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Abstract: 3D printability of green composites is currently experiencing a boost in importance and
interest, envisaging a way to valorise agricultural waste, in order to obtain affordable fillers for
the preparation of biodegradable polymer-based composites with reduced cost and environmental
impact, without undermining processability and mechanical performance. In this work, an innovative
green composite was prepared by combining a starch-based biodegradable polymer (Mater-Bi®, MB)
and a filler obtained from the lignocellulosic waste coming from Solanum lycopersicum (i.e., tomato
plant) harvesting. Different processing parameters and different filler amounts were investigated, and
the obtained samples were subjected to rheological, morphological, and mechanical characterizations.
Regarding the adopted filler amounts, processability was found to be good, with adequate dispersion
of the filler in the matrix. Mechanical performance was satisfactory, and it was found that this
is significantly affected by specific process parameters such as the raster angle. The mechanical
properties were compared to those predictable from the Halpin–Tsai model, finding that the prepared
systems exceed the expected values.

Keywords: green composites; 3D printing; FDM; biopolymers; solanum lycopersicum

1. Introduction

Over the last few decades, increasing attention has been focused on the ways to
improve the cost-effectiveness of the production of polymer-related items, by possibly re-
placing part of the polymer needed to manufacture a certain product with waste materials
and/or by-products coming from other industrial, or agricultural, operations; at the same
time, the need and interest in reducing the environmental impact related to the entire life
cycle of polymer-based goods have grown exponentially, suggesting to replace (at least)
part of the polymer itself with materials coming from renewable sources and/or biodegrad-
able [1]. Furthermore, it is obvious that a more significant reduction in the environmental
impacts requires replacing traditional polymers (coming from non-renewable sources) with
bio-based and, preferably, also biodegradable polymers. Among the waste materials which
can be conveniently used as fillers for polymers systems, agricultural, marine, or industrial
wastes from wood processing are particularly attractive; at the same time, it is important
to use biodegradable polymers in order to reduce the environmental pollution related to
plastics [1–8] and to focus on obtaining a satisfactory mechanical behaviour [1–5].

In this background, the biopolymers which are more typically used in the preparation
of green composites are poly (lactic acid) (PLA), polybutylene adipate terephthalate (PBAT),
polycaprolactone (PCL), cellulose and starch-based polymers [2,6]. For instance, Mater-
Bi® (MB) is a family of commercial starch-based biopolymers that have been finding
interesting applications in many fields, thanks to satisfactory mechanical properties, good
processability, adequate thermal stability, biodegradability/compostability and suitability
to be reinforced with natural-organic fillers, as already reported by many papers [4,5,7]. It
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is important to observe that the addition of a natural-organic filler to such polymer matrices
was found to improve the biodegradability [6,7] and, often, to improve the mechanical
behaviour [2,7,9–11]: therefore, plant-based biomasses should be investigated for their
actual potential in achieving both of such fundamental targets and they should preferably
hold the prerequisite of being easily available, cheap, and widely present on the territory.

The Mediterranean area offers a wide variety of plant species (or, in general, lignocel-
lulosic sources), coming from either the agricultural or the marine environment, that can ef-
fectively find applications in the preparation of polymer-based biocomposites. For instance,
these can include Opuntia Ficus Indica (OFI), Posidonia Oceanica (PO) and Hedysarum
coronarium (HC). OFI has already been studied in combination with PLA, to produce
green composites via the compression moulding technique [9]. PO and in particular PO
leaves (POL) have been investigated in several studies, focused on the structure–properties
relationships; finding that the mechanical behaviour can be enhanced and, quite inter-
estingly, that the degradability can be accelerated by the presence of POL [10,12,13]. HC
is very abundant in the Mediterranean area and is known for applications in the agri-
food sector [14,15] but has been recently investigated also regarding the formulation and
preparation of green composites [16,17].

However, the formulation and preparation of innovative and effective green compos-
ites cannot be based only on the choice of the polymer matrix and the filler, but it must
also consider the choice and setup of the optimal processing technique. To this point,
it should be observed that thermoplastic-based green composites are usually produced
by compression moulding, extrusion, or injection moulding [18]; on the other hand, the
continuous development of new and more versatile production solutions, has led to a
significant interest in fused deposition modelling (FDM), a technique (often referred to as
“3D printing”) which is now known for its great versatility: it allows obtaining elaborated
geometries while still granting significant reductions in time and costs, and thus it is already
one of the most promising also with concern to green composites [19–23].

