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Abstract: Graphene conductive inks have attracted significant attention in recent years due to their
high conductivity, corrosion resistance, and environmentally friendly nature. However, the dispersion
of graphene in aqueous solution is still challenging. In this work, we synthesized an amphiphilic
graft copolymer, polyvinyl alcohol-g-polyaniline (PVA-g-PANI), and studied the graphene dispersion
prepared with the graft copolymer by high-speed shear dispersion. The amphiphilic graft copolymer
can be used as a stabilizer and adhesive agent in graphene dispersion. Given the steric hindrance of
the graft copolymer, the stability of graphene dispersion is improved by decreasing the probability of
π–π stacking. PVA-g-PANI has a better stability on graphene dispersion than carboxymethylcellulose
sodium (CMC-Na) and a mixture of PVA and PANI. The graft copolymer has only a slight effect on
the conductivity of graphene dispersion due to the existence of conductive PANI, which is beneficial
for preparing the graphene dispersion with good conductivity and adhesion. Graphene dispersion is
well-adapted to screen printing and is very stable with regard to the sheet resistance bending cycle.

Keywords: graphene; conductive inks; graft copolymer; aqueous solution

1. Introduction

With the rapid development of the electronic industry, conductive ink has been ap-
plied in various fields, such as flexible printing circuits, film switcsh, and radio frequency
identification [1,2]. Graphene, as the basic building block of other carbon materials, consists
of a monolayer of graphitic carbon with sp2-bonded carbon atoms, whose unique structure
gives it many excellent properties, such as tensile strength, Young’s Modulus, electrical con-
ductivity, thermal conductivity, specific surface area, and high barrier properties [3–6]. Using
graphene as a filler in conductive ink has the advantage of having excellent conductivity,
corrosion resistance, and oxidation resistance [7,8]. Therefore, graphene conductive ink has
attracted significant attention in recent years and has been one of the most widely used
printed electronic materials.

Graphene in water can easily agglomerate and hardly obtains a stable aqueous solution
due to its unique surface energy [9]. The agglomerated graphene cannot be formed at
the macroscale, effective conductive network or superimposed on each other to form a
dense film structure, limiting the application of graphene conductive ink. During the
preparation of a highly conductive water-based graphene ink, if we can obtain highly stable
graphene dispersion in aqueous solution, then we may be confident that graphene will
have its own high conductivity. Therefore, stable dispersion is one of the most important
prerequisites for the widespread application of graphene in composites and other materials.
The methods of graphene dispersion mainly include physical and chemical dispersion [10].
Physical dispersion is achieved by adding surfactants to the solvent and using hydrogen
bonding, π–π interaction, and electrostatic repulsion to maintain a stable dispersion of
graphene [11–13]. Meanwhile, chemical dispersion is achieved by modifying graphene,
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but it leads to defects in the graphene sheets [14]. Many types of surfactants are typically
divided into non-ionic, anionic, and cationic surfactants according to the difference in the
hydrophilic part [15]. The adsorption of the different types of surfactants on the surface
of graphene is different due to their different structures [16]. Regardless of the type of
surfactant used, no obvious effect can be observed on the morphology and sheet size
of graphene [17]. Bourlinos et al. [18] obtained a stable graphene aqueous solution by
using polyvinylpyrrolidone as an assistant to exfoliate graphite. Ramalingam et al. [19]
made stable graphene aqueous solution (2.58 mg/mL) with few layers by using sodium
deoxycholate to assist exfoliate graphite. Narayan et al. [20] used pyrene-3,4,9,10-potassium
tetracarboxylate to assist exfoliate graphite in liquid-phase exfoliation, which successfully
produced 0.5–0.8 mg/mL of graphene dispersion.

