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Abstract: Low-cost desktop-sized fused deposition modeling (FDM) printers have been widely
embraced by small to large-scale institutions and individuals. To further enhance their utility and
increase the range of materials that they can process, this work proposes a low-cost solution that
adapts to low-cost desktop-sized extruders and enables them to fabricate filaments comprising a
wide range of nonorganic reinforcing particles. This solution will fill a gap in the field, as low-
cost fabrication techniques for reinforced filaments have been lacking. In the proposed solution,
particles are heated and deposited on thermoplastic pellets to form a coating. Coated pellets are
subsequently extruded using a low-cost desktop single-screw extruder. The effectiveness of the
process is demonstrated by fabricating polylactic acid (PLA) filaments reinforced with two types
of reinforcements, namely, dune sand and silicon carbide. Filaments’ stiffness and strength were
measured, and their microstructure along their lateral and longitudinal directions were investigated.
Improvements in tensile strength (up to 8%) and stiffness (up to 4.5%) were observed, but at low
reinforcement levels (less than 2 wt%). Results showed that the proposed process could be used to
fabricate filaments with multiple types of particles. The produced filaments were successfully used
to fabricate 3D parts using a commercial desktop FDM printer.

Keywords: 3D printing; reinforced filaments; FDM; filament extrusion; composite filaments

1. Introduction

Additive manufacturing techniques have become ubiquitous in the engineering and
industrial scenes. The growing dependence on them stems from their proven utility
in fabricating components with very complex 3D geometries and from a wide range of
materials [1–6]. Moreover, they eliminate the need for subtractive processes or molds,
which allows them, particularly in nonmass production cases involving complex shapes, to
deliver a simpler, faster, less expensive, and more sustainable manufacturing solution [7].

Each of the additive manufacturing techniques available today has its own unique
advantages that make it favored in certain applications [3]. However, in terms of the
number of users and community size, the most used additive manufacturing technique is
fused deposition modeling (FDM), also known as fused filament fabrication (FFF) [7]. In
FDM printers, a filament is heated in the printer head and layers of it are deposited on a
printing platform. This process is repeated to build the designed 3D part layer by layer [7].
The described FDM printing process is inherently simple and can be realized at a low cost.
Thus, it has been used in developing small-scale, low-cost 3D printers (i.e., desktop 3D
printers). These 3D printers have brought about a paradigm shift in the role and impact
of FDM 3D printing technology. Desktop FDM 3D printers provide an accessible, low-
cost enabling platform to visualize and improve designs, fabricate custom parts, enhance
creativity, and accelerate innovation. Accordingly, they have been widely embraced by
scientists, engineers, academics, students, designers, and enthusiasts. Currently, desktop
FDM 3D printers often serve as the gateway through which users enter the world of 3D
printing and additive manufacturing.
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Desktop FDM 3D printers are compatible with multiple commercially available poly-
meric filaments. The most common are polylactic acid (PLA) and acrylonitrile butadiene
styrene (ABS). The list of commercially available filaments is continuously expanding to
satisfy the needs of the desktop FDM 3D printing community. However, newer types of
filaments are moving toward including different phases and reinforcements rather than
using a monolithic polymeric constituent. Multiphase filaments can be designed to provide
application-tailored properties such as enhanced stiffness, strength, ductility, thermal and
electrical conductivities, dielectric behavior, and piezoelectric properties. These enhanced
properties can accelerate the development of 3D-printed lightweight structures, sensors
and actuators [8–13].

Examples demonstrating the progress in multiphase filaments are abundant in the
literature. PLA filaments reinforced with talc particles were developed to realize 3D-
printed parts with higher stiffness [14]. Including 3% talc in PLA filaments increased PLA’s
flexural modulus by 14.7%. PLA filaments comprising MgAl2O4:Sm3+ were developed
to form phosphor bioplastics that can produce parts with luminescent properties [15].
Cork-PLA composite filaments were developed to provide enhanced impact resistance
properties [16]. Carbon nanotubes (CNT) were incorporated into PLA filaments to enhance
their tensile strength, elongation at break, impact strength, and thermal stability [17]. PLA
filaments comprising different weight fractions of short carbon fibers were developed
to provide enhanced fracture toughness behavior [18]. Micro- and nanocellulose fibers
were incorporated into PLA composite filaments to produce filaments with improved
mechanical, biodegradability, and sustainability characteristics [19].

ABS filaments reinforced with different phases were also developed. Polycarbonate
(PC) and graphene pellets [20] as well as multiwall carbon nanotubes (MWCNT) [21] were
incorporated into ABS filaments to increase their stiffness, strength, transition temperature,
and electrical conductivity. ABS filaments reinforced with long carbon fibers were manu-
factured to provide substantially improved mechanical and thermal properties [22]. ABS
filaments comprising iron and copper were developed to deliver enhanced thermomechan-
ical properties such as increased thermal conductivity and reduced thermal capacity [23].
ABS filaments with thermoelectric properties and improved dielectric properties were
fabricated by incorporating Bi2Te3 [24] and BaTiO3 [25,26], respectively.

