Next Issue
Volume 15, November-1
Previous Issue
Volume 15, October-1
 
 
polymers-logo

Journal Browser

Journal Browser

Polymers, Volume 15, Issue 20 (October-2 2023) – 162 articles

Cover Story (view full-size image): The 3D printing of bio-based scaffolds was achieved by combining acrylated soybean oil, a reactive diluent, and bioactive glass particles. This novel material offers the biocompatibility, mechanical strength, and precision of UV curing. Field emission scanning electron microscopy (FESEM) analysis reveals the excellent dispersion of bioactive glass powder within the polymer matrix, showing their spherical shape. The comprehensive characterization demonstrates the potential of these 3D-printed scaffolds reinforced with bioactive glass in regenerative medicine, offering a promising avenue for tissue engineering. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 1996 KiB  
Article
Viability of Glycolysis for the Chemical Recycling of Highly Coloured and Multi-Layered Actual PET Wastes
by Asier Asueta, Sixto Arnaiz, Rafael Miguel-Fernández, Jon Leivar, Izotz Amundarain, Borja Aramburu, Jose Ignacio Gutiérrez-Ortiz and Rubén López-Fonseca
Polymers 2023, 15(20), 4196; https://doi.org/10.3390/polym15204196 - 23 Oct 2023
Cited by 2 | Viewed by 2291
Abstract
The chemical recycling of poly(ethylene terephthalate) –PET– fractions, derived from actual household packaging waste streams, using solvolysis, was investigated. This recycling strategy was applied after a previous on-line automatic identification, by near-infrared spectroscopy –NIR–, and a subsequent selective sorting of the different PET [...] Read more.
The chemical recycling of poly(ethylene terephthalate) –PET– fractions, derived from actual household packaging waste streams, using solvolysis, was investigated. This recycling strategy was applied after a previous on-line automatic identification, by near-infrared spectroscopy –NIR–, and a subsequent selective sorting of the different PET materials that were present in the packaging wastes. Using this technology, it was possible to classify fractions exclusively including PET, virtually avoiding the presence of both other plastics and materials, such as paper, cardboard and wood, that are present in the packaging wastes, as they were efficiently recognised and differentiated. The simple PET fractions, including clear and monolayered materials, were adequate to be recycled by mechanical means meanwhile the complex PET fractions, containing highly coloured and multi-layered materials, were suitable candidates to be recycled by chemical routes. The depolymerisation capacity of the catalytic glycolysis, when applied to those complex PET wastes, was studied by evaluating the effect of the process parameters on the resulting formation and recovery of the monomer bis(2-hydroxyethyl) terephthalate –BHET– and the achieved quality of this reaction product. Comparable and reasonable results, in terms of monomer yield and its characteristics, were obtained independently of the type of complex PET waste that was chemically recycled. Full article
(This article belongs to the Special Issue Advanced Recycling of Plastic Waste: An Approach for Circular Economy)
Show Figures

Figure 1

20 pages, 2220 KiB  
Article
An Electron Spin Resonance Study Comparing Nanometer–Nanosecond Dynamics in Diblock Copolymers and Their Poly(methyl Methacrylate) Binary Blends
by Laura Andreozzi and Elisa Martinelli
Polymers 2023, 15(20), 4195; https://doi.org/10.3390/polym15204195 - 23 Oct 2023
Cited by 1 | Viewed by 860
Abstract
Block copolymers are a class of materials that are particularly interesting with respect to their capability to self-assemble in ordered structures. In this context, the coupling between environment and dynamics is particularly relevant given that movements at the molecular level influence various properties [...] Read more.
Block copolymers are a class of materials that are particularly interesting with respect to their capability to self-assemble in ordered structures. In this context, the coupling between environment and dynamics is particularly relevant given that movements at the molecular level influence various properties of macromolecules. Mixing the polymer with a second macromolecule appears to be an easy method for studying these relationships. In this work, we studied blends of poly(methyl methacrylate) (PMMA) and a block copolymer composed of PMMA as the first block and poly(3-methyl-4-[6-(methylacryloyloxy)-hexyloxy]-4′-pentyloxy azobenzene) as the second block. The relaxational properties of these blends were investigated via electron spin resonance (ESR) spectroscopy, which is sensitive to nanometric length scales. The results of the investigations on the blends were related to the dynamic behavior of the copolymers. At the nanoscale, the study revealed the presence of heterogeneities, with slow and fast dynamics available for molecular reorientation, which are further modulated by the ability of the block copolymers to form supramolecular structures. For blends, the heterogeneities at the nanoscale were still detected. However, it was observed that the presence of the PMMA as a major component of the blends modified their dynamic behavior. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