More specifically, there are some recent works where lignocellulosic wastes have been
used as fillers for green composites and investigated for actual suitability to FDM manufac-
turing. HC was combined with Mater-Bi® (MB) [16] or PLA [17] and the green composites
were prepared via two different routes, i.e., compression moulding (CM) or FDM. It was
found [16] that FDM could be preferable up to 10% HC content, leading to better mechani-
cal properties (in particular, with regard to the elastic modulus) in comparison to CM, likely
due to rectilinear infill and fibres orientation; furthermore, it was possible to get more dense
structures than by CM [17], obtaining quite significant improvements of the mechanical
properties (especially flexural ones) in comparison to the neat polymer. OFI and/or POL
were investigated in combination with PLA and processed via FDM, finding that it was
possible to replace up to 20% of the polymer matrix [24], with final samples characterized
by good mechanical properties and satisfactory filler dispersion as well as filler–matrix
adhesion, with very interesting potential applications in the release of fertilizers [25].

As pointed out several times over this brief bibliographic overview, one of the main
goals related to the development and use of green composites depends on the utilization
of natural-organic wastes, coming from flora (both terrestrial and marine) or fauna [26].
From this point of view, one interesting source may come from Solanum lycopersicum, i.e.,
tomato plant. This plant, widely grown in temperate zones across the world, and also in
greenhouses, is one of the most important for its edible purpose. Tomato production in
2020 was led by China with almost 65 million tons, followed by India, Turkey, the United
States and Egypt [27]. During the production and transportation stages, several wastes
are typically produced, accounting for an estimated 10–15% of the total volume and are
commonly used for compost or animal feed [28]. These wastes basically consist of skin,
seeds, and tomato pomace (a by-product of tomato processing, based on peel, seeds and
small amounts of pulp) and many investigations are recently focused on how to exploit
them for higher-value purposes, such as extraction of lycopene, carotenoids, bases for
biofuels, etc. [28,29]. However, much less attention is focused on the lignocellulosic wastes
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coming from the plants after extirpation of the fruits. Such lignocellulosic wastes are usually
driven to incineration or, when discarded on the ground, they can represent a significant
hazard, since they may contribute to feed fires and related events. It would be therefore
preferable to find alternative solutions for such wastes, and their proper incorporation into
green composites may be an optimal way. To our best knowledge, there is no evidence in the
literature about systematic studies on green composites based on biodegradable polymers
(in particular, from the Mater-Bi® family) and fillers obtained from Solanum lycopersicum,
let alone via a more innovative technique such as FDM.

In this paper, therefore, we prepared composites based on a Mater-Bi® polymer and
wastes coming from Solanum lycopersicum, processing them via FDM, in order to explore
the actual suitability to 3D-printing applications. The obtained samples were characterized
from the rheological, mechanical, and morphological points of view.

2. Materials and Methods
2.1. Materials

The biopolymeric matrix used to prepare the green composites was a sample of Mater-
Bi® EF51L (MB) supplied by Novamont SpA (Novara, Italy), a polymer based on blends of
aromatic and aliphatic biodegradable co-polyesters with proprietary composition. In order
to avoid hydrolytic chain scissions during the melt processing, neat MB and MB-based
composites were vacuum-dried overnight at 60 ◦C before each process.

Solanum lycopersicum plant waste (SL) used in this study was kindly supplied by a
local farm (Sicily, Italy) The plants were mowed after tomato harvesting. In this study, the
whole plant was ground as received in order to optimize production time and costs. More
in detail, the obtained plant wastes were washed and dried in a vacuum oven (NSV9035,
ISCO, Milan, Italy) at T = 40 ◦C for 3 days, and finally ground using a laboratory grinder
(Retsch, Germany).

SL dried stem showed a Young’s modulus of 404 MPa. The flour, obtained by grinding
the whole plant as described above, displayed an average density of 1.87 g/cm3. It was
further vacuum-dried, overnight at 40 ◦C, prior to the melt mixing process in order to
reduce potential MB chain scission phenomena during processing.