The properties of nylon and polyethylene (PE) filaments were also modified by adding
reinforcement. Nylon filaments were reinforced with Al2O3 [27] and short fibers (i.e., Kevlar,
carbon, and glass) [28] to improve their stiffness, strength, and fatigue life. PE filaments
were reinforced with nickel and tin particles [29], alumina whiskers [30], and fly ash [31] to
increase their electrical conductivity, thermal conductivity, and stiffness-to-weight ratio,
respectively.

The aforementioned examples, which are not exhaustive of all types of reinforced
FDM-compatible filaments, demonstrate the growing demand for reinforced thermoplastic
filaments. However, fabricating reinforced thermoplastic filaments is complex, as it typi-
cally requires multistage extruders comprising twin extruding screws [14–16,21,32,33]. The
twin-screw configuration is required to thoroughly mix the reinforcing elements with the
plastic pellets (e.g., PLA or ABS) prior to extruding them into filaments. Such extruders
are industry and large institution-oriented, expensive, and of large size; therefore, they
are inaccessible to a large segment of the desktop FDM 3D printers’ community. This
motivated this work to propose an alternative, low-cost process for fabricating reinforced
filaments. The proposed process aims to provide users of desktop FDM 3D printers with an
accessible, low-cost solution that allows them to develop in-house customized reinforced
filaments.

The proposed process, schematically described in Figure 1, utilizes low-cost desktop
single-screw extruders, which have been used by users of desktop FDM 3D printers
to fabricate single-phase plastic filaments from pellets (e.g., the extruders from www.
filastruder.com (accessed on 15 October 2022) and www.wellzoomextruder.com (accessed
on 15 October 2022). However, existing desktop extruders comprise short nozzles and single

www.filastruder.com
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www.wellzoomextruder.com
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extruding screws; accordingly, they are incapable of fabricating a well-mixed multiphase
filament. To overcome the mixing problem, this work proposes using pellets premixed
with reinforcing particles. The premixed composite pellets consist of pellets coated with
the reinforcing particles. To minimize the cost of the process and avoid adding adhesives,
which can affect the filament’s properties, pellets are coated by manually mixing them
with preheated reinforcing particles. The heated particles adhere to the pellets by locally
melting them. The heating step limits the proposed process to inorganic reinforcement that
has higher melting temperatures than that of the plastic pellets. The following sections
demonstrate its viability through two case studies. In addition, the two case studies
were used to investigate the effect of reinforcing particles on the stiffness and strength of
polylactic acid (PLA) filaments.
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Figure 1. Schematic diagram describing the proposed premixing and extrusion processes.

2. Materials and Methods

In this work, a low-cost process for fabricating reinforced filaments compatible with
generic desktop FDM 3D printers is proposed. To demonstrate the viability and potential
of the proposed process, a proof-of-concept exercise was conducted using two case stud-
ies. The methodology used in the proof-of-concept exercise comprises two stages. The
first stage demonstrates in detail the proposed fabrication process. This stage shows the
practicality and simplicity of the process. The second stage evaluates the quality of the fila-
ments fabricated in the first stage. Filaments’ quality is assessed through their mechanical
properties and the reinforcing particle distribution in them. The two case studies used are
performed in tandem to minimize redundant efforts. Consequently, the results of the first
case study helped in refining the parameters used in the second case study. The following
sections describe the employed filament fabrication process as well as the mechanical and
optical testing protocols.

2.1. Fabrication of Particle Reinforced Filaments Using Single-Screw Extruders

Two case studies (i.e., two types of reinforced filaments) are used to demonstrate the
proposed reinforced filament fabrication process. PLA 4032D, which is a type of polylactic
acid, is used to fabricate the thermoplastic filaments for both case studies. PLA is widely
used within the 3D printing community due to its low cost, low melting temperatures,
compatibility with most commercial FDM printers, and desirable environmentally friendly
characteristics (e.g., biodegradability). PLA 4032D is acquired in the form of pellets with a
nominal size of 3 mm. The reinforcing particles used in the first and second case studies
were dune sand and silicon carbide (SiC), respectively. Dune sand is selected for its
abundance and low cost compared to other types of fillers, not for any unique mechanical
properties. Therefore, dune sand is used as merely an example material in the proof-
of-concept exercise to show that the proposed process can work with a wide range of
inorganic reinforcing particles. Dune sand is sourced from the United Arab Emirates desert,
which mainly consists of silicates, such as silicon dioxide (SiO2), in addition to carbonates
and quartz [34]. However, silicon carbide (SiC), which is supplied by McMaster-CARR
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(Elmhurst, IL, USA), is selected as a reinforcement due to its superior mechanical properties
(i.e., high stiffness and strength) [35,36]. The sand and SiC particles used have an average
particle size of 150 µm and 53 µm, respectively.