The synthesis and self assembly of copolymers have been extensively studied [21–23].
Some scientists designed new molecular structures and synthesized new efficient, green,
and low-cost copolymers to improve the efficiency of exfoliate graphite and the stabil-
ity of graphene dispersion. Cui et al. [24] synthesized four random copolymers based
on poly(vinyl imidazole), which were used to assist the exfoliation of graphene in the
aqueous solution; the highest concentration of 1.12 mg/mL graphene dispersion was
prepared. Perumal et al. [25] designed and synthesized poly(ethylene oxide)-block-poly
(4-vinylpyridine), which was used for the stabilization of graphene nanoplatelets in alcohol
and water. Graphene concentrations up to 1.7 and 1.8 mg/mL were obtained from graphite
platelets and reduced graphene oxide dispersions, respectively. Shin et al. [26] successfully
prepared water-based, highly concentrated, stable, and defect-free graphene dispersions by
using new cationic pyrenes. However, these surfactants are non-conductive and are difficult
to remove from the graphene film, which adversely affects the conductive properties of
graphene conductive ink.

Polyaniline (PANI) is one of the earliest conductive polymer materials that has at-
tracted much attention due to its low cost, easy synthesis, unique doping mechanism, high
conductivity, and excellent redox property [27–30]. Accordingly, this material is highly
appealing for combining graphene and PANI to create high-performance conductive ink.
When PANI is applied in graphene conductive ink, graphene and PANI can form a more
continuous conductive network. Furthermore, PANI can be used as a spacer to further sepa-
rate adjacent sheets of graphene. Xu et al. [31] prepared graphene/PANI conductive ink by
ultrasound. The surface square resistance of the ink film was 846 Ω/cm2, which was used
as a film electrode in the super capacitor, and the device has a longer cycle life. However,
PANI has a low solubility in solvents and poor film-forming properties, which adversely
affects its application progress. Polyvinyl alcohol (PVA) is a water-soluble polymer and has
good biocompatibility, good film-forming properties, and the strength and flexibility of the
film after forming can basically meet the requirements of film applications [32,33].

In this study, we designed and synthesized an amphiphilic graft copolymer and used
it as a stabilizer and adhesive to improve the stability of the graphene aqueous solution, the
electrical conductivity of graphene dispersion, and the adhesion of graphene film on Biaxi-
ally Oriented Polypropylene (BOPP). A stable and highly conductive graphene dispersion
was obtained via the high-speed shear method. We studied the stability, screen printing
adaptability, and physicochemical and electrical properties of the graphene dispersion. The
introduction of PVA-g-PANI into graphene dispersion provides a new, environmentally
friendly approach to preparing stable and uniform graphene aqueous dispersions.

2. Materials and Methods
2.1. Materials

Graphene (GS-1) was purchased from Ningbo Moxitech Co., Ltd., Ningbo, China.
Poly(vinyl alcohol) (PVA with hydrolysis of 88%, Mw ~24,000), ammonium persulphate
(APS), and CMC-Na (Mw ~250,000) were obtained from Aladdin (Shanghai, China) and
used without further purification. Epichlorohydrin (EPIC), dimethyl sulfoxide (DMSO),
triethylamine, and acetone were purchased from J&K chemic Tech Co., Ltd., Tianjin,
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China. Aniline was purchased from Macklin (Shanghai, China) and purified before use.
Tetrabutyl ammonium chloride (TBACl, 98%) was purchased from Tianjin Biochemical
Tech Co., Ltd., Tianjin, China. NaOH and hydrochloric acid solution were purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). BOPP, polyimide, and
polyethylene terephthalate film were obtained from the Beijing research institute of the
chemical industry.

2.2. Synthesis of Graft Copolymer

Scheme 1 illustrates the synthesis of PVA-g-PANI. First, 15 g of PVA was dissolved
in DMSO at 80 ◦C to obtain a solution. Approximately 1 g of EPIC was added into the
solution, and the mixture was stirred at 30 ◦C for 30 min. Thereafter, 1 mL of 2.5 mol/L
NaOH aqueous solution was added into the mixture and stirred at 60 ◦C. After 6 h, the
mixture was filtered, and the precipitate was rinsed with acetone to obtain etherified PVA.
Then, the etherified PVA, aniline, tetrabutylammonium chloride, and triethylamine were
mixed with a molar ratio of 20:20:1:40 at 60 ◦C for 3 h, and the mixture was filtered to
obtain a precipitate. Subsequently, the precipitate and 10 g of aniline were added into the
1 mol/L hydrochloric acid aqueous solution and stirred in an ice bath. The APS of the same
molar ratio as aniline was slowly added dropwise over a period of 1 h. The experiment
was performed for 12 h in an ice bath with constant stirring. Finally, the reaction mixture
was filtered, and the filtrate was concentrated under reduced pressure. PVA-g-PANI was
obtained by drying the concentrated filtrate in a vacuum at 30 ◦C for 48 h.
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2.3. Preparation of Graphene Dispersion Using Graft Copolymer

