Synthesis and Characterization of Random Block Hydroxyl-Terminated Polyfluoroether-Based Polyurethane Elastomers with Fluorine-Containing Side Chains
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of PFEE
2.3. Synthesis of PPFEE Prepolymer
2.4. Preparation of PPFEE-Based Polyurethane Elastomers
2.5. Characterization
3. Results and Discussion
3.1. Structure of PPFEE
3.2. Glass Transition Temperature (Tg) Measurement
3.3. Mechanical Properties of Polyurethane Elastomers
3.4. Thermal Decomposition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kubota, N.; Kuwahara, T.; Miyazaki, S.; Uchiyama, K.; Hirata, N. Combustion wave structures of ammonium perchlorate composite propellants. J. Propuls. Power 1986, 2, 296–300. [Google Scholar] [CrossRef]
- Liu, F.B.; Zhang, X.L.; Jiang, W.S.; Yu, F.Y.; Deng, J.R. Study on the curing system of polytriazole adhesive for composite solid propellant. Propellants Explos. Pyrotech. 2018, 43, 371–378. [Google Scholar] [CrossRef]
- Guery, J.F.; Chang, I.S.; Shimada, T.; Glick, M.; Boury, D.; Robert, E.; Napior, J.; Wardle, R.; Pérut, C.; Calabro, M.; et al. Solid propulsion for space applications: An updated roadmap. Acta Astronaut. 2010, 66, 201–219. [Google Scholar] [CrossRef]
- Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. Fluorine. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Cheng, T. Review of novel energetic polymers and binders–high energy propellant ingredients for the new space race. Des. Monomers Polym. 2019, 22, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Reed, R.R.; Brady, V.L.; Finnegan, S.A. Energy release in the reaction of metal powders with fluorine containing polymers. J. Therm. Anal. Calorim. 1997, 49, 1699–1705. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.J.; Park, J.S.; Kim, J.H. Energetic Al/Fe2O3/PVDF composites for high energy release: Importance of polymer binder and interface. Macromol. Res. 2016, 24, 909–914. [Google Scholar] [CrossRef]
- Dattelbaum, D.M.; Sheffield, S.A.; Stahl, D.; Weinberg, M.; Neel, C.; Thadhani, N. Equation of state and high pressure properties of a fluorinated terpolymer: THV 500. J. Appl. Phys. 2008, 104, 113525. [Google Scholar] [CrossRef]
- Rider, K.B.; Little, B.K.; Emery, S.B.; Lindsay, C.M. Thermal analysis of magnesium/perfluoropolyether pyrolants. Propellants Explos. Pyrotech. 2013, 38, 433–440. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, W.; Liu, H.; Wang, G.; Zhong, Y.; Zhou, M.; Zhu, Q.; Li, H. Synthesis and characterization of a novel fluorine-containing triblock copolymer as a potential binder. Eur. Polym. J. 2021, 159, 110760. [Google Scholar] [CrossRef]
- Xu, M.; Ge, Z.; Lu, X.; Mo, H.; Ji, Y.; Hu, H. Structure and mechanical properties of fluorine-containing glycidyl azide polymer-based energetic binders. Polym. Int. 2017, 66, 1318–1323. [Google Scholar] [CrossRef]
- Xu, M.; Ge, Z.; Lu, X.; Mo, H.; Ji, Y.; Hu, H. Fluorinated glycidyl azide polymers as potential energetic binders. RSC Adv. 2017, 7, 47271–47278. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Liu, H.; Shuai, J.; Gao, Z.; Dong, Q.; Wang, G.; Xiong, Y.; Zhu, Q.; Li, H. Synthesis and characterization of a novel fluorine-containing copolymer P(FPO/NIMMO) as a potential energetic binder. J. Fluor. Chem. 2021, 249, 109861. [Google Scholar] [CrossRef]
- Xu, M.; Lu, X.; Liu, N.; Zhang, Q.; Mo, H.; Ge, Z. Fluoropolymer/Glycidyl Azide Polymer (GAP) Block Copolyurethane as New Energetic Binders: Synthesis, Mechanical Properties, and Thermal Performance. Polymers 2021, 13, 2706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, T.; Liu, H.; Zheng, Y.; Zhong, Y.; Wang, G.; Zhu, Q.; Liu, X.; Zhang, L.; Li, H.l. Synthesis and characterization of a novel hydroxy telechelic polyfluoroether to enhance the properties of HTPB solid propellant binders. Colloids Surf. A Physicochem. Eng. Asp. 2022, 11, 129199. [Google Scholar] [CrossRef]
- Lan, Q.; Kim, J.S.; Kwon, Y. Synthesis and Thermal Characteristics of Nano-Aluminum/Fluorinated Polyurethane Binders. J. Korean Soc. Propuls. Eng. 2016, 20, 40–50. [Google Scholar] [CrossRef]
- Zhang, X.; Kim, J.S.; Kwon, Y. Synthesis and thermal analysis of nano-aluminum/fluorinated polyurethane elastomeric composites for structural energetics. J. Nanosci. Nanotechnol. 2017, 17, 2488–2492. [Google Scholar] [CrossRef]
- Wang, X.; Hu, J.; Li, Y.; Zhang, J.; Ding, Y. The surface properties and corrosion resistance of fluorinated polyurethane coatings. J. Fluor. Chem. 2015, 176, 14–19. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, S.; Li, X.; Zhu, J.; Liang, H.; Zhang, X.; Shu, Q. Molecular dynamics simulations for 5,5′-bistetrazole-1,1′-diolate (TKX-50) and its PBXs. RSC Adv. 2016, 6, 20034–20041. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Li, L.; Liu, Y.; Li, Y.; Dong, Q. Influences of fluorine on microphase separation in fluorinated polyurethanes. Polymer 2016, 98, 311–319. [Google Scholar] [CrossRef]