2.2. Composites Preparations

Firstly, the dried SL plant was ground for 3 min in a grinder (Retsch, Germany). The
resulting powder was then sieved to obtain particles of a size suitable for the 3D printer
(Next Generation, Sharebot, Nibionno, Italy), which, therefore, do not lead to obstructions
in the nozzle. To this aim, and based on previous studies [11,20], the sieving fraction under
150 µm was selected. Prior to processing, the obtained SL flours and MB pellets were dried
overnight in a vacuum oven (NSV9035, ISCO, Milan, Italy) at 40 ◦C and 60 ◦C, respectively.

In order to obtain a homogeneous dispersion of the filler, according to previous studies,
the filler amounts chosen to prepare the MB-based biocomposites were 5, 10, 15 wt%. All of
the composites (namely MB/SL5, MB/SL10, MB/SL15) and neat MB, for comparison, were
prepared by melt compounding in an internal mixer (Plasticorder, Brabender, Duisburg,
Germany; T = 160 ◦C, rotor speed = 64 rpm, t = 5 min).

The obtained materials were then ground into pellets and processed in a Polylab
single-screw extruder (Haake Technik GmbH, Vreden, Germany; L/D = 25; D = 19.05 mm),
operating at 40 rpm screw speed and 130–140–150–160 ◦C temperature profile. The extru-
dates were drawn with the help of a conveyor belt system (take-up speed = 5.5 m/min), to
obtain filaments with a diameter suitable to the printer (1.75 mm).

The samples obtained for fused deposition modelling (FDM) were first designed with
the help of CAD Solid Edge 2019® software (Plano, TX, USA), and the STL files produced
were elaborated on Simplify3D® software (Cincinnati, OH, USA) to obtain the related gcode
files. For each formulation, 60 mm × 10 mm × 1 mm samples were printed using a Sharebot
Next Generation (Nibionno, Italy) 3D printer. FDM operating parameters are reported
in Table 1. Nozzle temperature was chosen after some trials, aiming to avoid nozzle



Polymers 2023, 15, 325 4 of 14

obstructions and to obtain good printability performance. The other parameters were
chosen based on the scientific literature [16,17,24–26]. In particular, a 100% infill rate and a
rectilinear infill pattern with a 0◦ or ±45◦ raster angle were chosen in order to evaluate its
influence on the tensile properties of the composites; 45 mm/s printing speed was chosen
to maximize the production rate without compromising the mechanical performance.

Table 1. FDM process parameters.

FDM Operating Parameter Value

Nozzle temperature 160 ◦C
Bed temperature 60 ◦C

Infill rate 100%
Infill pattern Rectilinear
Raster angle 0◦ or ±45◦

Layer thickness 0.1 mm
Extrusion width 0.4 mm
Printing speed 50 mm/s

Perimeter shells 1
Sample Orientation flat

Sample formulations and sample codes are reported in Table 2.

Table 2. Formulation of investigated samples.

Sample Code MB Content
(wt%)

SL Content
(wt%)

SL Mesh Size
(µm) Raster Angle

MB 0◦ 100 0 - 0◦

MB/SL5 0◦ 95 5 <150 0◦

MB/SL10 0◦ 90 10 <150 0◦

MB/SL15 0◦ 85 15 <150 0◦

MB 45◦ 100 0 - ±45◦

MB/SL5 45◦ 95 5 <150 ±45◦

MB/SL10 45◦ 90 10 <150 ±45◦

MB/SL15 45◦ 85 15 <150 ±45◦

2.3. Characterizations
Rheological Characterization

Rheological properties of the samples were analysed, using a rotational rheometer
(ARES-G2, TA Instruments, New Castle, DE, USA) equipped with a 25 mm parallel-plate
geometry. All the tests were performed at 160 ◦C, in frequency sweep mode in the range
1–100 rad/s, by imposing a constant stress of 1 Pa.

2.4. Morphological Analysis

The morphology of SL powder, composites filaments and FDM samples was observed
by using a scanning electron microscope (Phenom ProX, Phenom-World, Eindhoven, The
Netherlands) with an optical magnification range of 20–135×, electron magnification
range of 80–1.3 × 105, maximal digital zoom of 12×, and acceleration voltages of 15 kV.
The microscope is equipped with a temperature controlled (25 ◦C) sample holder. The
samples were fixed on an aluminium stub (pin stub 25 mm, Phenom-World, Eindhoven,
The Netherlands) using a glued carbon tape.

