Selective Photocatalytic Reduction of Nitrobenzene to Aniline Using TiO2 Embedded in sPS Aerogel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Samples Characterization
2.2. Photocatalytic Activity Results on P25 in Powder Form
2.2.1. Effect of the Reducing Agent
2.2.2. Effects of Initial EtOH Percentage
2.2.3. Effect of Photocatalyst Dosage
2.2.4. Effect of Initial NB Concentration
2.3. Photocatalytic Activity Results on sPS/P25 Aerogel
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Aerogel Preparation
3.3. Samples Characterization
3.4. Photocatalytic Activity Tests
- Pf is AN concentration measured at the generic irradiation time t;
- Ci is the initial concentration of NB;
- Cf is NB concentration measured at the generic irradiation time t.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Padda, R.S.; Wang, C.; Hughes, J.B.; Kutty, R.; Bennett, G.N. Mutagenicity of Nitroaromatic Degradation Compounds. Environ. Toxicol. Chem. 2003, 22, 2293–2297. [Google Scholar] [CrossRef] [PubMed]
- Purohit, V.; Basu, A.K. Mutagenicity of Nitroaromatic Compounds. Chem. Res. Toxicol. 2000, 13, 673–692. [Google Scholar] [CrossRef] [PubMed]
- Sriram, P.; Su, D.-S.; Periasamy, A.P.; Manikandan, A.; Wang, S.-W.; Chang, H.-T.; Chueh, Y.-L.; Yen, T.-J. Quadrupole Gap Plasmons: Hybridizing Strong Quadrupole Gap Plasmons Using Optimized Nanoantennas with Bilayer MoS2 for Excellent Photo-Electrochemical Hydrogen Evolution (Adv. Energy Mater. 29/2018). Adv. Energy Mater. 2018, 8, 1870127. [Google Scholar] [CrossRef] [Green Version]
- Bose, P.; Glaze, W.H.; Maddox, D.S. Degradation of RDX by Various Advanced Oxidation Processes: I. Reaction Rates. Water Res. 1998, 32, 997–1004. [Google Scholar] [CrossRef]
- Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Selective Hydrogenation for Fine Chemicals: Recent Trends and New Developments. Adv. Synth. Catal. 2003, 345, 103–151. [Google Scholar] [CrossRef]
- Mu, Q.; Zhang, Q.; Yu, W.; Su, M.; Cai, Z.; Cui, K.; Ye, Y.; Liu, X.; Deng, L.; Chen, B.; et al. Robust Multiscale-Oriented Thermoresponsive Fibrous Hydrogels with Rapid Self-Recovery and Ultrafast Response Underwater. ACS Appl. Mater. Interfaces 2020, 12, 33152–33162. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.; Cui, K.; Wang, Z.J.; Matsuda, T.; Cui, W.; Kato, H.; Namiki, S.; Yamazaki, T.; Frauenlob, M.; Nonoyama, T.; et al. Force-Triggered Rapid Microstructure Growth on Hydrogel Surface for on-Demand Functions. Nat. Commun. 2022, 13, 6213. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, C.; Lievenbrück, M.; Ritter, H. Polymers and Dyes: Developments and Applications. Polymers 2015, 7, 717–746. [Google Scholar] [CrossRef] [Green Version]
- Aljahdali, M.S.; Amin, M.S.; Mohamed, R.M. Gd-Cobalt Selenite as an Efficient Nanocomposite for Aniline Synthesis from Photocatalytic Reduction of Nitrobenzene. Mater. Res. Bull. 2018, 99, 161–167. [Google Scholar] [CrossRef]
- Zhou, B.; Song, J.; Zhou, H.; Wu, L.; Wu, T.; Liu, Z.; Han, B. Light-Driven Integration of the Reduction of Nitrobenzene to Aniline and the Transformation of Glycerol into Valuable Chemicals in Water. RSC Adv. 2015, 5, 36347–36352. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, Z.; Nie, R.; Hou, Z.; Zheng, X. Hydrogenation of Nitrobenzene to Aniline over Silica Gel Supported Nickel Catalysts. Ind. Eng. Chem. Res. 2010, 49, 4664–4669. [Google Scholar] [CrossRef]
- Lee, S.-P.; Chen, Y.-W. Nitrobenzene Hydrogenation on Ni–P, Ni–B and Ni–P–B Ultrafine Materials. J. Mol. Catal. A: Chem. 2000, 152, 213–223. [Google Scholar] [CrossRef]