- Matuszczak, S.; Feast, W.J. An approach to fluorinated surface coatings via photoinitiated cationic cross-linking of mixed epoxy and fluoroepoxy systems. J. Fluor. Chem. 2000, 102, 269–277. [Google Scholar] [CrossRef]
- Wang, F.X.; Jin, B.; Peng, R.; Zhang, Q.; Gong, W. Synthesis, spectroscopic characterization, thermal stability and compatibility properties of energetic PVB-gGAP copolymers. J. Polym. Res. 2015, 22, 167. [Google Scholar] [CrossRef]
- Gordon, J.M.; Rouse, G.B.; Gibbs, J.H.; Risen, W.M., Jr. The composition dependence of glass transition properties. J. Chem. Phys. 1977, 66, 4971–4976. [Google Scholar] [CrossRef]
- Ampleman, G.; Beaupre, F. Synthesis of linear GAP based energetic thermoplastic elastomers for use in HELOVA gun propellant formulations. In Proceedings of the 27th International Annual Conference of ICT, Karlsruhe, Germany, 25–28 June 1996; Volume 27, pp. 1–14. [Google Scholar]
- Mulage, K.S.; Patkar, R.N.; Deuskar, V.D.; Pundlik, S.M.; Kakade, S.D.; Gupta, M. Studies on a novel thermoplastic polyurethane as a binder for extruded composite propellants. J. Energetic Mater. 2007, 25, 233–245. [Google Scholar] [CrossRef]
- Mirhosseini, M.M.; Haddadi-Asl, V.; Jouibari, I.S. How the soft segment arrangement influences the microphase separation kinetics and mechanical properties of polyurethane block polymers. Mater. Res. Express 2019, 6, 085311. [Google Scholar] [CrossRef]
- Chen, C.H.; Briber, R.M.; Thomas, E.L.; Xu, M.; MacKnight, W.J. Structure and morphology of segmented polyurethanes: 2. Influence of reactant incompatibility. Polymer 1983, 24, 1333–1340. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Song, Y.; Gyanda, R.; Sakhuja, R.; Meher, N.K.; Hanci, S.; Gyanda, K.; Mathai, S.; Sabri, F.; Ciaramitaro, D.A.; et al. Preparation and mechanical properties of crosslinked 1, 2, 3-triazole-polymers as potential propellant binders. J. Appl. Polym. Sci. 2010, 117, 2612–2621. [Google Scholar] [CrossRef]
- Hu, Y.; Jian, X.; Xiao, L.; Zhou, W. Microphase separation and mechanical performance of thermoplastic elastomers based on poly (glycidyl azide)/poly (oxytetramethylene glycol). Polym. Eng. Sci. 2018, 58, E167–E173. [Google Scholar] [CrossRef]
- Hanafi, S.; Trache, D.; He, W.; Xie, W.X.; Mezroua, A.; Yan, Q.L. Thermostable energetic coordination polymers based on functionalized go and their catalytic effects on the decomposition of ap and rdx. J. Phys. Chem. C 2020, 124, 5182–5195. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M.; Belmerabet, M.; Abdelaziz, A.; Derradji, M.; Belgacemi, R. Synthesis, characterization, and thermal decomposition kinetics of nitrogen-rich energetic biopolymers from aminated giant reed cellulosic fibers. Ind. Eng. Chem. Res. 2020, 59, 22677–22689. [Google Scholar] [CrossRef]
- Hanafi, S.; Trache, D.; Meziani, R.; Boukciat, H.; Mezroua, A.; Tarchoun, A.F.; Derradji, M. Synthesis, characterization and thermal decomposition behavior of a novel HNTO/AN co-crystal as a promising rocket propellant oxidizer. Chem. Eng. J. 2021, 417, 128010. [Google Scholar] [CrossRef]
T/°C | 40 | 50 | 60 | 70 |
---|---|---|---|---|
Tg/°C | −51.98 | −51.08 | −51.44 | −51.84 |
W/% | 37.293 | 37.266 | 37.276 | 37.289 |
Mass Percentage/% | 17 | 20 | 22 | 26 |
---|---|---|---|---|
Tg/°C | −50.11 | −50.84 | −50.59 | −50.78 |
W/% | 43.447 | 37.266 | 32.596 | 28.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Chen, J.; Zhang, L.; Huang, H.; Peng, R.; Jin, B. Synthesis and Characterization of Random Block Hydroxyl-Terminated Polyfluoroether-Based Polyurethane Elastomers with Fluorine-Containing Side Chains. Polymers 2023, 15, 288. https://doi.org/10.3390/polym15020288
Zhou Y, Chen J, Zhang L, Huang H, Peng R, Jin B. Synthesis and Characterization of Random Block Hydroxyl-Terminated Polyfluoroether-Based Polyurethane Elastomers with Fluorine-Containing Side Chains. Polymers. 2023; 15(2):288. https://doi.org/10.3390/polym15020288
Chicago/Turabian StyleZhou, Yanqiu, Junjie Chen, Limin Zhang, Hui Huang, Rufang Peng, and Bo Jin. 2023. "Synthesis and Characterization of Random Block Hydroxyl-Terminated Polyfluoroether-Based Polyurethane Elastomers with Fluorine-Containing Side Chains" Polymers 15, no. 2: 288. https://doi.org/10.3390/polym15020288
APA StyleZhou, Y., Chen, J., Zhang, L., Huang, H., Peng, R., & Jin, B. (2023). Synthesis and Characterization of Random Block Hydroxyl-Terminated Polyfluoroether-Based Polyurethane Elastomers with Fluorine-Containing Side Chains. Polymers, 15(2), 288. https://doi.org/10.3390/polym15020288