2.5. Mechanical Characterization

The mechanical behaviour of SL plant, composites filaments and FDM-printed samples
was investigated by tensile tests, carried out using a laboratory dynamometer (mod.3365,
Instron, Norwood, MA, USA) equipped with a 1 kN load cell. The tests were performed on
rectangular-shaped specimens (60 mm × 10 mm) according to ASTM D638. In particular,
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the measurements were performed by using a double crosshead speed: 1 mm min−1 for
2 min and 50 mm min−1 until fracture occurred. The grip distance was 30 mm, whereas
the sample thickness was measured before each test. Eight specimens were tested for each
sample, and the results for elastic modulus (E), tensile strength (TS) and elongation at break
(EB) have been reported as the average values ± standard deviations.

2.6. X-ray Diffraction

X-ray diffraction patterns were collected by using a RIGAKU diffractometer (D-MAX
25600 HK, Rigaku, Tokyo, Japan). All diffraction patterns were obtained in the 2θ range
from 5◦ to 80◦ by means of copper Kα radiation (λ = 1.54 Å) with the following setup
conditions: tube voltage and current of 40 kV and 30 mA, respectively, scan speed of
4◦/min with a sampling of 0.004◦.

2.7. Differential Scanning Calorimetry Analysis

Differential scanning calorimetry (DSC) analysis was carried out on a Chip-DSC 10
(Linseis Messgeraete GmbH, Selb, Germany) by heating the samples to 200 ◦C at a heating
rate of 40 ◦C/min.

2.8. Density Measurements

Density measurements were performed by a Thermo Pycnomatic Helium Pycnometer
(Pycnomatic ATC, Thermofisher, Waltham, MA, USA), using 99.99% pure helium. Measures
were repeated at least six times for each sample, at 25 ◦C.

2.9. Theoretical Modelling

The outcomes of the tensile tests were compared with those predicted by the Halpin–
Tsai model, which allows esteeming the modulus of composites once are known volume
fractions and elastic moduli of the starting components, and the filler aspect ratio. Accord-
ing to the Halpin–Tsai model, for composites reinforced with fibres randomly oriented, the
composite modulus EC,HT is determined by the following equation:

EC, HT =
3
8

EL +
5
8

ET (1)

where EL and ET are, respectively, the longitudinal and transverse moduli of the composite.
In this case, EL and ET are given by:

EL = Em

[
1 + (2l/d)ηLυ f

1 − ηLυ f

]
ET = Em

[
1 + 2ηTυ f

1 − ηLυ f

]

where υf and υm are the volume fractions of EE fillers and MB, respectively, l/d is the aspect
ratio of the fillers while ηL and ηT are constants given by:

ηL =

(
E f /Em

)
− 1(

E f /Em

)
+ (2l/d)

ηT =

(
E f /Em

)
− 1(

E f /Em

)
+ 2

where, E f and Em are, respectively, the Young’s moduli of filler and MB.
Volume fractions are determined from the weight fractions and the densities of each

component (i.e., SL and MB) measured experimentally by a helium pycnometer.

3. Results and Discussion

The samples loaded at 5% (MB/SL5), 10% (MB/SL10) and 25% (MB/SL25) filler where
properly extruded into the related filaments, to be subjected to FDM thereafter.

Filament printability (i.e., processability in FDM mode) is directly correlated to the
morphological properties. More in detail, not only the diameter of the filament must be
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suitable for the specific 3D printer used, but its surface must be as even and homogeneous
as possible [26,30]. In addition, printability depends also on the rheological and mechanical
properties of the filaments, which were thus investigated as well. The obtained results are
discussed in the following.

3.1. SL Powder and Filament Characterization

Morphological characterization was carried out first. The main results are shown in the
SEM micrographs reported in Figure 1 for SL powder and in Figure 2 for MB/SL5, MB/SL10
and MB/SL15, respectively. From the SEM micrograph of the powder (Figure 1), it is
possible to notice that SL powder contains elements with different morphology, reasonably
belonging to different parts of the plant: stem and leaf.
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Figure 2. SEM images of MB/SL5, MB/SL10 and MB/SL15 filaments.

From the samples’ cross-section micrographs (Figure 2), it can be observed that the
SL particles are homogeneously dispersed in the MB matrix, only a few voids are present,
and the general adhesion between the matrix and the particles is good. Furthermore, the
diameters of the MB/SL5 and the MB/SL10 filaments are even and homogeneous, in the
range 1.6–1.8 mm (respectively) which is suitable for the actual printer used. On the other
hand, the MB/SL15 filaments showed uneven diameters.