A stable dispersed graphene solution was prepared using the high-speed shear method.
Firstly, 2.8 g of graft copolymer was directly dissolved in 105 mL of deionized water to
obtain a solution. Then, 3.75 g of graphene was added into the solution, and the mixture was
sheared by a high-speed shear dispersing emulsifier (TYPE R, LBX) to obtain a graphene
dispersion. The experiments were performed for 1 h with a speed of 4000 rpm at room
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temperature. Furthermore, the prepared dispersions were deposited on substrates by using
screen printing.

2.4. Characterization

FTIR spectra were recorded on a Tensor-27 spectrometer (Bruker, Karlsruhe, Germany).
1H NMR spectra were obtained on a Bruker AV400 spectrometer using deuterium oxide
(D2O) as a solvent. The electrical properties of the films were measured using a four-probe
tester (RTS-9, Zhejiang, China) and a multimeter (VC830L, Beijing, China). UV−Vis spectra
measurements were carried out on a UV-1800 spectrophotometer, Karlsruhe, Germany.
The adhesion test was measured using an adhesion tester (QFH) via the cross-cut test.
The viscosity of the graphene dispersion was measured using a digital rotary viscometer
(NDJ-5S, Jiangsu, China). TEM measurements were carried out on a transmission electron
microscope (Tecnai G220, Waltham, MA, USA). SEM measurements were carried out
on a scanning electron microscope (JCM-7000 NeoScope, Tokyo, Japan). Rheological
characterization of the ink was conducted using a rotational rheometer (HAKKE MARS III,
Waltham, MA, USA).

3. Results and Discussion
3.1. Synthesis of the PVA-g-PANI Graft Copolymer

We developed a simple method to prepare PVA-g-PANI, as displayed in Scheme 1.
Etherified PVA was obtained by using EPIC as an etherifying agent and connected with ani-
line via N-alkylation action to obtain an N-alkylated product. PVA-g-PANI was synthesized
by the oxidative polymerization of the N-alkylated product and aniline in the aqueous
acid (1 M HCl). Figure 1 presents the FTIR spectrum of the etherified PVA, N-alkylated
product, and PVA-g-PANI. An –OH characteristic band was observed at 3300–3450 cm−1.
The FTIR spectrum of the etherified PVA (Figure 1a) shows the C–O–C characteristic band
at 1046 cm−1 and the C–Cl characteristic band at 712 cm−1, indicating that the etherified
PVA was successfully prepared. The FTIR spectrum of the N-alkylated product (Figure 1b)
shows the C–O–C characteristic band at 1094 cm−1 and the characteristic band of aniline
at 693 and 759 cm−1. Moreover, the C–Cl characteristic band disappeared, indicating that
the etherified PVA and aniline were successfully connected. The PVA-g-PANI (Figure 1c)
presents the characteristic bands of PVA and PANI compared with the etherified PVA
(Figure 1a).
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Figure 2 presents the 1H NMR spectrum of PVA-g-PANI. Three proton signals (a, b, and c)
of the methylene group of PVA and the proton signals (e) of –OH of PVA were observed
at 1.40–2.00 and 3.88 ppm. The proton signals (d) of the methylene group at 3.53 ppm
were also observed, demonstrating that the etherified PVA was successfully obtained.
Meanwhile, the proton signals of tertiary amine at 3.76 ppm can be clearly observed,
indicating that the etherified PVA was successfully connected with aniline via N-alkylation
action. The aromatic protons (f and g) of PANI at 7.25–7.50 ppm were also observed. The
1H NMR spectrum confirmed that PVA-g-PANI was successfully synthesized.
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3.2. Stability of Graphene Dispersion Prepared with a Graft Copolymer