To fabricate a reinforced filament with a desired reinforcement weight fraction (wt%),
reinforcing particles and PLA pellets with the weights of MR and MP, respectively, are used.
The filament reinforcement weight fraction (wt%) is calculated as:

wt% =
MR

Mp + MR
× 100%, (1)

To satisfy the low-cost objective of this work, a small desktop single-screw filament
extruder (Wellzoom, China) is utilized. The extruder has a short nozzle (14 cm) and a
single extruding screw; hence, it cannot properly mix the reinforcing particles with the
plastic pellets during the extrusion process; the two phases would separate. The used
extruder exemplifies the typical desktop extruders used by the desktop FDM 3D printers’
community. As the single-screw extruder does not sufficiently mix the reinforcing particles
with the plastic pellets, the pellets and reinforcing particles should be fed to the extruder
in a premixed form, as illustrated in Figure 1. To this end, this work proposes to coat
the pellets with the reinforcing particles to create a premixed particle-pellets mixture.
Subsequently, the coated pellets can be fed to the extruder. Coating the pellets with the
reinforcing particles relatively substitutes the mixing process that would take place inside
an industrial twin-screw extruder. Coating the pellets requires binding the particles to the
pellets. To avoid introducing binding materials (e.g., adhesives), which could affect the
behavior of the reinforced filaments, binding the reinforcing particles to the plastic pellets is
achieved by locally melting the pellets’ surfaces; that is, following the principles of thermal
spray processes. To this end, the reinforcing particles are placed in an electrical oven, and
their temperature is raised to 300 ◦C. The particles are kept in the oven for an hour at the
set temperature to ensure they reach uniform and steady-state conditions. Afterwards,
the reinforcing particles are gradually poured and manually mixed with the polymeric
pellets. Mixing is performed using a crucible and a handheld ceramic stirrer. Before mixing,
the pellets are kept at room temperature. During the manual mixing process, the hot
reinforcing particles locally melt the pellets and adhere to their surfaces. Manual mixing
is continued until all added particles adhere to the pellets, forming composite pellets. To
ensure that the desired reinforcement weight percentage is reached, the composite pellets
are weighed, and their weight is compared to the weight of the pellets and reinforcing
particles used. The aforementioned approach is used to prepare sand-coated PLA pellets
with the reinforcement weight fractions of 0.5, 2, 3, 4, 10, and 15 wt% as well as SiC-
coated PLA pellets with the reinforcement weight fractions of 0.5, 1, 1.5, and 2 wt%. A
maximum SiC reinforcement weight fraction of 2 wt% is used in the second case study as
the results of the PLA-sand-reinforced filaments, which are shown later, demonstrating
that reinforcement weight fractions exceeding 2 wt% result in unfavorable mechanical
properties. Figures 2 and 3 show the sand-coated PLA pellets and SiC-coated PLA pellets,
respectively. Darker coated pellets in the figures include higher sand content. The uniform
color across each subfigure in Figures 2 and 3 visually demonstrates that the pellets are
uniformly coated. Figure 2 includes an image of uncoated PLA pellets, referred to as 0 wt%,
to serve as a benchmark.
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Coating PLA pellets with SiC particles involves additional challenges as compared
to the cases involving sand. SiC particles are smaller in size and have higher thermal
conductivity than sand. Accordingly, heated SiC particles are prone to losing their stored
thermal energy rather quickly through convection. Rapid energy loss, which can lead to a
significant drop in particles’ temperature during the particle-PLA mixing process, limits
the localized melting at the pellets surfaces and leads to poor adhesion between the SiC
particles and the pellets. This problem presents itself in the form of leftover SiC particles
at the bottom of the crucible after manual mixing concludes. In such a case, the leftover
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particles are heated again to 300 ◦C and the mixing process is repeated. Usually, two rounds
of mixing were effective in overcoming the quick thermal loss problem faced with SiC
particles.

Once the coated pellets are prepared, they are placed in the hopper of a Well Zoom
Type B single-screw extrusion machine to form 1.75 mm filaments compatible with generic
desktop FDM 3D printers. The extrusion temperature and speed are set to 190 ◦C and
650 mm/min, respectively. The prepared filaments are directly taken for printing and/or
testing to avoid prolonged exposure to humidity, which accelerates the biodegradation
process of PLA and alters the filaments mechanical properties. The extrusion machine is
flushed and purged after each run to prevent contamination. PLA-sand filaments with
sand weight fraction of 0, 0.5, 2, 3, 4, 10 and 15 wt% were fabricated first. Subsequently,
PLA-SiC filaments with SiC weight fractions of 0, 0.5, 1, 1.5 and 2 wt% were fabricated.
Samples of the fabricated reinforced filaments are shown in Figure 4.
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2.2. Inspection of Reinforcing Particles Distribution