- Corma, A.; Concepción, P.; Serna, P. A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angew. Chem. Int. Ed. 2007, 46, 7266–7269. [Google Scholar] [CrossRef] [PubMed]
- Tegge, G. Ullmann’s Encyclopedia of Industrial Chemistry. Fifth, Completely Revised Edition. Volumes B2 and B3. Unit Operations I and II. VCH Verlagsgesellschaft MbH, Weinheim/Basel/Cambridge/New York 1988. ISBN 3-527-20132-7 (Weinheim …) Pp., 0-89573-537-7 (Cambridge …) Pp. Executive Editor: Wolfgang Gerhartz. Editors: Barbara Elvers, Michael Ravenscroft, James, F. Rounsaville, and Gail Schulz. Each Volume 634 Pages, with Numerous Figures and Tables. Hardcover, Each DM 490,–. Starch Stärke 1991, 43, 79. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, J.; Liu, H.; Zhou, Y.; Feng, Y. Selective Photoreduction of Nitrobenzene to Aniline on TiO2 Nanoparticles Modified with Amino Acid. J. Hazard. Mater. 2010, 178, 994–998. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, H.; Fu, X.; Hu, Y. Preparation, Characterization, and Photocatalytic Performance of Ce2S3 for Nitrobenzene Reduction. Appl. Surf. Sci. 2013, 275, 335–341. [Google Scholar] [CrossRef]
- Patzsch, J.; Berg, B.; Bloh, J.Z. Kinetics and Optimization of the Photocatalytic Reduction of Nitrobenzene. Front. Chem. 2019, 7, 289. [Google Scholar] [CrossRef] [Green Version]
- Bakardjieva, S.; Šubrt, J.; Štengl, V.; Dianez, M.J.; Sayagues, M.J. Photoactivity of Anatase–Rutile TiO2 Nanocrystalline Mixtures Obtained by Heat Treatment of Homogeneously Precipitated Anatase. Appl. Catal. B: Environ. 2005, 58, 193–202. [Google Scholar] [CrossRef]
- Flores, S.; Rios-Bernij, O.; Valenzuela, M.; Córdova, I.; Gómez, R.; Gutiérrez, R. Photocatalytic Reduction of Nitrobenzene over Titanium Dioxide: By-Product Identification and Possible Pathways. Top. Catal. 2007, 44, 507–511. [Google Scholar] [CrossRef]
- Ferry, J.L.; Glaze, W.H. Photocatalytic Reduction of Nitro Organics over Illuminated Titanium Dioxide: Role of the TiO2 Surface. Langmuir 1998, 14, 3551–3555. [Google Scholar] [CrossRef]
- Ferry, J.L.; Glaze, W.H. Photocatalytic Reduction of Nitroorganics over Illuminated Titanium Dioxide: Electron Transfer between Excited-State TiO2 and Nitroaromatics. J. Phys. Chem. B 1998, 102, 2239–2244. [Google Scholar] [CrossRef]
- Fukui, M.; Koshida, W.; Tanaka, A.; Hashimoto, K.; Kominami, H. Photocatalytic Hydrogenation of Nitrobenzenes to Anilines over Noble Metal-Free TiO2 Utilizing Methylamine as a Hydrogen Donor. Appl. Catal. B Environ. 2020, 268, 118446. [Google Scholar] [CrossRef]
- Wang, H.; Partch, R.E.; Li, Y. Synthesis of 2-Alkylbenzimidazoles via TiO2-Mediated Photocatalysis. J. Org. Chem. 1997, 62, 5222–5225. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P.; Longo, S.; Venditto, V.; Guerra, G. N-Doped TiO2/s-PS Aerogels for Photocatalytic Degradation of Organic Dyes in Wastewater under Visible Light Irradiation. J. Chem. Technol. Biotechnol. 2014, 89, 1175–1181. [Google Scholar] [CrossRef]
- Sacco, O.; Vaiano, V.; Daniel, C.; Navarra, W.; Venditto, V. Highly Robust and Selective System for Water Pollutants Removal: How to Transform a Traditional Photocatalyst into a Highly Robust and Selective System for Water Pollutants Removal. Nanomaterials 2019, 9, 1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacco, O.; Vaiano, V.; Daniel, C.; Navarra, W.; Venditto, V. Removal of Phenol in Aqueous Media by N-Doped TiO2 Based Photocatalytic Aerogels. Mater. Sci. Semicond. Process. 2018, 80, 104–110. [Google Scholar] [CrossRef]
