 281 8.86
2P-GFRP-SW 63.02 74.08 Flexural, no debonding 2279 429 8.15
2P-GFRP-FW 59.64 64.76 Flexural, no debonding 2945 583 8.00
2P-CFRP-SB-A 49.19 35.88 Shear failure 908 111 8.57

2P-CFRP-SW 62.15 71.68 Flexural, no debonding,
concrete crushing 4562 959 8.06

2P-SISAL-SB-A 64.56 56.27 Shear failure, no
debonding 1506 249 9.06

Table 3 also provides the energy dissipation capacity of all beams and their improve-
ments with respect to their corresponding control beams. The improvement in dissipated
energy in Group A beams was significantly lower than in Group B beams. This is because of
the following two reasons: (1) two beams in Group A were tested under three-point bend-
ing, and (2) no anchors were employed to supplement external confinement. The highest
improvement in dissipated energy was observed for Beam 1P-GFRP-U, corresponding to
an increase of 114%. On the contrary, an increase of up to 4562% was observed in Group B
beams. This highlights the importance of anchors in resisting shear strength and improving
the shear capacity of RC beams. The highest improvement imparted by LC-GFRP sheets
was 2945%, corresponding to an FW configuration. In terms of the initial stiffness, it did
not vary significantly and remained between 8.00 kN/mm and 9.00 kN/mm for beams
tested under four-point bending.

3.4. Effect of Anchors on Peak Capacity

We report that the beams in Group A were strengthened without the additional aid
of through-bolt anchors. The efficacy of the through-bolt was assessed by comparing the
results in both groups of beams. For the sake of similarity in loading conditions, only
the results of beams under four-point bending were compared in Figure 18. The effect of
anchors on the gain in peak capacity is evident for every configuration type. It is interesting
to observe that the improvement in capacity due to a side-bonded configuration (with
anchors) was 78.33%, whereas the same improvement from a U-shaped configuration
(with anchors) was 63.82%. Moreover, the highest gain was observed in the case of a U-
shaped configuration along the full span. However, this was not accompanied by an equal
improvement in ductility. Hence, a side-bonded with anchors or U-shaped with anchors
configuration resulted in the optimum improvement in the behavior of shear-critical beams.
It must be noted that shear reinforcement in the form of stirrups was not provided in Group
A beams. Therefore, that effect could have played an important role in determining the
improvement in peak capacity.
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3.5. Strain Gauge Measurements

A single strain gauge was attached to the bottom longitudinal bar at the midspan of
the beams in Group B. The recorded strain measurements are shown in Figure 19a for the
beams without yielding steel bars. Beams 2P-CON-02, 2P-GFRP-SB-A, 2P-GFRP-SBF-A,
2P-CFRP-SB-A, and 2P-SISAL-SB-A did not yield at failure, and this was reflected in their
load–deflection curves and failure modes. In general, side-bonded configurations did not
prevent shear failure completely. Consequently, their load–deflection curves exhibited a
slight improvement in ductility. As shown in Figure 19a, the maximum strain in these beams
was higher than the control beam, but a yield plateau could not be observed. Figure 19b
shows longitudinal strain variation for beams that did not fail in shear strength. In addition,
Beam 2P-GFRP-UF-A also exhibited yielding. The maximum strain was lower than the
fracture strain, ascribed to the failure of strain gauges (Figure 19b).
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Natural fiber-reinforced composites, as a critical reinforcement material, warrant
thorough analysis of their performance and advantages. Comparatively, CFRP, although
costly, boasts superior mechanical properties, outstanding fatigue resistance, and corro-
sion resistance [41,42]. GFRP offers a more budget-friendly option with good mechanical
characteristics but tends to become brittle over time in alkaline concrete environments.
Similarly, natural fiber composites offer numerous benefits, including environmental friend-
liness and abundant sources, yet their performance in alkaline-abundant environments
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is yet to be investigated. Therefore, further studies are needed to address this issue
and explore the confinement effectiveness of LC-GFRP composites in the presence of
corrosion-prone conditions.

