Investigation of Novel Flax Fiber/Epoxy Composites with Increased Biobased Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Resins
2.1.2. Curing Agents
2.1.3. Fibers
2.2. Composite Formulations
2.3. Evaluation of the Biobased Content
2.4. Infusion
2.4.1. Viscosity Measurement
2.4.2. Vacuum Bagging
2.4.3. Laminate Layering
2.5. Composites Characterization
2.5.1. Tensile Test
2.5.2. Flexural Test
2.5.3. Charpy Impact Test
2.5.4. Thermal Analysis
2.5.5. Optical Analysis
3. Results
3.1. Resin Mechanical and Thermal Characterization
3.2. Composites: Bio Content Analysis, Mechanical-Thermal Characterization and Optical Analysis
3.2.1. Biobased Content
3.2.2. Thermo-Mechanical Results
3.2.3. Optical Analysis
3.2.4. Merit Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Andrew, J.J.; Dhakal, H.N. Sustainable biobased composites for advanced applications: Recent trends and future opportunities—A critical review. Compos. Part C Open Access 2022, 7, 100220. [Google Scholar] [CrossRef]
- Raponi, E.; Sergi, C.; Boria, S.; Tirillò, J.; Sarasini, F.; Calzolari, A. Temperature effect on impact response of flax/epoxy laminates: Analytical, numerical and experimental results. Compos. Struct. 2021, 274, 114316. [Google Scholar] [CrossRef]
- Maiti, S.; Islam, M.R.; Uddin, M.A.; Afroj, S.; Eichhorn, S.J.; Karim, N. Sustainable Fiber-Reinforced Composites: A Review. Adv. Sustain. Syst. 2022, 6, 2200258. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Morreale, M. Green composites: A brief review. Compos. Part A Appl. Sci. Manuf. 2011, 42, 579–588. [Google Scholar] [CrossRef]
- Joshi, S.; Drzal, L.; Mohanty, A.; Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004, 35, 371–376. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Recca, G.; Summerscales, J.; Latteri, A.; Cozzo, G.; Cicala, G. Bio-based versus traditional polymer composites. A life cycle assessment perspective. J. Clean. Prod. 2014, 74, 135–144. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Chauhan, V.; Kärki, T.; Varis, J. Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J. Thermoplast. Compos. Mater. 2022, 35, 1169–1209. [Google Scholar] [CrossRef]
- Sharma, S.; Sudhakara, P.; Nijjar, S.; Saini, S.; Singh, G. Recent Progress of Composite Materials in various Novel Engineering Applications. Mater. Today Proc. 2018, 5, 28195–28202. [Google Scholar] [CrossRef]
- Amiri, A.; Krosbakken, T.; Schoen, W.; Theisen, D.; Ulven, C.A. Design and manufacturing of a hybrid flax/carbon fiber composite bicycle frame. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2017, 232, 28–38. [Google Scholar] [CrossRef]
- de Arcaya, P.A.; Retegi, A.; Arbelaiz, A.; Kenny, J.M.; Mondragon, I. Mechanical properties of natural fibers/polyamides composites. Polym. Compos. 2009, 30, 257–264. [Google Scholar] [CrossRef]
- Sarasini, F.; Fiore, V. A systematic literature review on less common natural fibres and their biocomposites. J. Clean. Prod. 2018, 195, 240–267. [Google Scholar] [CrossRef]
- Puglia, D.; Biagiotti, J.; Kenny, J.M. A Review on Natural Fibre-Based Composites—Part II. J. Nat. Fibers 2005, 1, 23–65. [Google Scholar] [CrossRef]
