Thermal Decomposition and Stability of Hybrid Graphene–Clay/Polyimide Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Polyimide–Graphene–Clay Composites
2.2. Thermogravimetric Analysis, TGA
2.3. Differential Scanning Calorimetry, DSC
2.4. Scanning Electron Microscopy, SEM
3. Results
3.1. Scanning Electron Microscopy
3.2. Thermogravimetric Analysis
3.2.1. Degradation in Nitrogen
3.2.2. Degradation in Air
3.3. Differential Scanning Calorimetry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoonessi, M.; Shi, Y.; Scheiman, D.A.; Lebron-Colon, M.; Tigelaar, D.M.; Weiss, R.A.; Meador, M.A. Graphene Polyimide Nanocomposites; Thermal, Mechanical, and High-Temperature Shape Memory Effects. ACS Nano 2012, 6, 7644–7655. [Google Scholar] [CrossRef]
- Ogbonna, V.; Popoola, P.; Olawale, A.S.O. A review on recent advances on improving polyimide matrix nanocomposites for mechanical, thermal, and tribological applications: Challenges and recommendations for future improvement. J. Thermoplast. Compos. Mater. 2021, 1, 1–30. [Google Scholar] [CrossRef]
- Doug, W. Recent advances in polyimide composites. High Perform. Polym. 1993, 5, 77. [Google Scholar]
- Giannelis, E.; Krishnamoorti, R.; Manias, E. Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes. Polym. Confin. Environ. Adv. Polym. Sci. 1999, 138, 107–147. [Google Scholar]
- Sinha Ray, S.; Yamada, K.; Okamoto, M.; Ueda, K. New polylactide/layered silicate nanocomposite: A novel biodegradable material. Nano Lett. 2002, 2, 1093–1096. [Google Scholar] [CrossRef]
- Gilman, J.W. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 1999, 15, 31–49. [Google Scholar] [CrossRef]
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-Based polymer nanocomposites. Polymer 2011, 52, 5–25. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, B.; Setyowati, K.; Liu, H.; Waldeck, D.H.; Chen, J. Carbon Nanotube−Polymer Nanocomposite Infrared Sensor. Nano Lett. 2008, 8, 1142–1146. [Google Scholar] [CrossRef]
- Morgan, B.; Putthanarat, S. Use of inorganic materials to enhance thermal stability and flammability behavior of a polyimide. Polym. Degrad. Stab. 2010, 96, 23–32. [Google Scholar] [CrossRef]
- Jiang, X.; Bin, Y.; Matsuo, M. Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization. Polymer 2005, 46, 7418–7424. [Google Scholar] [CrossRef]
- Allen, M.; Tung, V.; Kaner, R. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Rahman, R.; Haque, A. A Molecular modeling of crosslinked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties. Compos. Part B Eng. 2013, 54, 353–364. [Google Scholar] [CrossRef]
- Nayebi, P.; Zaminpayma, E. A molecular dynamic simulation study of mechanical properties of graphene–polythiophene composite with Reax force field. Phys. Lett. A 2016, 380, 628–633. [Google Scholar] [CrossRef]
- King, J.; Klimek, D.; Miskioglu, I.; Odegard, G. Mechanical properties of graphene nanoplatelet/epoxy composites. J. Appl. Polym. Sci. 2012, 128, 4217–4223. [Google Scholar] [CrossRef]
- Amit, K.; Kamal, S.; Amit, D. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 2018, 54, 5992–6026. [Google Scholar]
- Liu, Y.; Liu, J.; Ding, Q.; Tan, J.; Chen, Z.; Chen, J.; Zuo, X.; Tang, A.; Zeng, K. Polyimide/Graphene Nanocomposites with Improved Gas Barrier and Thermal Properties due to a “Dual-Plane” Structure Effect. Macromol. Mater. Eng. 2018, 303, 1800053. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Ding, Q.; Tan, J.; Chen, J.; She, Z.; Tang, A.; Zeng, K. Enhanced gas barrier; thermal properties of polyimide/montmorillonite nanocomposites as a result of “dual-plane” structure effect. Polym. Compos. 2017, 39, E1725–E1732. [Google Scholar] [CrossRef]