4. Analytical Investigations on Shear Capacity of LCGFRP-Strengthened Beams

Figure 20 showcases three unique Fiber-Reinforced Polymer (FRP) wrapping con-
figurations specifically developed to amplify the shear strength of prismatic rectangular
beams or columns. Column applications benefiting from access on all four sides adopt
a comprehensive FRP wrapping strategy. Conversely, beam applications, constrained
by an integral slab that obstructs full wrapping, can enhance shear strength through the
selective application of FRP wrapping or bonding on two opposing sides of the member.
Experimental results showed that all techniques proved to be effective in enhancing the
shear strength of beams. Among these approaches, the most efficient method was the
complete wrapping of the section, followed by the three-sided U-wrap technique. On the
other hand, bonding to two sides of the beam was found to be the least efficient approach
in terms of shear strength improvement. Similar observations have been documented
elsewhere [43]. The experimental contributions of LC-GFRP wraps to shear strength en-
hancement were computed by subtracting the peak capacity of strengthened beams from
that of the control beam.
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As per the ACI 440.2R-17 guideline [43], the shear contribution (Vf ) of Fiber-Reinforced
Polymer (FRP) shear reinforcement can be determined using Equation (1.1) (see Table 4).
The area of the FRP external reinforcement (A f ) and the effective stress in the FRP, repre-
sented by the stress level at section failure ( f f e), are computed through Equations (1.2) and
(1.4), respectively. In the case of fully covered (wrapped) elements, the effective strain level
in the FRP reinforcement (ε f e) must adhere to the accepted limit of 0.004, as described in
Equation (1.4). Furthermore, in situations where continuous fiber wrapping is employed,
the FRP spacing (S f ) should be equal to the fiber width (w f ). As per the ACI 440 [43]
guidelines, the maximum allowable design strain for CFRP laminate used in the shear
strengthening of RC beams is set at 0.004. In this particular research, a similar approach has
been adopted, and the maximum strain for LC-GFRP laminate has also been considered
as 0.004. Furthermore, ACI 440.2R-17 [43] applies reduction coefficients on the effective
strain ε f e to account for the delamination in U-wrap or side-bonded configurations. In
this study, delamination was not observed when a U-shaped configuration was adopted in
conjunction with through-bolt anchors, i.e., Beam 2P-GFRP-U-A. Therefore, the present
analytical work is limited to the case of U-shaped configurations with anchor bolts only.
Furthermore, specimens with full wrapping, i.e., beams 2P-GFRP-SW and 2P-GFRP-FW,
were also considered.
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Table 4. Existing models to determine shear strength contribution of external FRP wraps.

Reference General Expression Full Wrapping Case Comments

ACI 440.2R-17 [43] Vf =
A f f f e (sin(α)+cos(α))d f

s f
(1.1)

A f = 2n f t f w f (1.2)
f f e = ε f e E f (1.3)

ε f e = 0.004 ≤ 0.75 fu (1.4)

Only the case of full wrapping is
considered, as no delamination
was observed in U-shaped
configuration with anchors.
s f = w f for continuous
wrapping.

Chen and Teng [44] Vf = 2 f f ,eut f w f
h f rp,e (cot(θ)+cot(α))sin(α)

s f
(2.1)

f f u,e = D f rpσf rp,max (2.2)
h f rp,e = 0.9d−

(
h− d f rp

)
(2.3)

σf rp,max = min

 0.8 f f rp
0.8εmax E f

f f rp
E f
≤ εmax

f f rp
E f

> εmax

 (2.4)

D f rp = 1+ζ
2 (2.5)

Fracture mechanics-based
model.

TEC-18 [45] Vf =
2n f t f w f E f ε f ed

s f
(3.1) min

{
ε f e ≤ 0.004
ε f e ≤ 0.5ε f u

}
(3.2)

Does not account for
side-bonded configuration.

FIB-TG 9.3 [46] Vf = 0.9ε f d,e E f ρ f bwd(cot(θ) + cot(α))sin(α) (4.1)
ε f d,e = 0.17

(
f ′c

2
3

E f ρ f

)0.30

× ε f u (4.2)

ρ f =

(
2t f
bw

)(
w f
s f

)
(4.3)

s f = w f for continuous
wrapping.
E f in GPa.

Note: n f is the number of wraps, t f is the thickness of wraps, A f is the area of wraps that passes a shear crack,
s f is the center-to-center spacing of strips, d f is the effective depth of wraps, w f is the width of strips, f ′c is the
compressive strength of concrete, E f is the elastic modulus of wraps, ε f u is the rupture strain of wraps, and ε f e is
the effective strain of wraps.

In the Chen and Teng model [44], the FRP shear strengthening contribution to the shear
strength of the RC member can be mathematically expressed, as presented in Equation (2.1)
and Table 4. This model is based on fracture mechanics and considers two distinct failure
modes for shear capacity evaluation: fiber rupture and fiber debonding. However, only the
failure mode via the rupture of LC-GFRP is considered. To ensure strain compatibility, it is
recommended that εmax be set to 1.5% if no other specific recommendations are available.