Rheological measurements were performed on specimens obtained from the filaments,
in order to evaluate the actual processability for FDM purposes.

Figure 3 reports the rheological values of MB and the composite filaments, on increas-
ing the filler content.

As predictable, MB shows a clear non-Newtonian behaviour. The addition of 5% SL
leads to an increase of viscosity over the entire frequency range, as well as a more marked
non-Newtonian behaviour. This tendency further increases by adding 10% SL. When
15% SL is added to the MB matrix, there is a much more drastic increase in the viscosity
and the onset of yield stress phenomena. Such results suggest that only the rheological
behaviour of MB/SL5 and MB/SL10 appears compatible with the 3D printing process,
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whereas MB/SL15 may be not adequately printable, due to the excessively high viscosity
which may lead to nozzle clogging during the process [26].
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Anyway, optimal printability depends also on the tensile properties of the filaments.
Figure 4 reports the values of elastic modulus (E), tensile strength (TS) and elongation at
break (EB), on increasing the SL content. It can be noticed that the filaments become stiffer
on increasing the SL content, although the effect is much more significant only in the case of
MB/SL15; the tensile strength is similar to that of the neat MB, or even higher, and this is a
satisfactory result since it suggests that the filament should not undergo rupture too easily,
during the process; on the other hand, the deformability drops even at just 5% SL content.
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SL amount.

In Figure 5, photos of MB/SL5, MB/SL10 and MB/SL15 filaments before (Figure 5a–c,
respectively), during (Figure 5d–f, respectively) and after (Figure 5g–i, respectively) tensile
test are reported. MB/SL5 and MB/SL10 filaments present a homogenous shape, and their
fracture occurs a few seconds after the 50 mm min−1 speed was applied. On the other
hand, the MB/SL15 filament presents an irregular shape due to the high content of filler.
In this latter case, the fracture occurred instantaneously when the 50 mm min−1 speed
was applied.

The results of the rheological and mechanical tests allow drawing some general
considerations, propaedeutic for the FDM stage, since viscoelasticity and tensile strength
measurements help to predict problems in printability and possible printing errors [31] In
particular, too high viscosities are not suitable for the process, since the low deformability
can lead to filament blocking at the nozzle of the 3D printer, and subsequent clogging and
rupture (Figure 6a). On the other hand, if the filament is too soft (high decline of viscosity
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at low temperatures), it tends to flow too easily while not pulling correctly, resulting in
nozzle clogging (Figure 6b); furthermore, if it is too brittle, it will break (Figure 6c) [31].
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These considerations, therefore, suggest that MB/SL5 and MB/SL10 should be easily
printable and without significant defects in the obtained samples (on the other hand, neat
MB may lead to some uncertainty due to the relatively high deformability), while problems
may arise with MB/SL15.

3.2. Printing of the Composites Filaments

Actual 3D printing was then carried out. As expected, based on the previous consider-
ations, neat MB as well as MB/SL5 and MB/SL10 were easily processed, while the filament
containing 15% SL showed to be not printable since the high viscosity caused obstruction
of the nozzle and the filament broke easily.
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The samples were printed with both 0◦ and 45◦ raster angles, in order to evaluate
the printability and the effect of the angle on the mechanical properties of the obtained
3D specimens.

3.3. Characterizations of 3D Printed Samples

First, the 3D-printed samples were subjected to morphological analysis on cryofrac-
tured surfaces.

Figure 7 shows SEM images of fractured surfaces, at increasing magnification from
left to right, of MB/SL10, 0◦ raster samples. In general, it can be stated that filler dispersion
and adhesion are good, as clearly visible from the filler particle circled in green (right),
where no significant voids can be found at the filler–matrix interface.
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Figures 8–11 show the fracture surfaces after tensile tests of the composite samples.
Overall, it may be stated that some fibre pull-out and debonding phenomena are more
visible in the SL5 rather than in the SL10 samples and, especially, in 45◦ samples (Figure 11)
as opposed to 0◦ ones (Figure 10).
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Figure 8. SEM images of tensile fracture surfaces of MB/SL5 0◦ samples. The pink circles highlight
fibre pull-out and debonding phenomena.