- LeBaron, P.C.; Wang, Z.; Pinnavaia, T.J. Polymer-layered silicate nanocomposites: An overview. Appl. Clay Sci. 1999, 15, 11–29. [Google Scholar] [CrossRef]
- Okada, A.; Kawasumi, M.; Usuki, A.; Kojima, Y.; Kurauchi, T.; Kamigaito, O. Synthesis and properties of nylon-6/clay hybrids. Polym. Based Mol. Compos. 1990, 171, 45–50. [Google Scholar]
- Bourbigot, S.; Bras, M.L.; Dabrowski, F.; Gilman, J.W.; Kashiwagi, T. PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater. 2000, 24, 201–208. [Google Scholar] [CrossRef]
- Gilman, J.W.; Jackson, C.L.; Morgan, A.B.; Harris, R.; Manias, E.; Giannelis, E.P.; Wuthenow, M.; Hilton, D.; Phillips, S.H. Flammability properties of polymer—Layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem. Mater. 2000, 12, 1866–1873. [Google Scholar] [CrossRef]
- Bharadwaj, R.K. Modelling the Barrier Properties of Polymer Layered Silicates Nanocomposites. Macromolecules 2001, 34, 1989–1992. [Google Scholar] [CrossRef]
- Messersmith, P.B.; Giannelis, E.P. Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites. J. Polym. Sci. Part A Polym. Chem. 1995, 33, 1047–1057. [Google Scholar] [CrossRef]
- Yano, K.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, O. Synthesis and properties of polyimide–clay hybrid. J. Polym. Sci. Part A Polym. Chem. 1993, 31, 2493–2498. [Google Scholar] [CrossRef]
- Okada, A.; Usuki, A. Twenty Years of Polymer-Clay Nanocomposites. Macromol. Mater. Eng. 2007, 292, 220. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The Rise Of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Goki, E.; Chhowalla, M. Graphene-Based Composite Thin Films For Electronics. Nano Lett. 2009, 9, 814–818. [Google Scholar]
- Agag, T.; Koga, T.; Takeichi, T. Studies on thermal and mechanical properties of polyimide–Clay nanocomposites. Polymer 2001, 42, 3399–3408. [Google Scholar] [CrossRef]
- Longun, J.; Iroh, J. Nano-graphene/polyimide composites with extremely high rubbery plateau modulus. Carbon 2012, 50, 1823–1832. [Google Scholar] [CrossRef]
- Marashdeh, W.F.; Longun, J.; Iroh, J.O. Relaxation behavior and activation energy of relaxation for polyimide and polyimide-graphene nanocomposite. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Akinyi, C.; Chen, S.; Longun, J.; Iroh, J. Decomposition and Flammability of Polyimide Graphene Composites. Minerals 2021, 11, 168. [Google Scholar] [CrossRef]
- Longun, J.; Walker, G.; Iroh, J. Surface and mechanical properties of graphene–clay/polyimide composites and thin films. Carbon 2013, 63, 9–22. [Google Scholar] [CrossRef]
- Iroh, J.; Longun, J. Viscoelastic properties of montmorillonite clay/polyimide composite membranes and thin films. J. Inorg. Organomet. Polym. Mater. 2012, 22, 653–661. [Google Scholar] [CrossRef]
- Lua, C.; Su, J. Isothermal and non-isothermal pyrolysis kinetics of Kapton® polyimide. Polym. Degrad. Stab. 2006, 91, 144–153. [Google Scholar] [CrossRef]
- Liu, F. Thermal stability of graphene in inert atmosphere at high temperature. J. Solid State Chem. 2019, 276, 100–103. [Google Scholar] [CrossRef]
- Tiwari, R.R.; Khilar, K.; Natarajan, U. Synthesis and characterization of novel organo-montmorillonites. Appl. Clay Sci. 2008, 38, 203–208. [Google Scholar] [CrossRef]