Optical microscopy is used to inspect particle distribution in reinforced filaments
fabricated using the proposed process. This step is required to ensure that particles are
randomly dispersed in fabricated filaments. Random particle distribution and lack of
particle clustering are indications that the reinforcing particles were well-mixed with the
PLA pellets during fabrication. The latter, once confirmed, demonstrates that coated-pellets
can be used to replace the expensive mixing stage requiring two-stage long-nozzle industrial
extruders. Accordingly, optical microscopy images will serve as a tool that provides a
visual quality check on the viability of the fabrication process. Particles distribution along
the length and width of reinforced filaments is investigated. To this end, vertically and
horizontally aligned samples corresponding to filaments with different reinforcement
weight fractions are embedded in metallurgical resin molds (i.e., holders), see Figure 5.
Subsequently, the molds are polished using an automatic grinding and polishing machine
(Metkon Digiprep 251, Bursa, Turkey) using SiC paper with different grit size (P80, 240,
800, 1200, 2400). Polishing is conducted in a wet environment using polishing cloth
(i.e., tap water during early polishing stages and colloidal silica suspension during final
polishing stages). Polished specimens are inspected using a digital optical microscope
(Zeiss Smartproof 5).

2.3. Mechanical Characterization of Reinforced Filaments Properties

To assess the mechanical performance of the developed reinforced filaments, their
stress-strain behavior is measured using an Instron Universal Testing Machine (UTM).
Since the standard grips of UTM machines can introduce stress localization in the 1.7 mm-
wide polymeric filaments, custom grips are designed and fabricated. The custom grips
are developed from aluminum and designed to have, when closed, the dimensions of
20 × 20 × 4 mm3. They include a 2 mm-diameter groove in the middle. The grips comprise
two symmetric sides, as shown in Figure 6. Each sample requires two grips, one at each end.
Before placing the filament sample in the grips, superglue is applied to the grips. Superglue
assists in preventing slippage during testing. It is used to avoid roughening the surfaces at
the filaments’ ends, which is needed to enhance grip. Roughening the surfaces was tried
and was associated with localized failure near the grips; thus, it was avoided. The overall
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and gauge lengths of each sample are 100 and 60 mm, respectively. Filament samples
are loaded using a displacement-controlled protocol at a displacement rate of 2 mm/min,
which corresponds to a strain rate of approximately 5.6 × 10−4 s−1. For each reinforced
filament, at least four samples are tested. Stress (σ) in tested filaments is computed by
dividing the force (F) reported by the Instron’s load cell by the cross-sectional area of the
tested filament. On the other hand, strain (ε) in tested filaments is computed by dividing
the crosshead displacement (u) reported by the Instron’s actuator by the gauge length of
the tested specimen. The crosshead displacement accurately represents the deformation
in the samples, as the machine stiffness is orders of magnitude higher than that of the
tested samples. The maximum load used in testing the samples is less than 2% of the
machine’s capacity. At such loads, the testing machine’s compliance can be ignored. The
filaments’ diameter slightly varied along their length (±0.02 mm from the nominal); hence,
the diameter value used in calculating stress is measured as the average of the diameters
measured at five equally spaced locations within each tested sample.
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Figure 6. Filament testing using an Instron UTM with custom grips.

2.4. Mechanical Characterization of Specimens 3D Printed from the Reinforced Filaments

The properties of 3D-printed components can differ from those of their constituting
filaments, as 3D printing processes can introduce defects, voids, and different types of
heterogeneities [1,37]. This motivated investigating the mechanical properties of parts 3D
printed using the reinforced filaments fabricated in this work. To this end, the stress-strain
curves of cylindrical samples 3D printed using the fabricated sand and SiC-reinforced
PLA filaments are obtained. Cylindrical samples have a diameter of 10 mm and length of
10 mm and are printed from sand- and SiC-reinforced PLA filaments using a LulzBot Taz
6 3D printer. Samples are loaded in compression under displacement loading conditions.
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The same strain rate (i.e., 5.6 × 10−4 s−1) applied to the tensile-tested filament samples
is applied to the 3D-printed cylinders. For each fabricated reinforced filament, at least
three samples were printed and tested. Each 3D-printed cylinder requires approximately
60 cm of filament and a printing time of 45 min. This material and time cost motivated
using a minimum of 3 samples per weight fraction. To compute the engineering stress
and strain, the force and displacement reported by the machine’s load cell and internal
actuator are normalized by the sample’s length and cross-sectional area, respectively. The
cross-sectional area of a sample is calculated using the average diameter computed by
averaging the diameters measured at four equally spaced locations along the sample.

3. Results and Discussion
3.1. Spatial Dispersion of the Reinforcing Particles from a Microscopy Perspective

The samples of the fabricated filaments were polished using the methodology dis-
cussed in Section 2.2. Subsequently, microscopy was used to investigate the spatial dis-
tribution of the particles in the polished specimens. Figure 7 provides insights into the
distribution of the reinforcing particles within the PLA-sand-fabricated filaments at low
and high reinforcement weight fractions. The figure comprises microscopy images that
show the particles’ distribution along the transverse (i.e., across filament diameter) and
longitudinal (i.e., along filament axis) filament directions. Images show both particles and
voids made by dislodged particles during polishing. Figure 7 demonstrates that parti-
cles are randomly dispersed across the transverse and longitudinal filament directions.
Moreover, minimal clustering is observed.
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Figure 7. Microscopy images showing the dispersion of sand particles along the transverse and
longitudinal filament directions. Images (a,b) represent the transverse and longitudinal directions
of the 0.5 wt% sand reinforced filaments. Similarly, (c,d), (e,f), (g,h) correspond to the 1.0, 10, and
15 wt% sand, respectively. Horizontal lines are added to highlight the filament boundaries.

