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Abstract: We characterize, using molecular dynamics simulations, the structure and mechanical
response of a porous glassy system, obtained via arrested phase separation of a model polymer melt.
In the absence of external driving, coarsening dynamics, with power-law time dependence, controls
the slow structural evolution, in agreement with what was reported for other phase-separating
systems. The mechanical response was investigated in athermal quasi-static conditions. In the elastic
regime, low values for the Young’s and shear modulus were found, as compared to dense glassy
systems, which originate from the porous structure. For large deformations, stress–strain curves
show a highly intermittent behavior, with avalanches of plastic events. The stress-drop distribution is
characterized exploring a large set of parameters. This work goes beyond the previous numerical
studies on atomic porous materials, as it first examines the role of chain connectivity in the elastic
and plastic responses of materials of this type.

Keywords: porous materials; phase separation; glass transition; structural analysis; mechanical
properties; molecular dynamics

1. Introduction

When a liquid is quenched inside the spinodal region, an off-equilibrium region of the
phase diagram, phase separation occurs, decomposing the fluid into phases of different
compositions. For the gas–liquid spinodal decomposition, the process can be interrupted
via a deep virtually instantaneous quench in temperature. Indeed, if the target temperature
is below the glass transition of the dense phase of the system [1], the dynamics of this phase
are dramatically slowed down, and as it approaches the glassy state, phase separation is
stopped. This leads to the creation of an amorphous porous bicontinuous structure, whose
morphology depends on density and target temperature during the quench.

Albeit there is no fundamental predictive theory able to describe specific features
of arrested spinodal decomposition, this mechanism is extensively used in experiments
and simulations to produce distinctive morphologies [2–6]. Notably, extensive numerical
work, based on molecular dynamics (MD) simulations, has been done by Testard et al. [7],
aiming at the characterization of viscoelastic phase separation in a Lennard–Jones atomic
binary fluid, to study the influence of the temperature quench on the liquid–gas phase
separation kinetics in a Lennard–Jones fluid, and therefore the competition between the
phase separation kinetics and the glass transition occurring at low temperatures in bulk
liquids. Using a combination of direct visual inspection and proper quantitative methods to
analyze the morphology of biphasic atomistic configurations, they determined the binodal
and spinodal lines on the temperature-density phase diagram of the system. They also re-
ported that the phase-separation kinetics change qualitatively with decreasing temperature,
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from surface-tension-driven diffusion for shallow quenches to spatially heterogeneous and
thermally activated intermittent coarsening at low temperatures.

Building on this model, more recently, MD simulations have been carried out by
Priezjev et al. [8,9] to investigate the mechanical behavior of a porous structure obtained
by phase separation in the elastic and the plastic regimes. The stress–strain curves show
linear behavior for small deformation, up to a yielding point, when the plastic regimes set
in. The elastic modulus follows a power-law dependence on the average glass density, in
agreement with theoretical predictions. It is also shown that upon tensile loading, breaking
events occur in regions where lower glass density is present to a larger spatial extent.

The Lennard–Jones binary mixture is known to be a quite generic model, being able
to reproduce several features of glassy phenomenology, regarding both the dynamics and
the mechanical properties. Yet, the interesting question is to understand how molecular
connectivity influences the phase-separation dynamics of the system and the subsequent
mechanical response. In this work, we address this point using MD simulations to investi-
gate the viscoelastic phase separation and mechanical properties of a coarse-grained model
of polymer material. In addition to the small-deformation elastic regime, we explore in
detail the onset and development of plasticity up to deformations as large as 50%.

2. Methods and Simulation

Molecular dynamics simulations were performed for a melt of linear polymer chains
with M = 20 monomers each. The total number of monomers was kept fixed as N = 2 × 104.
Non-bonded monomers, i.e., non-adjacent monomers in the same chain and monomers
belonging to different chains, interact via a Lennard–Jones (LJ) potential:

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, r < rc (1)

where r is the distance between the monomers, σ the zero-crossing distance of the potential
and rc = 2.5σ is the cutoff radius beyond which the potential is set to zero for computational
convenience. Bonds subsist between adjacent monomers in the same chain, which are
modeled with a harmonic potential:

Ub(r) = k(r− r0)
2, (2)

with k = 555ε/σ2 and r0 = 0.97σ. As we focus on a fully flexible model, no torsional or
bending potentials are included.