- Machado, N.R.C.F.; Santana, V.S. Influence of Thermal Treatment on the Structure and Photocatalytic Activity of TiO2 P25. Catal. Today 2005, 107, 595–601. [Google Scholar] [CrossRef]
- Zouzelka, R.; Rathousky, J. Photocatalytic Abatement of NOx Pollutants in the Air Using Commercial Functional Coating with Porous Morphology. Appl. Catal. B Environ. 2017, 217, 466–476. [Google Scholar] [CrossRef]
- Raj, K.; Viswanathan, B. Effect of Surface Area, Pore Volume and Particle Size of P25 Titania on the Phase Transformation of Anatase to Rutile. Indian J. Chem. Sect. A Inorg. Phys. Theor. Anal. Chem. 2009, 48, 1378–1382. [Google Scholar]
- Navarra, W.; Sacco, O.; Daniel, C.; Venditto, V.; Vaiano, V.; Vignati, D.A.L.; Bojic, C.; Libralato, G.; Lofrano, G.; Carotenuto, M. Photocatalytic Degradation of Atrazine by an N-Doped TiO2/Polymer Composite: Catalytic Efficiency and Toxicity Evaluation. J. Environ. Chem. Eng. 2022, 10, 108167. [Google Scholar] [CrossRef]
- Capello, C.; Fischer, U.; Hungerbühler, K. What Is a Green Solvent? A Comprehensive Framework for the Environmental Assessment of Solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G. CHAPTER 18—Selected Infrared and Raman Spectra from the Sadtler Research Laboratories, Division of Bio-Rad Laboratories, Inc. for Compounds with Structures Discussed in Chapters 2–17. In The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Lin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G., Eds.; Academic Press: San Diego, CA, USA, 1991; pp. 307–422. ISBN 978-0-12-451160-6. [Google Scholar]
- Shin, D.; Kang, J.H.; Min, K.-A.; Hong, S.; Hee Hong, B. Graphene Oxide Catalyzed Cis-Trans Isomerization of Azobenzene. APL Mater. 2014, 2, 092501. [Google Scholar] [CrossRef]
- Rahman, M.A.; Muneer, M. Photocatalysed Degradation of Two Selected Pesticide Derivatives, Dichlorvos and Phosphamidon, in Aqueous Suspensions of Titanium Dioxide. Desalination 2005, 181, 161–172. [Google Scholar] [CrossRef]
- Garcia, J.; Takashima, K. Photocatalytic Degradation of Imazaquin in an Aqueous Suspension of Titanium Dioxide. J. Photochem. Photobiol. A Chem. 2003, 155, 215–222. [Google Scholar] [CrossRef]
- Roy, P.; Periasamy, A.P.; Liang, C.-T.; Chang, H.-T. Synthesis of Graphene-ZnO-Au Nanocomposites for Efficient Photocatalytic Reduction of Nitrobenzene. Environ. Sci. Technol. 2013, 47, 6688–6695. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H.; Yu, X.; Liu, W. Photocatalytic Reduction of Nitrobenzene by Titanium Dioxide Powder. Chin. J. Chem. 2010, 28, 21–26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarra, W.; Sacco, O.; Venditto, V.; Vaiano, V. Selective Photocatalytic Reduction of Nitrobenzene to Aniline Using TiO2 Embedded in sPS Aerogel. Polymers 2023, 15, 359. https://doi.org/10.3390/polym15020359
Navarra W, Sacco O, Venditto V, Vaiano V. Selective Photocatalytic Reduction of Nitrobenzene to Aniline Using TiO2 Embedded in sPS Aerogel. Polymers. 2023; 15(2):359. https://doi.org/10.3390/polym15020359
Chicago/Turabian StyleNavarra, Wanda, Olga Sacco, Vincenzo Venditto, and Vincenzo Vaiano. 2023. "Selective Photocatalytic Reduction of Nitrobenzene to Aniline Using TiO2 Embedded in sPS Aerogel" Polymers 15, no. 2: 359. https://doi.org/10.3390/polym15020359
APA StyleNavarra, W., Sacco, O., Venditto, V., & Vaiano, V. (2023). Selective Photocatalytic Reduction of Nitrobenzene to Aniline Using TiO2 Embedded in sPS Aerogel. Polymers, 15(2), 359. https://doi.org/10.3390/polym15020359