- Oztoprak, N.; Gunes, M.D.; Tanoglu, M.; Aktas, E.; Egilmez, O.O.; Senocak, C.; Kulac, G. Developing polymer composite-based leaf spring systems for automotive industry. Sci. Eng. Compos. Mater. 2018, 25, 1167–1176. [Google Scholar] [CrossRef]
- Xia, C.; Yu, J.; Shi, S.Q.; Qiu, Y.; Cai, L.; Wu, H.F.; Ren, H.; Nie, X.; Zhang, H. Natural fiber and aluminum sheet hybrid composites for high electromagnetic interference shielding performance. Compos. Part B Eng. 2017, 114, 121–127. [Google Scholar] [CrossRef]
- Codispoti, R.; Oliveira, D.V.; Olivito, R.S.; Lourenço, P.B.; Fangueiro, R. Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry. Compos. Part B Eng. 2015, 77, 74–83. [Google Scholar] [CrossRef]
- Dahy, H. Natural Fibre-Reinforced Polymer Composites (NFRP) Fabricated from Lignocellulosic Fibres for Future Sustainable Architectural Applications, Case Studies: Segmented-Shell Construction, Acoustic Panels, and Furniture. Sensors 2019, 19, 738. [Google Scholar] [CrossRef]
- Thyavihalli Girijappa, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]
- Bharath, K.N.; Madhu, P.; Gowda, T.G.Y.; Verma, A.; Sanjay, M.R.; Siengchin, S. A novel approach for development of printed circuit board from biofiber based composites. Polym. Compos. 2020, 41, 4550–4558. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Shun, W.; Dai, J.; Peng, Y.; Liu, X. Recent development on bio-based thermosetting resins. J. Polym. Sci. 2021, 59, 1474–1490. [Google Scholar] [CrossRef]
- Witthayolankowit, K.; Rakkijakan, T.; Ayub, R.; Kumaniaev, I.; Pourchet, S.; Boni, G.; Watjanatepin, P.; Zarafshani, H.; Gabrion, X.; Chevallier, A.; et al. Use of a fully biobased and non-reprotoxic epoxy polymer and woven hemp fabric to prepare environmentally friendly composite materials with excellent physical properties. Compos. Part B Eng. 2023, 258, 110692. [Google Scholar] [CrossRef]
- Verma, A.; Negi, P.; Singh, V.K. Experimental Analysis on Carbon Residuum Transformed Epoxy Resin: Chicken Feather Fiber Hybrid Composite. Polym. Compos. 2019, 40, 2690–2699. [Google Scholar] [CrossRef]
- Verma, A.; Baurai, K.; Sanjay, M.R.; Siengchin, S. Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application. Polym. Compos. 2020, 41, 338–349. [Google Scholar] [CrossRef]
- Marichelvam, M.K.; Manimaran, P.; Verma, A.; Sanjay, M.R.; Siengchin, S.; Kandakodeeswaran, K.; Geetha, M. A novel palm sheath and sugarcane bagasse fiber based hybrid composites for automotive applications: An experimental approach. Polym. Compos. 2021, 42, 512–521. [Google Scholar] [CrossRef]
- Crosky, A.; Soatthiyanon, N.; Ruys, D.; Meatherall, S.; Potter, S. Thermoset matrix natural fibre-reinforced composites. In Natural Fibre Composites; Hodzic, A., Shanks, R., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 233–270. ISBN 978-0-85709-524-4. [Google Scholar]
- Shundo, A.; Yamamoto, S.; Tanaka, K. Network Formation and Physical Properties of Epoxy Resins for Future Practical Applications. JACS Au 2022, 2, 1522–1542. [Google Scholar] [CrossRef]
- Biswas, E.; Silva, J.A.; Khan, M.; Quirino, R.L. Synthesis and Properties of Bio-Based Composites from Vegetable Oils and Starch. Coatings 2022, 12, 1119. [Google Scholar] [CrossRef]