In the following, we used Lennard–Jones-reduced units, expressing lengths in units of
σ; temperatures in units of ε/kB, with kB, the Boltzmann constant and ε the energy scale of
the LJ interaction; and time in units of τMD =

√
mσ2/ε. We set kB = σ = ε = m = 1.

Simulations were carried out using the open-source software LAMMPS [10]. We
started from a homogeneous melt at fixed number density ρ = N/V. The system was
initially equilibrated at high temperature T = 3.0 within the canonical ensemble (i.e., the
NVT ensemble, with constant number of particles, volume and temperature), using the
Nosé–Hoover thermostat [11,12]. Then, we performed an instantaneous (i.e., in a single
time step) quench of the desired target temperature. The system was allowed to age
up to 106 time units within the NVT ensemble, with the temperature controlled using a
Langevin thermostat [13]. Different values of the system density, ρ = N/V = 0.3, 0.4, and
0.6, and quench temperature, T = 0.015, 0.1, and 0.3, were considered, below the glass
transition temperature of the model, which was estimated as Tg ≈ 0.4 [1]. For each state
point, 10 independent samples of the system were simulated to improve the statistics of
the analysis.

Simulations for systems with M = 5, 10 were also performed to analyze the behavior
of the system when approaching the atomistic liquid system. Here, we present the results
for M = 20, unless differently specified.
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3. Results and discussion
3.1. Structural Analysis

First, we analyze the morphologies resulting from the quench at different state points.
Representative configurations are displayed in Figure 1. To ease the visualization, a
surface mesh was constructed. The glassy domains appear to be a bicontinuous, highly
interconnected network; gas domains are far from being spherical or regular in size. Typical
length scales change with varying densities and temperatures. As the density increases, the
glassy phase occupies an increasing volume fraction, and smaller length scales characterize
the gas phase. The same effect can be observed for decreasing temperature, due to a more
effective slowing down of dynamics, which prevents the progress of coarsening.

Figure 1. Morphologies obtained by letting the system age up to a time t (LJ units) after a quench
at T = 0.1, ρ = 0.6, (a) t = 10, (b) t = 103, (c) t = 105. To ease the visualization, a surface mesh was
constructed using OVITO [14]. The green region represents the surface of the glassy phase. The gray
region represents the inside of the dense phase sliced at the boundaries.

To characterize the structure of the system, we examine the pair correlation function
g(r). In Figure 2a, we show the g(r) at different aging times for a sample with T = 0.1
and ρ = 0.6. In the porous system, the amorphous structure is denoted by an oscillating
decay of pair correlations, with the amplitude of oscillations growing as the system ages.
The position of the first crossing of the level g(r) = 1 is known to give an estimate of the
average distance between a random phase in the glassy phase to a nearby gas region, i.e.,
an estimate of the average domain size [15]. However, in our sample, the oscillations are
rather small, impeding an accurate estimation of the domain size.

We also report the static structure factor S(q) obtained as the Fourier transform of
the pair correlation function in Figure 2b. S(q) exhibits a peak at low q values, which
denotes the building of large domains in the system. In agreement with previous works on
atomic systems [7,16,17], the amplitudes of the peaks grow with the aging time, and their
positions shift towards lower q values. The low-q peak hides the one of the dense phase at
qmax ≈ 2π/rnb, rnb being the mean distance between monomers (see the inset of Figure 2b).

We point out that qualitatively equivalent behavior can be observed also for different
quench temperatures, both close to the glass transition and for deeper quenching.

An effective way to measure the typical pores size resorts to the so-called chord
length distribution (CLD) [15]. A chord is defined as the segment between two consecutive
intersections of the gas–glass interfaces with a virtual line drawn through the system. We
employed a set of parallel randomly drawn lines along the three axes and measured the
lengths l of the segments belonging to the gas phase, which provides more accurate results
than the dense phase at short times [7]. It is known that the distribution of the chord lengths
P(l, t) is closely related to the distribution of free volume in the material [15]. To estimate
the average sizes of the pores, we focus on the first moment of the distribution:

L(t) =
∫ ∞

0
dlP(l, t)l (3)
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Figure 2. Panel (a): radial distribution function g(r), for a sample at T = 0.1, ρ = 0.6, at different
aging times t. Panel (b): Corresponding static structure factor S(q). Panel (c): Time evolution of the
average domain size L(t) for systems with different density quenched at T = 0.1. For comparison,
data for a system with M = 5 are also shown (dashed line).