The actual tensile properties of the 3D-printed samples are shown in Figure 12, in the
case of raster angle = 0◦ (left) and raster angle = 45◦ (right). It can be observed that, in both
cases, the elastic modulus and the tensile strength increase on increasing the filler content,
while the deformability decreases. However, such a decrease is significantly less marked in
the case of raster angle = 0◦, and the overall results of all the tensile properties are better,
with excellent reproducibility. This confirms the first indications from the morphological
analysis, which could allow supposing higher breaking resistance of the 0◦ samples, in
comparison to the 45◦ ones.
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Such evidence can be further deduced from Figure 13. The 0◦ raster angle during
printing definitively optimizes the tensile properties, confirming data from the literature,
obtained on similar systems, where 0◦ raster angle usually optimizes tensile properties,
whereas 45◦ leads to optimization of flexural and impact properties [10,26,32,33].
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3.4. XRD and DSC Characterizations

In order to verify if the addition of SL filler leads to some crystallinity variation in
the polymeric matrix, XRD and DSC analysis were performed on neat MB and MB/SL
printed composites and the related outcomes are reported in Figure 14a,b, respectively.
No differences can be noted in XRD curves (Figure 14a) when 5 or 10% of SL is added
to the polymeric matrix. Moreover, the addition of SL powder to MB does not lead to
any significant change in its melting temperature or melting enthalpy (see Figure 14b and
Table 3).
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Table 3. Melting temperature and melting enthalpy of 3D-printed samples obtained by DSC analysis.

Sample Weight (mg) Melting Temperature (◦C) Melting Enthalpy (mJ/mg)

MB 10.9 132.3 15.8
MB/SL5 8.8 132.7 16.3
MB/SL10 3.3 131.7 15.9

These outcomes confirm that the increase in the tensile property of SL composites, if
compared to the pure matrix, can be effectively attributed to the reinforcing effect given by
the filler.

3.5. Halpin–Tsai Model

Figure 15 shows the trends of Ec/Em (ratio between the elastic modulus of the com-
posite and that of the matrix) on increasing the SL content, both from the experimental (Exp)
results (at 0- and 45-degree raster angles) and the theoretical trend calculated according
to the Halpin–Tsai model (HT). This semiempirical model allows assessing the composite
modulus (Ec), once five parameters are known, i.e., the elastic modulus of matrix (Em) and
filler (Ef), their volume fractions and the filler aspect ratio [34].
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Figure 15. Ratio between elastic modulus of the composite and the polymer matrix, as a function of
the SL content, according to the Halpin–Tsai model (HT) and the experimental results (Exp).

The trends clearly outline that the model significantly underestimates the values of
Ec, especially at higher filler contents. This may be due to the filler particles coming from
different parts (wastes) of the tomato plant, thus presenting some natural differences in
terms of morphology and/or mechanical properties. An additional likely explanation may
involve the capability of the polymer matrix to, at least partially, enter the void channels
of SL particles, as presumable on the basis of the SEM images and of the results from our
previous studies on similar (i.e., biodegradable polymer/natural-organic plant waste filler)
systems [9].

4. Conclusions

In this paper, composites based on a Mater-Bi® polymer and wastes coming from
Solanum lycopersicum were prepared and processed via FDM, in order to explore the actual
suitability to 3D-printing applications. Different processing parameters and different filler
amounts were investigated, and the obtained samples were characterized from the rheo-
logical, mechanical and morphological point of view. The adopted processing parameters
allowed optimal processability up to 10% filler content, with satisfactory dispersion of the
filler in the matrix; the same holds for the interfacial adhesion. Mechanical characterization
showed that the tensile strength was kept or even improved upon increasing the filler
content, the elastic modulus was enhanced and only a “physiological” reduction in the
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elongation at break was found; moreover, the processing parameters and, in particular, the
raster angle significantly affected the tensile resistance, with 0◦ being preferable to ±45◦.
The experimental mechanical behaviour was compared to the Halpin–Tsai model, finding
positive deviations for the prepared systems. Moreover, the addition of a natural waste
would allow lowering the final cost of the product. Actually, the cost of Solanum Lycop-
ersicum plant waste used in this work is virtually zero, since these are residues from the
harvesting, and they would not find many significantly valuable alternative uses. Overall,
these green composites have great potential for the development of sustainable bio-based
materials aimed at several applications.
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