- Liu, Z.; Erhan, S.Z.; Akin, D.E.; Barton, F.E. “Green” Composites from Renewable Resources: Preparation of Epoxidized Soybean Oil and Flax Fiber Composites. J. Agric. Food Chem. 2006, 54, 2134–2137. [Google Scholar] [CrossRef]
- Liu, Z.; Biswas, A. Fluoroantimonic acid hexahydrate (HSbF6·6H2O) catalysis: The ring-opening polymerization of epoxidized soybean oil. Appl. Catal. A Gen. 2013, 453, 370–375. [Google Scholar] [CrossRef]
- Park, S.-J.; Jin, F.-L.; Lee, J.-R. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater. Sci. Eng. A 2004, 374, 109–114. [Google Scholar] [CrossRef]
- Galdino, D.S.; Kondo, M.Y.; De Araujo, V.A.; Ferrufino, G.L.; Faustino, E.; Santos, H.F.; Christoforo, A.L.; Luna, C.M.; Campos, C.I. Thermal and Gluing Properties of Phenol-Based Resin with Lignin for Potential Application in Structural Composites. Polymers 2023, 15, 357. [Google Scholar] [CrossRef]
- Caillol, S. Cardanol: A promising building block for biobased polymers and additives. Curr. Opin. Green Sustain. Chem. 2018, 14, 26–32. [Google Scholar] [CrossRef]
- Jaillet, F.; Darroman, E.; Ratsimihety, A.; Auvergne, R.; Boutevin, B.; Caillol, S. New biobased epoxy materials from cardanol. Eur. J. Lipid Sci. Technol. 2014, 116, 63–73. [Google Scholar] [CrossRef]
- Ng, F.; Couture, G.; Philippe, C.; Boutevin, B.; Caillol, S. Bio-Based Aromatic Epoxy Monomers for Thermoset Materials. Molecules 2017, 22, 149. [Google Scholar] [CrossRef]
- Terry, J.S.; Taylor, A.C. The properties and suitability of commercial bio-based epoxies for use in fiber-reinforced composites. J. Appl. Polym. Sci. 2021, 138, 50417. [Google Scholar] [CrossRef]
- Torres-Arellano, M.; Renteria-Rodríguez, V.; Franco-Urquiza, E. Mechanical Properties of Natural-Fiber-Reinforced Biobased Epoxy Resins Manufactured by Resin Infusion Process. Polymers 2020, 12, 2841. [Google Scholar] [CrossRef]
- Saidane, E.H.; Scida, D.; Ayad, R. Thermo-mechanical behaviour of flax/green epoxy composites: Evaluation of thermal expansion coefficients and application to internal stress calculation. Ind. Crops Prod. 2021, 170, 113786. [Google Scholar] [CrossRef]
- Sala, B.; Gabrion, X.; Trivaudey, F.; Guicheret-Retel, V.; Placet, V. Influence of the stress level and hygrothermal conditions on the creep/recovery behaviour of high-grade flax and hemp fibre reinforced GreenPoxy matrix composites. Compos. Part A Appl. Sci. Manuf. 2021, 141, 106204. [Google Scholar] [CrossRef]
- Bodros, E.; Pillin, I.; Montrelay, N.; Baley, C. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos. Sci. Technol. 2007, 67, 462–470. [Google Scholar] [CrossRef]
- Sankar Lal, S.; Kannan, S.; Sahoo, S.K. Investigation on the effect of castor-oil based bio-resins on mechanical, visco-elastic, and water diffusion properties of flax fiber reinforced epoxy composites. Polym. Compos. 2023, 44, 4289–4308. [Google Scholar] [CrossRef]
- Biagiotti, J.; Puglia, D.; Torre, L.; Kenny, J.M.; Arbelaiz, A.; Cantero, G.; Marieta, C.; Llano-Ponte, R.; Mondragon, I. A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polym. Compos. 2004, 25, 470–479. [Google Scholar] [CrossRef]