We studied the time evolution of the average pores size for various state points. An
example of L(t) is reported in Figure 2c. For short times, we observe slow growth, which
could be related to the presence of bonds between particles. Indeed, at the beginning of
the coarsening process, the energy required for the creation of interfaces is presumably
increased by the constraints imposed by connectivity between atoms. This effect recalls the
frozen period in the viscoelastic phase separation [18]: for short times after the quench, no
macroscopic domains are formed. Since, in the present work, the temperatures considered
are below the predicted glass transition, [19], we cannot exclude that viscoelastic effects
could play a role.

At later times, the coarsening process takes over. The domain growth follows a power-
law in time with an exponent that is approximately 1/2. As reported in previous works
on atomic systems [7,20], this can be seen as effective power-law growth interpolating
between two regimes, t1/3 for short times and t1 for long times. These power laws are the
theoretical prediction for the spinodal decomposition: the t1/3 regime corresponds to a
surface-tension-driven coarsening, and the t1 regime corresponds to the hydrodynamic
regime. Yet, these regimes do not occur in the state points studied in our work. The
absence of the hydrodynamic regime is, however, expected, due to the high viscosity
at low temperature, which suppresses hydrodynamic effects. As the t1/2 behavior is
common among a variety of systems that undergo gas–liquid phase separation under deep
quenching, from single-component atomic systems to colloidal suspension [17,21–23], it is
natural to deem a universal physical mechanism behind this power-law coarsening [5].

To go beyond in this analysis, we explored different state points of the system by
changing systematically the chain length M, the density ρ and the quench temperature
T. In Table 1, we report for each set of state parameters the exponent of the intermediate
time power-law regime, with the corresponding time window in which the exponent is
determined. We note that in the majority of the systems, the domain growth complies with
the t1/2 law within the exponent incertitude. Deviations are apparent for the lowest quench
temperature, T = 0.015: the coarsening process was set up at later times and characterized
by higher time dependence as compared to the higher temperatures. The origin of this
behavior is not clear; as a possible explanation, we can think of a more homogeneous
growth mechanism controlled by weaker thermal fluctuations. Further, increasing the
molecular weight appears to slow down the coarsening process, as one would expect
assuming that connectivity makes rearrangements more complex.

At longer times, the growth of L(t) is slowed down, changing to a logarithmic time
dependence in agreement with what reported in atomistic simulations [7]. It would be
interesting in future works to explore longer chains to better characterize this evolution.
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Table 1. Exponent of the power-law regime in domain growth, and the corresponding time interval
in which the exponent is determined, for different states obtained while varying chain length M,
density ρ and quench temperature T.

M, ρ, T Exponent Time Window

5, 0.3, 0.3 0.5± 0.1 [1000–16,000]

10, 0.3, 0.3 0.5± 0.1 [500–16,000]

20, 0.3, 0.3 0.50± 0.04 [500–16,000]

5, 0.4, 0.1 0.65± 0.09 [500–16,000]

10, 0.4, 0.1 0.56± 0.06 [500–16,000]

20, 0.4, 0.1 0.50± 0.08 [500–16,000]

5, 0.6, 0.015 0.9± 0.1 [2000–100,000]

10, 0.6, 0.015 0.8± 0.1 [4000–100,000]

20, 0.6, 0.015 0.56± 0.02 [2000–100,000]

3.2. Mechanical Response

In this section, we characterize the mechanical responses of the porous structures
under external deformation, in both the elastic and plastic regimes. Deformation was
exerted using the athermal quasi-static (AQS) protocol [24], i.e., by an alternating homoge-
neous deformation step (uniaxial or shear), with energy minimization (using the conjugate
gradient algorithm) to maintain the system at mechanical equilibrium. Since the system
was allowed to relax to a new energy minimum before a new strain increment was applied,
the AQS protocol corresponds to the zero-shear rate limit.

Studies on the elastic properties of porous glassy systems have been performed before,
using different methods and in different frameworks [8,9,25]. We adopted a "mesoscale
approach", in which the elastic properties of the system are obtained from the stress–strain
curves of the system restricted to deformations in the genuine elastic regime (approximately
below 1%). The deformations were carried out under tensile, compressive and shear
loading. In Figure 3, we show representative curves for tensile (panel a) and compressive
tests (panel b). The Young’s modulus E is estimated as the slope of the curves in the
very elastic regime where linear behavior is detected (insets of Figure 3). To reduce the
incertitude, assuming system isotropy, E is averaged along three deformation directions x,
y and z. Further, simple shear tests were also performed to evaluate the shear modulus G,
for which the average was found in the xy, xz and yz directions.