The observed random distribution of particles and minimal clustering indicates that
the particles are relatively well-dispersed across the filaments. The latter qualitatively
indicates that using particle-coated pellets with single-screw, short-nozzle low-cost extrud-
ers can substitute for the in-extruder mixing stage, which requires two-screw long-nozzle
industrial extruders. Microscopic results qualitatively indicate that the low-cost fabrica-
tion process successfully produced filaments with well-dispersed particles, particularly
along the filament’s longitudinal direction. The emphasis on the longitudinal direction is
highlighted, as the longitudinal homogeneity of filaments is critical to FDM 3D printing
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processes. During 3D printing, layers of a filament are deposited in a sequential manner to
build the part. This inherently makes the layering direction the weakest direction in 3D-
printed components [38]. Any longitudinal heterogeneity (e.g., due to clustered particles)
in used filaments can further undermine the properties along the layering direction.

The deductions made using the microscopic results of the sand-reinforced PLA fila-
ments apply also to the SiC-reinforced PLA filaments. Figure 8 shows the SiC-particles
distribution along the transverse and longitudinal direction of a 2 wt% SiC-reinforced
filament. Filaments with a SiC weight fraction of 2 wt%, which is the highest reinforcement
level used, are most suited to describe particle dispersion in the fabricated filaments. At
lower weight fractions and since SiC particles are small, microscopy images might show a
very small number of particles, which does not help in shedding light on particle distribu-
tion. Figure 8 shows randomly dispersed particles and minimal clustering, corroborating
the microscopy results of the PLA-sand filaments.
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Microscopy images are useful in qualitatively evaluating the reinforcing particles’
distribution. However, microscopy images capture a few sections of the infinite sections
comprising a filament. Thus, they provide local information. The microscopy results are
complemented in the next section by stress-strain data describing the macroscopic behavior
of the reinforced filaments. Combined, macroscopic behavior and microscopy results can
better shed light on the effect of reinforced particles as well as their dispersion.

3.2. Mechanical Behavior of Dune Sand and SiC Reinforced PLA Filaments

The behavior of pure PLA filaments was investigated first to ensure that the produced
PLA filaments were consistent with commercially available PLA filaments and to establish
a reference that facilitates observing the effects of reinforcing particles. To this end, 10
pure (without adding particles) PLA filament specimens were fabricated and tested under
uniaxial loading following the testing protocol described in the methodology section. The
tensile stress-strain curves obtained from the 10 pure filament specimens are shown in
Figure 9. The behavior observed is very repetitive and representative of PLA filament
behavior, which comprises three phases: elastic, yield followed by softening, and plateau
stress that ends abruptly [38]. The stiffness, ultimate strength, and plateau stress of the
10 specimens exhibited marginal variations. On the other hand, the failure strain, which
describes the macroscopic strain in the specimen’s gauge area at the onset of failure, showed
significant variation, with failure strain values ranging between 0.08~0.3. This indicates
that failure in the specimens occurred due to defect-triggered brittle failure. Images of the
tested specimens, which are shown in Figure 10, confirm the absence of necking.
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Figure 10. Images of uniaxially loaded PLA filaments. Representative samples (a–c) show that failure
occurred at different locations but at a substantial distance from the loaded ends and confirm the
absence of necking.

From the stress-strain curves shown in Figure 9, the average stiffness and tensile
strength of the tested PLA filaments were calculated as 2.13 MPa and 40.02 GPa, respectively.
Stiffness was calculated using the slope of the stress-strain curves in the elastic region,
while strength was defined as the highest stress values realized by the stress-strain curves.
The determined stiffness and strength values of fabricated PLA filaments agree with PLA
properties reported in the literature [39,40].