13 pages, 13840 KiB  
Article
Mineralized Collagen/Polylactic Acid Composite Scaffolds for Load-Bearing Bone Regeneration in a Developmental Model
by Wenbo Zhu, Wenjing Li, Mengxuan Yao, Yan Wang, Wei Zhang, Chao Li, Xiumei Wang, Wei Chen and Hongzhi Lv
Polymers 2023, 15(20), 4194; https://doi.org/10.3390/polym15204194 - 23 Oct 2023
Cited by 3 | Viewed by 1465 | Correction
Abstract
Repairing load-bearing bone defects in children remains a big clinical challenge. Mineralized collagen (MC) can effectively simulate natural bone composition and hierarchical structure and has a good biocompatibility and bone conductivity. Polylactic acid (PLA) is regarded as a gold material because of its [...] Read more.
Repairing load-bearing bone defects in children remains a big clinical challenge. Mineralized collagen (MC) can effectively simulate natural bone composition and hierarchical structure and has a good biocompatibility and bone conductivity. Polylactic acid (PLA) is regarded as a gold material because of its mechanical properties and degradability. In this study, we prepare MC/PLA composite scaffolds via in situ mineralization and freeze-drying. Cell, characterization, and animal experiments compare and evaluate the biomimetic properties and repair effects of the MC/PLA scaffolds. Phalloidin and DAPI staining results show that the MC/PLA scaffolds are not cytotoxic. CCK-8 and scratch experiments prove that the scaffolds are superior to MC and hydroxyapatite (HA)/PLA scaffolds in promoting cell proliferation and migration. The surface and interior of the MC/PLA scaffolds exhibit rich interconnected pore structures with a porosity of ≥70%. The XRD patterns are typical HA waveforms. X-ray, micro-CT, and H&E staining reveal that the defect boundary disappears, new bone tissue grows into MC/PLA scaffolds in a large area, and the scaffolds are degraded after six months of implantation. The MC/PLA composite scaffold has a pore structure and composition similar to cancellous bone, with a good biocompatibility and bone regeneration ability. Full article
(This article belongs to the Special Issue Stimuli Responsive Polymeric-Based Electroactive Biomaterials)
Show Figures