- Perremans, D.; Verpoest, I.; Dupont-Gillain, C.; Van Vuure, A.W. Investigation of the tensile behavior of treated flax fibre bio-composites at ambient humidity. Compos. Sci. Technol. 2018, 159, 119–126. [Google Scholar] [CrossRef]
- Wan Ramli, W.M.A.; Abdul Majid, M.S.; Ridzuan, M.J.M.; Sultan, M.T.H.; Amin, N.A.M.; Gibson, A.G. The effect of nanomodified epoxy on the tensile and flexural properties of Napier fiber reinforced composites. Polym. Compos. 2020, 41, 824–837. [Google Scholar] [CrossRef]
- Govignon, Q.; Bickerton, S.; Morris, J.; Kelly, P.A. Full field monitoring of the resin flow and laminate properties during the resin infusion process. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1412–1426. [Google Scholar] [CrossRef]
- Muralidhara, B.; Kumaresh Babu, S.P.; Suresha, B. Utilizing vacuum bagging process to prepare carbon fiber/epoxy composites with improved mechanical properties. Mater. Today Proc. 2020, 27, 2022–2028. [Google Scholar] [CrossRef]
- Mustata, A.; Mustata, F.S.C. Moisture Absorption and Desorption in Flax and Hemp Fibres and Yarns; Sieć Badawcza Łukasiewicz-Instytut Biopolimerów i Włókien Chemicznych: Łódź, Poland, 2013. [Google Scholar]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V. Hydrophobic treatment of natural fibers and their composites—A review. J. Ind. Text. 2016, 47, 2153–2183. [Google Scholar] [CrossRef]
- Sorrentino, L.; Turchetta, S.; Parodo, G.; Papa, R.; Toto, E.; Santonicola, M.G.; Laurenzi, S. RIFT Process Analysis for the Production of Green Composites in Flax Fibers and Bio-Based Epoxy Resin. Materials 2022, 15, 8173. [Google Scholar] [CrossRef]
- De Baere, I.; Van Paepegem, W.; Degrieck, J. On the design of end tabs for quasi-static and fatigue testing of fibre-reinforced composites. Polym. Compos. 2009, 30, 381–390. [Google Scholar] [CrossRef]
- Adams, D.O.; Adams, D.F. Tabbing Guide for Composite Test Specimens; Utah Univ Salt Lake City Dept of Mechanical Engineering: Salt Lake City, UT, USA, 2002. [Google Scholar]
- Yousif, B.F. Frictional and wear performance of polyester composites based on coir fibres. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 223, 51–59. [Google Scholar] [CrossRef]
- Bachmann, J.; Wiedemann, M.; Wierach, P. Flexural Mechanical Properties of Hybrid Epoxy Composites Reinforced with Nonwoven Made of Flax Fibres and Recycled Carbon Fibres. Aerospace 2018, 5, 107. [Google Scholar] [CrossRef]
- Rodrigues Junior, S.A.; Zanchi, C.H.; de Carvalho, R.V.; Demarco, F.F. Flexural strength and modulus of elasticity of different types of resin-based composites. Braz. Oral Res. 2007, 21, 16–21. [Google Scholar] [CrossRef]
- Zwawi, M. A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications. Molecules 2021, 26, 404. [Google Scholar] [CrossRef]
- Alsuwait, R.B.; Souiyah, M.; Momohjimoh, I.; Ganiyu, S.A.; Bakare, A.O. Recent Development in the Processing, Properties, and Applications of Epoxy-Based Natural Fiber Polymer Biocomposites. Polymers 2022, 15, 145. [Google Scholar] [CrossRef]
- Fuqua, M.A.; Huo, S.; Ulven, C.A. Natural Fiber Reinforced Composites. Polym. Rev. 2012, 52, 259–320. [Google Scholar] [CrossRef]
- Le Guen, M.J.; Newman, R.H. Pulped Phormium tenax leaf fibres as reinforcement for epoxy composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2109–2115. [Google Scholar] [CrossRef]