The effect of including sand-reinforcing particles on the mechanical properties (stiff-
ness and strength) of PLA filaments was measured by performing uniaxial tensile tests
on sand-reinforced filaments. Five sand-reinforced filament specimens, in general, were
tested at each of the sand fraction ratios 0.5, 2, 3, 4, 10, and 15 wt%. The stress-strain curves
of the sand-reinforced filaments are shown in Figure 11. The stiffness and strength of the
sand-reinforced filaments were calculated from Figure 11 and are reported in Figure 12. For
comparison, the stiffness and strength of the pure PLA filaments are included in the figure.
The spread and scatter in the determined stiffness and strength data for both stiffness
and strength are presented using error bars in Figure 12. The error bars were defined as
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the difference between the maximum and mean of the measured stiffness and strength
values. According to Figure 12, sand particles have a nonmonotonic effect on stiffness.
Adding sand particles, up to 10 wt%, can increase the stiffness of sand reinforced PLA
filaments. However, introducing more reinforcing sand particles, beyond 10 wt%, decreases
PLA filaments stiffness significantly. For instance, adding 15 wt% sand particles reduced
the PLA filaments’ stiffness by 6.8%. In the reinforcement range with a positive effect
on stiffness (i.e., less than 10 wt%), the highest increase in stiffness was observed at the
reinforcement levels of 2~3 wt%. At the latter reinforcement levels, the stiffness of the rein-
forced filaments was higher than that of the pure PLA filaments by 4.5%. Reinforcing PLA
filaments with sand particles reduced its ductility. The reduction increased with increasing
the reinforcement level. At the highest level of reinforcement, 15 wt%, an almost glassy
behavior was observed, with failure occurring at the onset of maximum stress. Images of
the tested specimens followed the behavior observed in Figure 10. The failure occurred
at random locations away from the loading boundaries and the necking behavior was
not present.
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The effect of introducing sand particles on the strength of PLA filaments followed a
nonmonotonic trend similar to that of stiffness. However, the highest strengthening effect
was observed at a much lower sand particles content (0.5 wt%). The strength of the filaments
with 0.5 wt% sand particles was higher than that of the pure PLA filaments by 8.3%.
Including sand particles at ratios above 2~3 wt% decreased the strength of PLA filaments.
For instance, the strength of the filaments with the largest sand content (i.e., 15 wt%) was
lower than that of pure PLA by 21.7%. Results, particularly Figure 11, show that the tested
filaments provided a consistent response. This indicates that reinforcing particles were
well-dispersed in the filaments. Moreover, results of Figure 10 demonstrate that one can
tune the stiffness and strength of PLA using dune sand particles. However, sand content
should be less than 2 wt% in general to realize improved stiffness or strength values. In
addition, optimizing PLA-sand filaments’ stiffness requires a different sand content than
that needed to optimize their strength.

The effect of including SiC particles on the tensile properties of PLA filaments was mea-
sured through uniaxially testing PLA filaments reinforced with 0.5, 1, 1.5, and
2 wt% SiC. The PLA pellets used to produce the PLA-SiC filaments were from a dif-
ferent batch than the one used to fabricate the PLA-sand pellets. Accordingly, un-reinforced
PLA filaments were fabricated and tested. These were used to calculate the stiffness and
strength of the PLA filaments fabricated from the second batch. The stress-strain curves
obtained from testing the un-reinforced filaments as well as the SiC-reinforced filaments are
presented in Figure 13. Five specimens were tested at each reinforcement level. However, to
characterize the un-reinforced PLA, four specimens were tested as the stress-strain behavior
of the un-reinforced PLA filaments is not expected to exhibit significant scatter. Figure 13
shows repeatable stress-strain curves in terms of stiffness, strength, and softening at every
reinforcement level. Failure strain varied significantly among samples with the same SiC
content, indicating brittle failure. As for the case of un-reinforced PLA, images of tested
specimens indicated that the failure occurred in a brittle manner, necking was not present,
and the failure occurred at arbitrary locations away from the boundaries. The stiffness and
strength of the SiC-reinforced filaments were calculated from the stress-strain curves of
Figure 13 and are presented in Figure 14. The stiffness and strength of the unreinforced PLA
filaments are included in the latter figures for comparison. Both the stiffness and strength
followed trends that resembled those observed in sand-reinforced filaments. Stiffness
variations with SiC particles content followed a nonmonotonic behavior. The stiffness
increased with the introduction of 0.5 and 1 wt% SiC. At 1 wt%, the highest stiffness was
observed, which represented a 10.1% increase, as compared to un-reinforced PLA. The
stiffness plateaued between the SiC weight fractions of 1~1.5 wt%. However, the stiffness
seemed to reach an infliction point at 1.5 wt% SiC, and commenced to exhibit a decreasing
trend at SiC concentrations higher than 1.5 wt%. Yet, at 2 wt% SiC, the stiffness was 8.2%
higher than that of un-reinforced PLA.
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3.3. Effect of Reinforcements on the Mechanical Properties of 3D Printed Samples