Graphical abstract

17 pages, 6237 KiB  
Article
Exploring the Potential of Roselle Calyx and Sappan Heartwood Extracts as Natural Colorants in Poly(butylene Succinate) for Biodegradable Packaging Films
by Wordpools Nansu, Sukunya Ross, Amonrut Waisarikit, Gareth M. Ross, Pensri Charoensit, Nungruthai Suphrom and Sararat Mahasaranon
Polymers 2023, 15(20), 4193; https://doi.org/10.3390/polym15204193 - 23 Oct 2023
Cited by 3 | Viewed by 1883
Abstract
Recently, there has been a growing concern among consumers regarding the safety of packaging products, particularly due to the presence of potentially harmful substances like synthetic pigments and inorganic dyes. These substances, which are often used to attract consumer attention, can migrate and [...] Read more.
Recently, there has been a growing concern among consumers regarding the safety of packaging products, particularly due to the presence of potentially harmful substances like synthetic pigments and inorganic dyes. These substances, which are often used to attract consumer attention, can migrate and contaminate products over extended shelf storage periods. To address this issue, the focus of this research was the development of a biodegradable packaging film using poly(butylene succinate) (PBS) incorporated with natural colorants extracted from roselle (RS) and sappan heartwood (SP). RS and SP serve as non-toxic and alternative pigments when compared to synthetic colorants. The biodegradable packaging films were prepared using blown film extrusion, encompassing different weight percentages of RS and SP (0.1%, 0.2%, and 0.3%). The films exhibited distinct colors, with RS films appearing pink to purple and SP films exhibiting an orange hue. The water vapor transmission rate slightly decreased with an increasing content of RS and SP extracts, indicating improved barrier properties. Additionally, the films showed reduced light transmittance, as evidenced by the UV–Vis light barrier results. The degree of crystallinity in the films was enhanced, as confirmed by X-ray diffraction and differential scanning calorimetry techniques. Regarding mechanical properties, the PBS/RS and PBS/SP films exhibited slight increases in tensile strength and elongation compared to neat PBS films. Moreover, the blended films demonstrated higher stability after undergoing an aging test, further highlighting their potential for use in biodegradable packaging applications. The key advantages of these films lie in their non-toxicity, biodegradability, and overall environmental friendliness. Full article
Show Figures

Figure 1

27 pages, 9886 KiB  
Review
Rapid Impregnating Resins for Fiber-Reinforced Composites Used in the Automobile Industry
by Mei-Xian Li, Hui-Lin Mo, Sung-Kwon Lee, Yu Ren, Wei Zhang and Sung-Woong Choi
Polymers 2023, 15(20), 4192; https://doi.org/10.3390/polym15204192 - 23 Oct 2023
Cited by 1 | Viewed by 1971
Abstract
As environmental regulations become stricter, weight- and cost-effective fiber-reinforced polymer composites are being considered as alternative materials in the automobile industry. Rapidly impregnating resin into the reinforcing fibers is critical during liquid composite molding, and the optimization of resin impregnation is related to [...] Read more.
As environmental regulations become stricter, weight- and cost-effective fiber-reinforced polymer composites are being considered as alternative materials in the automobile industry. Rapidly impregnating resin into the reinforcing fibers is critical during liquid composite molding, and the optimization of resin impregnation is related to the cycle time and quality of the products. In this review, various resins capable of rapid impregnation, including thermoset and thermoplastic resins, are discussed for manufacturing fiber-reinforced composites used in the automobile industry, along with their advantages and disadvantages. Finally, vital factors and perspectives for developing rapidly impregnated resin-based fiber-reinforced composites for automobile applications are discussed. Full article
Show Figures