In accordance with the TEC-18 [45], the contribution of FRP shear reinforcement,
denoted as Vf , can be calculated using Equation (3.1), as presented in Table 4. This equation
comprises several parameters, such as the number of FRP winding layers on a single
concrete surface (n f ), the effective thickness of the FRP layer (t f ), the width of the FRP
strip (w f ), the elasticity modulus of the FRP (E f ), the effective unit elongation limit (ε f ), the
effective depth of section d, and the center-to-center spacing of FRP strips (s f ). Similarly to
the guidelines in ACI 440, when continuous fiber wrapping is utilized, the value of FRP
spacing (s f ) must be set to be equal to the value of the fiber width (w f ). It is important
to highlight that within this regulation, the only accepted wrapping technique is the full
wrapping technique. Additionally, the code does not account for the direction of the fiber
angle, and the fiber direction is always assumed to be at 90 degrees.

In the context of the shear strengthening of RC beams, as outlined in fib-TG 9.3 [46],
the shear capacity of the reinforced beam can be determined through the utilization of
Equation (4.1), as presented in Table 4. When dealing with FRP fully wrapped configura-
tions, the design value of the effective FRP strain (ε f d,e) can be calculated following the
formulation presented in Equation (4.2). To ascertain the FRP reinforcement ratio (ρ f ) for
continuously bonded shear reinforcement, considering the thickness (t f ), Equation (3.3) is
employed. For cases where FRP reinforcement is presented in the form of strips or sheets
with a particular width (bw) at spacing (s f ), the ratio can be computed using Equation (3.4).
Furthermore, it should be noted that the elastic modulus of the FRP in the principal fiber
orientation (E f ) is expressed in GPa.

Comparison of Experimental and Predicted Results

Table 5 presents the experimental and predicted shear contributions from LC-GFRP
sheets. In general, the models by ACI 440.2R-17 [43] and fib-TG 9.3 [46] yielded close
predictions for Beam 2P-GFRP-U-A, with predicted to experimental ratios of 1.06 and
1.04, respectively, whereas the models by Chen and Teng [44] and TEC-18 [45] slightly
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underestimated the shear contribution of LC-GFRP to shear strength. All of the models
underestimated the shear contribution of LC-GFRP strips. This suggests that the models
of ACI 440.2R-17 [43], Chen and Teng [44], TEC-18 [45], and fib-TG 9.3 [46] yielded ratios
of 0.47, 0.39, 0.34, and 0.57, respectively. Furthermore, the maximum design effective
strain proposed by ACI 440 [43], i.e., 0.004, can be utilized as the optimal design strain
for improving the shear capacity of an RC beam by employing LC-GFRP confinement.
To maintain a conservative approach, a 45-degree shear crack inclination was incorpo-
rated and subsequently validated through experimental investigations. However, these
investigations were limited to the U-shaped configuration only and supplemented with
through-anchor bolts. It is recognized that although existing models predicted the shear
contribution of U-shaped LC-GFRP confinement supplemented by through-bolt anchorage
with reasonable accuracy, there is a need to develop separate expressions for LC-GFRP
confinement, especially when configurations other than a U-shape are employed. Generally,
the predictions by ACI 440.2R-17 were higher compared to the predictions by other models.
For instance, the predictions by ACI 440.2R-17, Chen and Teng, TEC-18, and fib-TG 9.3 for
Beam 2P-GFRP-U-A were 24.46 kN, 20.14 kN, 17.78 kN, and 24.06 kN, respectively.

Table 5. Comparison of experimental and predicted shear contributions of LC-GFRP confinement.

Beam
Vf,exp
(kN)