Graphene dispersion prepared with PVA-g-PANI is a viscous paste with a viscosity of
8000 mpa·s (Table 1), which is suitable for screen-printing technology. The concentration
of PVA-g-PANI has no effect on the viscosity of the graphene dispersion, and thus it is
not disadvantageous for the screen printing adaptability of graphene dispersion. The
UV−Vis absorption spectrum was used to estimate the stability of graphene dispersion.
The absorption intensity follows Beer’s law, and the higher the absorbance, the higher the
concentration of graphene. PVA-g-PANI can significantly enhance the stability of graphene
dispersion compared with CMC-Na, a common surfactant for graphene ink, and the
mixture of PVA and PANI (Figure 3a). A strong π–π conjugation can be observed between
the aromatic structure of PANI and graphene sheets, allowing PVA-g-PANI to be firmly
attached to the surface of the graphene sheets. Meanwhile, the structure of PVA-g-PANI is
a comb structure, which can produce a stronger steric hindrance (Figure S1). Theoretically,
PVA-g-PANI can effectively prevent graphene sheets from agglomerating in the aqueous
solution. The absorbance of graphene dispersion is higher when a high concentration
of PVA-g-PANI was used, and it is greater than the absorbance of graphene dispersion
without PVA-g-PANI, demonstrating that PVA-g-PANI can effectively improve the stability
of graphene in the aqueous solution (Figure 3b). The critical micelle concentration of the
PVA-g-PANI solutions is about 8 mmol/L (Figure S2).

The TEM images of graphene dispersion and graphene dispersion prepared with
PVA-g-PANI are shown in Figure 4. Significant agglomeration and stacked sheets can be
observed in graphene dispersion prepared with nothing (Figure 4a). When PVA-g-PANI is
used to stabilize the graphene dispersion, most graphene sheets in the dispersion are large
sheets with few layers (Figure 4b), confirming that PVA-g-PANI is effective in preventing
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the agglomeration of graphene. Raman data were shown in Figure S3, which indicates that
the graphene was not modified by the copolymer.

Table 1. Effect of different concentrates of PVA-g-PANI on graphene dispersion.

Concentrates of PVA-g-PANI
(mg/mL) 0 10 15 20 25 30 35

Viscosity (×103 mpa·s) 8 8 8 8 8 8 8
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3.3. Graphene Ink Prepared with a Graft Copolymer for Screen Printing

The graphene ink prepared with PVA-g-PANI is shown in Figure 5a, and it presents
as a viscous paste with high static viscosity. This ink can be printed on a widely used
BOPP film by using a screen-printing technology and on PI, PET, and A4 paper substrates
(Figure 5b–e). Furthermore, as shown in Figure S4, the surface of patterns prepared by
graphene dispersion is flat and smooth. The morphology of the graphene ink prepared
with a graft copolymer is shown in Figure 5f,g. The graphene sheets closely overlap, and
the gap between the sheets is minimal, forming a dense graphene film and a complete
conductive network, which is beneficial for the conductivity of the graphene ink.
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When the ink has appropriate rheological characteristics, we can obtain the printing
pattern that has more smooth edges and a higher resolution through screen-printing tech-
nology. Furthermore, the defects and bubbles in the printing patterns must be eliminated,
and the conductivity of the printing patterns must be improved. In Figure 6a, the viscos-
ity of the graphene dispersion decreases with the increase in the shear rate, indicating
that graphene dispersion has a significant shear-thinning behavior, which is beneficial for
the extrusion of graphene dispersion in the printing process. The modulus recovery of
graphene dispersion studied by three interval tests is shown in Figure 6b. First, graphene
dispersion was applied at a low-stress oscillatory (10 Pa for 60 s), then at a high-stress
oscillatory (100 Pa for 60 s), and, finally, at a low-stress oscillatory (10 Pa for 120 s). The
storage modulus of the ink can be quickly restored after 100 pa shear stress, indicating
that the destroyed network of the graphene dispersion can be quickly rebuilt, and a higher
resolution of printing patterns can be obtained.