- Dasari, A.; Yu, Z.Z.; Mai, Y.W.; Cai, G.; Song, H. Roles of graphite oxide, clay and POSS during the combustion of polyamide 6. Polymer 2009, 50, 1577–1587. [Google Scholar] [CrossRef]
- Raji, M.; Essassi, E.; Essabir, H.; Rodrigue, D.; Qaiss, A.; Bouhfid, R. Properties of Nano-composites Based on Different Clays and Polyamide 6/Acrylonitrile Butadiene Styrene Blends. Bio-Based Polym. Nanocompos. 2019, 107–128. [Google Scholar]
- Dasari, A.; Yu, Z.-Z.; Mai, Y.-W.; Liu, S. Flame retardancy of highly filled polyamide 6/clay nanocomposites. Nanotechnology 2007, 18, 107–128. [Google Scholar] [CrossRef]
- Blumstein, A. Blumstein Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer. J. Polym. Sci. Part A Gen. Pap. 1965, 3, 2665–2672. [Google Scholar] [CrossRef]
- Burnside, S.D.; Ginnelis, E.P. Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chem. Mater. 1995, 7, 1597–1600. [Google Scholar] [CrossRef]
- Lee, J.; Takekoshi, T.; Giannelis, E.P. Fire Retardant Polyetherimide Nanocomposites; MRS Online Proceedings Library: Online, 2011; p. 457. [Google Scholar]
- Chen, W.; Chen, W.; Zhang, B.; Yang, S.; Liu, C.-Y. Thermal imidization process of polyimide film: Interplay between solvent evaporation and imidization. Polymer 2017, 109, 205–215. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, H.; Gong, F.; Feng, M.; Zhang, S.; Yang, M. Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym. Degrad. Stab. 2005, 87, 183–189. [Google Scholar] [CrossRef]
- Ollier, R.P.; D’Amico, D.A.; Schroeder, W.; Cyras, V.P.; Álvarez, V. Effect of clay treatment on the thermal degradation of PHB based nanocomposites. Appl. Clay Sci. 2018, 163, 146–152. [Google Scholar] [CrossRef]
- Ramani, A.; Hagen, M.; Hereid, J.; Zhang, J.; Bakirtzis, D.; Delichatsios, M. Interaction of a phosphorus-based FR, a nanoclay. Fire Mater. 2009, 34, 77–93. [Google Scholar]
- Han, X.; Chen, T.; Zhao, Y.; Gao, J.; Sang, Y.; Xiong, H.; Chen, Z. Relationship between the Microstructure and Performance of Graphene/Polyethylene Composites Investigated by Positron Annihilation Lifetime Spectroscopy. Nanomaterials 2021, 11, 2990. [Google Scholar] [CrossRef]
- Hatori, H.; Yamada, Y.; Shiraishi, M.; Yoshihara, M.; Kimura, T. The mechanism of polyimide pyrolysis in the early stage. Carbon 1996, 34, 201–208. [Google Scholar] [CrossRef]
- Akinyi, C.J.; Iroh, J.O. Degradation and stability of polyimides. Polym. Degrad. Stab. 1992, 36, 43–65. [Google Scholar]
- Sharma, S.; Poddar, K.M.; Moholkar, S.V. Enhancement of thermal and mechanical properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites by ultrasound-assisted in-situ emulsion polymerization. Ultrason. Sonochem. 2017, 36, 212–225. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinyi, C.; Iroh, J.O. Thermal Decomposition and Stability of Hybrid Graphene–Clay/Polyimide Nanocomposites. Polymers 2023, 15, 299. https://doi.org/10.3390/polym15020299
Akinyi C, Iroh JO. Thermal Decomposition and Stability of Hybrid Graphene–Clay/Polyimide Nanocomposites. Polymers. 2023; 15(2):299. https://doi.org/10.3390/polym15020299
Chicago/Turabian StyleAkinyi, Caroline, and Jude O. Iroh. 2023. "Thermal Decomposition and Stability of Hybrid Graphene–Clay/Polyimide Nanocomposites" Polymers 15, no. 2: 299. https://doi.org/10.3390/polym15020299
APA StyleAkinyi, C., & Iroh, J. O. (2023). Thermal Decomposition and Stability of Hybrid Graphene–Clay/Polyimide Nanocomposites. Polymers, 15(2), 299. https://doi.org/10.3390/polym15020299