Filament deposition of 3D printing is known for introducing manufacturing-induced
imperfections in fabricated parts [37]. Common imperfections include voids and residual
stresses. In addition, the layer-by-layer deposition, depending on the deposition orientation,
can result in heterogeneous properties, even when the parent filament used to build the
3D-printed part is homogenous and isotropic. As printing-induced defects can interact with
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the reinforcing particles, the effect of reinforcements on the properties of 3D-printed parts
can be different than their effect on the properties of filaments. In addition, from a statistical
perspective, the distribution of reinforcements in filaments and 3D-printed specimens can
be dissimilar. The distribution of reinforcements in printed parts can be more uniform due
to their larger size and print overlay. Accordingly, it is instrumental to assess the effect of
reinforcing particles on the mechanical properties of 3D-printed parts. The effect of sand
reinforcing particles on the mechanical behavior of 3D-printed parts is investigated by
testing cylindrical specimens printed using PLA-sand filaments with 0.5 and 15 wt% sand.
These weight fractions were selected as they produced the best and worst behaviors at the
filament level. The stress-strain responses representing the compressive behavior of the
tested cylindrical specimens are reported in Figure 15. Cylindrical specimens printed using
un-reinforced PLA filaments were also tested for comparison. The stress-strain curves of
the latter specimens are included in Figure 15.
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The stress-strain curves of the un-reinforced PLA cylinders, Figure 15a, showed differ-
ent behavior than that exhibited by the un-reinforced PLA filaments. Under compressive
loading, significant hardening behavior was observed, whereas PLA filaments exhibited a
softening phase that was followed by a plateau phase. The lack of a hardening phase in
the case of PLA filaments is a typical behavior of thermoplastics under tensile loading. In
addition, it can be, in part, related to their slender fiber-like geometry. The stiffness and
yield strength of the PLA cylindrical filaments were computed as 1.17 GPa and 49.4 MPa.
The yield was determined using the 0.2% offset approach.

The stiffness of 3D-printed PLA cylinders is notably lower (less by more than 50%) than
that of PLA filaments. On the other hand, the yield of the 3D printed cylinders is 23% higher
than the strength exhibited by the PLA filaments. These results agree with the literature
that show that the tensile stiffness of PLA can be higher than its compressive stiffness, and
the tensile yield strength of PLA is lower than its compressive yield strength [41].

In terms of trends, introducing sand reinforcing particles to the 3D printed cylinders
resulted in a similar effect to that observed in the case of reinforced filaments. Adding
a small sand weight fraction resulted in a stiffening and strengthening effect, as seen in
Figure 16, which was obtained from Figure 15. The stiffness of 1 wt% sand-reinforced
cylinders increased by 6% as compared to un-reinforced PLA cylinders. On the other hand,
introducing large sand weight ratios lessened the cylinders’ stiffness. The stiffness of 15 wt%
sand-reinforced cylinders decreased by 38% as compared to un-reinforced PLA cylinders.
Similarly, the strength of the reinforced 3D-printed filaments increased by introducing 1
wt% sand, namely increased by 11% as compared to the strength of the nonreinforced PLA
cylinder. On the other hand, the strength of the reinforced 3D-printed cylinders decreased
significantly at high sand content. At 15 wt% sand content, the strength decreased by 32.5%.
While reinforcing particles, such as sand, can contribute positively to the matrix’s stiffness
and strength by assisting in sharing the internal loads, increasing their content can result in
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a reversed effect [42]. Increasing the reinforcing particle content increases the probability of
microstructural defects (e.g., lack of bonding at the particle-matrix interface) and decreases
the uniformity of stress distribution in the matrix. The latter can cause, in multiple locations,
localized stresses that exceed the yield of the polymer. These areas would exhibit softer
stiffness; thus reducing the stiffness of the reinforced matrix. In addition, increasing
stress heterogeneity in the presence of higher defects probability increases the potential
for localized failure. The latter explains the reduced yield strength of the highly reinforced
3D-printed cylinders.

Polymers 2023, 15, x FOR PEER REVIEW 15 of 19 
 

 

the matrix’s stiffness and strength by assisting in sharing the internal loads, increasing 
their content can result in a reversed effect [42]. Increasing the reinforcing particle content 
increases the probability of microstructural defects (e.g., lack of bonding at the particle-
matrix interface) and decreases the uniformity of stress distribution in the matrix. The 
latter can cause, in multiple locations, localized stresses that exceed the yield of the poly-
mer. These areas would exhibit softer stiffness; thus reducing the stiffness of the rein-
forced matrix. In addition, increasing stress heterogeneity in the presence of higher defects 
probability increases the potential for localized failure. The latter explains the reduced 
yield strength of the highly reinforced 3D-printed cylinders. 

 
Figure 16. Properties of 3D printed PLA-sand compression cylindrical samples, showing (a) stiffness 
and (b) yield strength. 

The effect of SiC particles was assessed by testing cylinders 3D printed using PLA-
SiC filaments. The stress-strain curves of the cylinders, which had SiC weight fractions of 
0, 0.5, 1, 1.5, and 2 wt%, are shown in Figure 17. The stress-strain curves show significant 
hardening, as in the case of sand-reinforced PLA cylinders. Thus, in terms of hardening, 
both PLA-sand- and PLA-SiC-based 3D-printed cylinders showed different behavior than 
that of their filaments. To better quantify the effect of SiC particles, the stiffness and yield 
strength of the SiC-reinforced cylinders were calculated using Figure 17 and are shown in 
Figure 18. It is worth reminding that the batch of PLA used to print the SiC-reinforced 
cylinders is different from that used to print the sand-reinforced cylinders. According to 
Figure 18, small reinforcement content has stiffening and strengthening effects. At 1.5 wt% 
SiC, the stiffness of the reinforced cylinder was higher than that of its nonreinforced coun-
terpart by 33%. On the other hand, at 1.5 wt% SiC, the yield strength of the reinforced 
cylinder was higher than that of the nonreinforced PLA cylinder by 13%. Increasing the 
SiC content beyond 1.5 wt% resulted in a decrease in the stiffness and strength of the re-
inforced 3D-printed cylinders. 