In Figure 6c, the graphene ink prepared with PVA-g-PANI has a lower sheet resistance
compared with CMC-Na and the mixture of PVA and PANI, indicating that PVA-g-PANI is
beneficial in forming a more complete conductive network. Meanwhile, the sheet resistance
of the printing patterns slightly increases as its concentration increases when PVA-g-PANI
was used (Figure 6d). This phenomenon occurred because PVA-g-PANI contains non-
conductive PVA and is difficult to remove from the graphene film, which adversely affects
the conductive properties of the printing patterns of graphene dispersion.

The screen printing pattern was cut into 4 mm wide and 10 cm long straight lines. The
resistance of the line gradually decreases with the increase in printing cycles. When the
printing time is up to eight, the resistance can decrease from the initial 32 KΩ to 9.8 KΩ
(Figure 7a). This phenomenon occurs because multiple printing can increase the filling
amount of graphene in the line segment. When graphene reaches a certain critical content,
the conductive network is complete. Accordingly, the decrease in resistance is not that
obvious anymore. The Figure 7b demonstrates that the resistance of the corresponding
line increases linearly, indicating that the printing line segment has no fault and that it has
continuity. The 10 cm line was divided into 10 segments on average, and the resistance of
each segment was measured. The resistance of each segment is about 2.1 KΩ, as shown in
the red dotted chart, showing that the resistance of the printing line has consistency. The
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results also show that the prepared PVA-g-PANI/graphene ink was uniformly dispersed to
a certain extent.
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Figure 6. (a) Viscosity as a function of shear rate for the graphene/PVA-g-PANI ink,
(b) graphene/PVA-g-PANI ink rheological behavior during simulation of screen printing, (c) sheet
resistance of graphene ink with different surfactants, and (d) sheet resistance of graphene ink with
different concentrations of PVA-g-PANI.
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consistency and continuity of the graphene /PVA-g-PANI ink.

The cross-cut test was used to estimate the adhesion of the graphene/PVA-g-PANI film
on the flexible BOPP substrate. The result is shown in Figure 8a. When the concentration of
PVA-g-PANI is over 15 mg/mL, the adhesion grade is up to 2, indicating that the damage
to the graphene/PVA-g-PANI film is less than 15% after the cross-cut test, and the adhesion
of the graphene/PVA-g-PANI film meets the requirements for general use. This situation
occurs because PVA-g-PANI contains PVA with good film-forming and wetting effects
for substrates, which are beneficial for forming a dense and flexible graphene film and
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improving the adhesion to substrates. During 1000 bends, the change in sheet resistance
(R/R0) of the graphene/PVA-g-PANI film slightly fluctuates in the forward bending and
reverse bending (Figure 8b). Accordingly, the sheet resistance of the printed pattern is
not affected by multiple bends and folds. Thus, the graphene/PVA-g-PANI ink is very
stable regarding sheet resistance bending cycles, making it potentially useful in a variety
of applications.
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stability of the graphene/PVA-g-PANI film.

4. Conclusions

We presented a study on the stability, screen printing adaptability, and electrical
properties of graphene dispersions using amphiphilic graft copolymers of PVA-g-PANI.
The stable graphene dispersion was prepared via high-speed shear. 1H NMR and FTIR
were used to characterize the structure of graft copolymers, and their results confirm that
amphiphilic PVA-g-PANI was successfully synthesized. The UV–Vis absorption spectral
results and the TEM images confirm that PVA-g-PANI can efficiently improve the stability
of graphene in the aqueous solution, better than CMC-Na and the mixture of PVA and
PANI. Moreover, the PVA-g-PANI is beneficial for preparing the graphene dispersion with
good conductivity. The prepared graphene dispersion is very adaptable for screen printing
and is very stable regarding the sheet resistance bending cycle. This study offers a simple,
scalable, and environmentally friendly approach to produce stable and uniform graphene
aqueous dispersions via a high-speed shear dispersing method.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym15020356/s1, Figure S1: Schematic representation of the stabilization mechanism;
Figure S2: Conductivity of the micellar solutions with different concentration; Figure S3: Raman
spectra of graphene and graphene with PVA-g-PAN; Figure S4: The patterns of graphene dispersion
on (a) A4 paper; (b) PET.
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