ACI 440.2R-17 Chen and Teng TEC-18 fib-TG 9.3

Vf,pred
(kN) R εfe

Vf,pred
(kN) R Vf,pred

(kN) R εfe
Vf,pred
(kN) R εfd,e

2P-GFRP-U-A 23.10 24.46 1.06
0.004

20.14 0.87 - -
0.004

24.06 1.04
0.0092P-GFRP-SW 25.94 12.23 0.47 10.09 0.39 8.89 0.34 14.81 0.57

5. Discussions

The control Beam 2P-CON-02 exhibited brittle shear failure with noticeable shear
cracks. The failure of beams 2P-GFRP-SB-A and 2P-GFRP-SBF-A was accompanied by
debonding of LC-GFRP on one end, and noticeable shear cracks were observed, suggesting
that only a partial improvement in the shear behavior was obtained. The failure of Beam
2P-GFRP-U-A did not exhibit debonding or shear cracks. This indicates that two layers of
GFRP applied in a U-shaped configuration and supplemented with through-bolt anchors
effectively prevented brittle shear failure. In comparison, the ductility of Beam 2P-GFRP-
SBF-A was lower than Beam 2P-GFRP-SB-A. Nonetheless, both beams suffered shear
failure, as can be seen in their abrupt drop in capacities. This implies that the application of
side-bonded LC-GFRP was insufficient to alter the brittle failure to become a ductile failure.
The performance of the side-bonded configuration, either along the full span or within
the shear span only, was inferior to the U-shaped configuration, especially in terms of the
ductility achieved. A U-shaped configuration along the full span imparted a significant
increase in the peak load, but it increased the shear demand as well, resulting in an abrupt
drop in load capacity. It may be noted that the provision of either U-shaped or side-bonded
configurations outside the shear strength had adverse effects on the performance of LC-
GFRP confinement. It is acknowledged that current models give reasonably accurate
predictions for the shear contribution of U-shaped LC-GFRP confinement, along with
through-bolt anchorage. However, there is a requirement to develop distinct expressions
for LC-GFRP confinement, particularly when different configurations other than the U-
shape are used.

6. Conclusions

An experimental framework comprising a total of seventeen beams was designed
to explore the effects of loading type, configuration type, and the effect of less explored
through-bolt anchorage on the performance of LC-GFRP confinement. Beams were tested
under three-point and four-point bending, whereas LC-GFRP was applied in U-shaped,
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side-bonded, and fully wrapped configurations with and without through-bolt anchorages.
The following conclusions could be drawn from the experimental results.

1. In three-point bending tests, LC-GFRP-reinforced beams in side-bonded and U-shaped
configurations without anchors displayed no shear failure or debonding, whereas
beams subjected to four-point bending without anchors exhibited shear failure and
debonding of LC-GFRP wraps. Beams strengthened with LC-GFRP wraps and anchors
showed varying results, with side-bonded configurations experiencing debonding
and shear failure, and U-shaped configurations applied solely to the shear span
successfully preventing shear failure, but full-span U-shaped configurations with
anchors experiencing shear failure. Notably, the use of these wraps, especially on the
tension side, also contributed to flexural capacity, potentially leaving the flexural-to-
shear capacity ratio unchanged after strengthening and the member still vulnerable to
shear issues.

2. The use of LC-GFRP and CFRP applied continuously or as strips on all four sides of the
beam effectively prevented shear failure, eliminating the need for additional through-
bolt anchors. Among the considered strengthening methods, complete wrapping of the
section proved to be the most efficient, followed by the three-sided U-wrap technique,
while bonding to only two sides of the beam was the least efficient. Regarding peak
capacity enhancement, side-bonded, U-shaped, and U-shaped configurations along
the full span with anchors yielded enhancements of 72.11%, 43.66%, and 68.39%,
respectively, compared to their counterparts without anchors.

3. It is recognized that the performance of U-shaped wraps on an RC member is inferior
to that of a fully wrapped member [43]. However, it was established that a combination
of a U-shaped configuration in combination with through-bolt anchors yielded an
equally satisfactory performance as that imparted by wraps on all four sides, mainly
in terms of peak capacity improvement and ductility.

4. Existing models were analyzed to predict shear strength enhancements imparted
by LC-GFRP for U-shaped with anchors and fully wrapped strip configurations.
It is acknowledged that current models give reasonably accurate predictions for
the shear contribution of U-shaped LC-GFRP confinement, along with through-bolt
anchorage. However, there is a requirement to develop distinct expressions for LC-
GFRP confinement, particularly when different configurations other than the U-shape
are used.

7. Lessons Learned and Recommendations for Future Research

Beams strengthened with LC-GFRP wraps and anchors showed varying results, with
side-bonded configurations experiencing debonding and shear failure, and U-shaped
configurations applied solely to the shear span successfully preventing shear failure, but
full-span U-shaped configurations with anchors experiencing shear failure. Among the
considered strengthening methods, complete wrapping of the section proved to be the
most efficient, followed by the three-sided U-wrap technique, while bonding to only two
sides of the beam was the least efficient. In this research, the efficiency of LC-GFRP was
observed to be higher than the CFRP and Sisal FRPs. However, there is a need to further
explore the use of LC-GFRP in comparison with other FRPs for other structural members
such as columns, joints, and slabs.
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