Figure 3. Stress–strain curves for a system at T = 0.1, ρ = 0.6 and age t = 10 in the case of
compressive (panel a) and tensile (panel b) loading. The insets are magnifications of the elastic
regions at a small rate of deformation.
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In Figure 4 we show the dependence on the aging time of the Young’s modulus E
(panel a) and shear modulus G (panel b) for states with different densities and quench
temperatures. First, we note that both the moduli decrease with aging: the decrease is
apparently linear in a semi-log plot, which could signal logarithmic aging. We expect the
elastic properties of the system to be controlled by two competing effects: the glassy aging
of the dense phase, which leads to the stiffening of the material, and the coarsening process,
which promotes a softer overall structure. Then, the reported decreases in E and G suggest
the latter effect to be dominant. Further, it is worth mentioning that in the dynamically
arrested configurations, which serve as starting point for mechanical tests, the coarsening
process could be reactivated by the external mechanical driving. Yet, we expect this effect to
be negligible in the elastic regime, in agreement with previous results on atomic systems [9].

Figure 4. (a) Evolution of the elastic constant, Young’s modulus E (panel a) and shear modulus G
(panel b), with the system’s age for different state parameters (density and quench temperature).

For larger deformations, the elastic response breaks: stress–strain curves appear
intermittent, showing alternating elastic loading and sudden stress drops (see Figure 3).
The occurring of these stress drops is commonly observed in amorphous systems under
deformation and is known to correspond to avalanches of plastic events. It is interesting
to examine the distribution of the stress drop magnitude ∆σ. Indeed, previous works on
amorphous systems reported power-law distributions for stress drops, P(∆σ) ∼ ∆σ−τ

with characteristic exponents in the range τ ∼ 1.2− 1.5 [26]. In particular, experimental
observations of brittle fractures in amorphous systems found τ ∼ 1.4 [27,28]. Numerical
simulations also reported values that ranged from τ ∼ 1.20 for 2D systems to τ ∼ 1.43 for
3D systems [26].

In Figure 5, representative stress-drop distributions P(∆σ) are shown for states with
different aging times (panel a) densities (panel b) and quench temperatures (panel c). The
distribution shows power-law behavior, with an exponential cut due to the finite size of
the system. Noticeably, we estimated an exponent τ ∼ 1.45, which seems not to depend
on the state parameters and which agrees with the one reported in previous numerical
studies of 3D systems [26]. In Figure 5d, we also plotted the distribution of stress drops for
systems with different chain lengths M = 5, 10, 20. We note that even for shorter chains,
the exponent seems not to deviate significantly, being τ ∼ 1.5 for the specific case M = 5.



Polymers 2023, 15, 358 7 of 9

Figure 5. Distribution P(∆σ) of the stress drops in the plastic regime of mechanical response,
exploring different combinations of state parameters. Specifically, while keeping fixed all the other
parameters, we changed the age (panel a), the density (panel b), the quench temperature (panel c)
and the chain length (panel d).

4. Conclusions

The structure and mechanical properties of a porous polymer material were thoroughly
investigated using molecular dynamics simulations. Via arrested phase separation, we
generated systems consisting of interpenetrating bicontinuos gas–solid phases—the latter
being characterized by an amorphous structure. We investigated the time evolution of
the coarsening process, which exhibits, at high quench temperatures (but below the glass
transition one), the power-law behavior observed in atomic systems, that could be related
to the viscoelastic nature of the mechanism.

Then, we analyzed the elastic and plastic responses of the system to external defor-
mation in the athermal quasi-static limit for different densities, quench temperatures and
aging times. The analysis of elastic constants revealed the predominance of coarsening
over the glassy aging, which led to a softer structure (lower bulk and shear moduli) as
the material aged. For large deformations, the plastic response is apparent, resulting in
an intermittent pattern of the stress–strain curves. We retrieved a stress-drop distribution
which follows a power-law behavior with an exponent τ ∼ 1.45, which is rather robust,
not depending on state parameters or system age, and which is compatible with previous
numerical and experimental results.

This work represents the first analysis of the effects of chain connectivity on the
phenomenon of arrested phase separation. It raises interesting questions, such as the
influences of bond stiffness, chain architecture and entanglement effects, which could be
the focus of future studies.
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