- Aliotta, L.; Lazzeri, A. A proposal to modify the Kelly-Tyson equation to calculate the interfacial shear strength (IFSS) of composites with low aspect ratio fibers. Compos. Sci. Technol. 2020, 186, 107920. [Google Scholar] [CrossRef]
- Clyne, T.W.; Hull, D. An Introduction to Composite Materials; Cambridge University Press: Cambridge, UK, 2019; ISBN 0521860954. [Google Scholar]
- Shercliff, H.R.; Ashby, M.F. Elastic Structures in Design. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-12-803581-8. [Google Scholar]
Name | Epoxy Formulation Mix | Curing Agent Origin | Commercial Material Used | Ratio | Final Biobased Content (%) |
---|---|---|---|---|---|
MT1 | Mix 50:50 Petro-based + Biobased | Petro-based | MIX 50:50 (EPIKOTE 828 + CARDOLITE NC-547) + SX8 EVOB | (100:30) | 32.34 |
MB1 | Mix 50:50 Biobased | Biobased | MIX 50:50 (CARDOLITE NC 547 + GREENPOXY S56) + CARDOLITE NC541 | (100:68) | 74.86 |
BB1 | Biobased | Petro-based | GREENPOXY S56 + SD 4771 | (100:30) | 43.12 |
Epoxy Resin | Fiber | Composite Name | |
---|---|---|---|
Mix Petro-Bio based | [MIX 50:50 (EPIKOTE 828 + CARDOLITE NC-547)] + SX8 EVOB | Flax Twill | MT1-FT |
Biobased | [MIX 50:50 (CARDOLITE NC 547 + GREENPOXY SR56)] + CARDOLITE NC541 | Flax Twill | MB1-FT |
Biobased | GREENPOXY S56 + SD 4771 | Flax Twill | BB1-FT |
ID | Biobased Content | Charpy Impact Strength (kJ/m2) | Tensile Tests | Tg (°C) | ||
---|---|---|---|---|---|---|
E (GPa) | σb (MPa) | εb (%) | ||||
MT1 | 32.34 | Not detectable | 0.77 ± 0.07 | 12.55 ± 0.97 | 6.89 ± 1.72 | 59.88 ± 0.01 |
MB1 | 74.86 | Not detectable | 0.45 ± 0.04 | 12.20 ± 1.02 | 6.45 ± 0.87 | 26.50 ± 0.01 |
BB1 | 43.12 | 6.02 ± 0.55 | 2.67 ± 0.42 | 45.66 ± 4.95 | 3.34 ± 1.76 | 52.30 ± 0.01 |
ID | Charpy Impact Strength (kJ/m2) | Tensile Tests | Tg (°C) | ||
---|---|---|---|---|---|
E (GPa) | σb (MPa) | εb (%) | |||
MT1-FT | 11.89 ± 0.15 | 4.69 ± 0.95 | 48.76 ± 5.64 | 2.25 ± 0.28 | 64.12 ± 0.01 |
MB1-FT | 19.16 ± 1.69 | 2.69 ± 0.20 | 44.24 ± 3.27 | 7.41 ± 1.20 | 35.00 ± 0.01 |
BB1-FT | 11.94 ± 2.07 | 6.34 ± 0.75 | 71.32 ± 6.06 | 2.72 ± 0.46 | 61.95 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dal Pont, B.; Gigante, V.; Panariello, L.; Canesi, I.; Aliotta, L.; Lazzeri, A. Investigation of Novel Flax Fiber/Epoxy Composites with Increased Biobased Content. Polymers 2023, 15, 4030. https://doi.org/10.3390/polym15194030
Dal Pont B, Gigante V, Panariello L, Canesi I, Aliotta L, Lazzeri A. Investigation of Novel Flax Fiber/Epoxy Composites with Increased Biobased Content. Polymers. 2023; 15(19):4030. https://doi.org/10.3390/polym15194030
Chicago/Turabian StyleDal Pont, Bianca, Vito Gigante, Luca Panariello, Ilaria Canesi, Laura Aliotta, and Andrea Lazzeri. 2023. "Investigation of Novel Flax Fiber/Epoxy Composites with Increased Biobased Content" Polymers 15, no. 19: 4030. https://doi.org/10.3390/polym15194030
APA StyleDal Pont, B., Gigante, V., Panariello, L., Canesi, I., Aliotta, L., & Lazzeri, A. (2023). Investigation of Novel Flax Fiber/Epoxy Composites with Increased Biobased Content. Polymers, 15(19), 4030. https://doi.org/10.3390/polym15194030