Figure 16. Properties of 3D printed PLA-sand compression cylindrical samples, showing (a) stiffness
and (b) yield strength.

The effect of SiC particles was assessed by testing cylinders 3D printed using PLA-SiC
filaments. The stress-strain curves of the cylinders, which had SiC weight fractions of 0,
0.5, 1, 1.5, and 2 wt%, are shown in Figure 17. The stress-strain curves show significant
hardening, as in the case of sand-reinforced PLA cylinders. Thus, in terms of harden-
ing, both PLA-sand- and PLA-SiC-based 3D-printed cylinders showed different behavior
than that of their filaments. To better quantify the effect of SiC particles, the stiffness
and yield strength of the SiC-reinforced cylinders were calculated using Figure 17 and
are shown in Figure 18. It is worth reminding that the batch of PLA used to print the
SiC-reinforced cylinders is different from that used to print the sand-reinforced cylinders.
According to Figure 18, small reinforcement content has stiffening and strengthening effects.
At 1.5 wt% SiC, the stiffness of the reinforced cylinder was higher than that of its nonre-
inforced counterpart by 33%. On the other hand, at 1.5 wt% SiC, the yield strength of the
reinforced cylinder was higher than that of the nonreinforced PLA cylinder by 13%. In-
creasing the SiC content beyond 1.5 wt% resulted in a decrease in the stiffness and strength
of the reinforced 3D-printed cylinders.

At small reinforcement contents, both sand and SiC particles qualitatively affected
the behavior of the 3D-reinforced cylinder in a similar manner. They both introduce a
stiffening and strengthening effect. However, the particles differed in their stiffening and
strengthening magnitudes. Nevertheless, the stiffening and strengthening effects observed
were in the single digit range (less than 10%). Though such magnitudes are small, they can
have a significant impact. An increase in the filament’s stiffness and strength can allow for
using reduced in-fill during printing. Given that PLA is widely used, reduced in-fill can
lead to significant material savings. This argument can apply to a wide range of filaments.
The results showed that the proposed low-cost fabrication process can be used to tailor the
stiffness and strength of thermoplastic filaments, which is one of the objectives of this work.
Moreover, the results showed that both reinforced filaments and cylinders printed from
them produced consistent behavior in terms of stress-strain behavior, stiffness, and strength.
Consistency in behavior indicated that the reinforcing particles were well-dispersed in
the filaments and printed cylinders. This suggests that the process used to produce the
filaments was effective in dispersing the reinforcing particles.
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4. Conclusions

This study proposed a low-cost process for fabricating reinforced-thermoplastic fila-
ments. The process is geared toward the desktop FDM 3D printing community and utilizes
tools readily available to the community, namely, low-cost desktop single-screw extruders.
To overcome the inability of these extruders to readily mix different constituents and fabri-
cate multiphase filaments, the proposed approach utilized multiphase pellets in the form
of plastic pellets coated with the reinforcing material. The pellets were coated by manually
mixing them with preheated reinforcing particles. The viability of the process was proved
through two case studies, namely, by fabricating sand-reinforced and SiC-reinforced PLA
filaments. Optical microscopy images showed that the particles were randomly dispersed,
and minimal clustering was observed. Moreover, mechanical tests showed that the stress-
strain, stiffness, and strength of the fabricated pellets were consistent and repeatable; thus
indicating that the reinforcing particles were well-dispersed in the filaments.

Mechanical tests showed that improving the stiffness or strength of PLA filaments
requires utilizing relatively small weight fractions of the reinforcing phase. In the case of
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sand-reinforced PLA filaments, best enhancements in stiffness (4.5%) and tensile strength
(8%) were observed at the sand weight fractions of 2 wt% and 0.5 wt%, respectively. In the
case of SiC-reinforced PLA filaments, the best enhancements in stiffness (9%) and yield
strength (5%) were observed at the SiC weight fraction of 1 wt%.

The compatibility of the produced reinforced filaments with commercial desktop print-
ers was assessed by printing cylindrical samples using PLA-sand and PLA-SiC filaments.
The printed cylinders were tested under compressive loading. In the case of PLA-sand
cylinders, the best enhancements in stiffness (5%) and strength (1.2%) were observed at the
sand weight fraction of 0.5 wt%. On the other hand, for the PLA-SiC cylinders, the best
enhancement in stiffness (33%) and yield strength (13%) were observed at the SiC weight
fraction of 1.5 wt%.
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