Figure 1

23 pages, 4156 KiB  
Article
Synthesis, Characterization, and Environmental Applications of Novel Per-Fluorinated Organic Polymers with Azo- and Azomethine-Based Linkers via Nucleophilic Aromatic Substitution
by Suha S. Altarawneh, Hani M. El-Kaderi, Alexander J. Richard, Osama M. Alakayleh, Ibtesam Y. Aljaafreh, Mansour H. Almatarneh, Taher S. Ababneh, Lo’ay A. Al-Momani and Rawan H. Aldalabeeh
Polymers 2023, 15(20), 4191; https://doi.org/10.3390/polym15204191 - 23 Oct 2023
Cited by 2 | Viewed by 1621
Abstract
This study reports on the synthesis and characterization of novel perfluorinated organic polymers with azo- and azomethine-based linkers using nucleophilic aromatic substitution. The polymers were synthesized via the incorporation of decafluorobiphenyl and hexafluorobenzene linkers with diphenols in the basic medium. The variation in [...] Read more.
This study reports on the synthesis and characterization of novel perfluorinated organic polymers with azo- and azomethine-based linkers using nucleophilic aromatic substitution. The polymers were synthesized via the incorporation of decafluorobiphenyl and hexafluorobenzene linkers with diphenols in the basic medium. The variation in the linkers allowed the synthesis of polymers with different fluorine and nitrogen contents. The rich fluorine polymers were slightly soluble in THF and have shown molecular weights ranging from 4886 to 11,948 g/mol. All polymers exhibit thermal stability in the range of 350–500 °C, which can be attributed to their structural geometry, elemental contents, branching, and cross-linking. For instance, the cross-linked polymers with high nitrogen content, DAB-Z-1h and DAB-Z-1O, are more stable than azomethine-based polymers. The cross-linking was characterized by porosity measurements. The azo-based polymer exhibited the highest surface area of 770 m2/g with a pore volume of 0.35 cm3/g, while the open-chain azomethine-based polymer revealed the lowest surface area of 285 m2/g with a pore volume of 0.0872 cm3/g. Porous structures with varied hydrophobicities were investigated as adsorbents for separating water-benzene and water-phenol mixtures and selectively binding methane/carbon dioxide gases from the air. The most hydrophobic polymers containing the decafluorbiphenyl linker were suitable for benzene separation, while the best methane uptake values were 6.14 and 3.46 mg/g for DAB-Z-1O and DAB-A-1O, respectively. On the other hand, DAB-Z-1h, with the highest surface area and being rich in nitrogen sites, has recorded the highest CO2 uptake at 298 K (17.25 mg/g). Full article
(This article belongs to the Special Issue Synthesis and Application of Fluoropolymers)
Show Figures

Figure 1

11 pages, 2931 KiB  
Article
Fabrication of a Fish-Bone-Inspired Inorganic–Organic Composite Membrane
by YuYang Jiao, Masahiro Okada, Bhingaradiya Nutan, Noriyuki Nagaoka, Ahmad Bikharudin, Randa Musa and Takuya Matsumoto
Polymers 2023, 15(20), 4190; https://doi.org/10.3390/polym15204190 - 23 Oct 2023
Cited by 1 | Viewed by 1758
Abstract
Biological materials have properties like great strength and flexibility that are not present in synthetic materials. Using the ribs of crucian carp as a reference, we investigated the mechanisms behind the high mechanical properties of this rib bone, and found highly oriented layers [...] Read more.
Biological materials have properties like great strength and flexibility that are not present in synthetic materials. Using the ribs of crucian carp as a reference, we investigated the mechanisms behind the high mechanical properties of this rib bone, and found highly oriented layers of calcium phosphate (CaP) and collagen fibers. To fabricate a fish-rib-bone-mimicking membrane with similar structure and mechanical properties, this study involves (1) the rapid synthesis of plate-like CaP crystals, (2) the layering of CaP–gelatin hydrogels by gradual drying, and (3) controlling the shape of composite membranes using porous gypsum molds. Finally, as a result of optimizing the compositional ratio of CaP filler and gelatin hydrogel, a CaP filler content of 40% provided the optimal mechanical properties of toughness and stiffness similar to fish bone. Due to the rigidity, flexibility, and ease of shape control of the composite membrane materials, this membrane could be applied as a guided bone regeneration (GBR) membrane. Full article
(This article belongs to the Special Issue Polymer-Based Materials for Drug Delivery and Biomedical Applications)
Show Figures

Graphical abstract

16 pages, 15448 KiB  
Article
Effects of Melt-Blown Processing Conditions on Nonwoven Polylactic Acid and Polybutylene Succinate
by Patcharee Pratumpong, Thananya Cholprecha, Nanjaporn Roungpaisan, Natee Srisawat, Surachet Toommee, Chiravoot Pechyen and Yardnapar Parcharoen
Polymers 2023, 15(20), 4189; https://doi.org/10.3390/polym15204189 - 23 Oct 2023
Cited by 3 | Viewed by 2205
Abstract
This research aimed to prepare nonwovens from polylactic acid and polybutylene succinate using the melt-blown process while varying the melt-blown process parameters, including air pressure (0.2 and 0.4 MPa) and die-to-collector distance (15, 30, and 45 cm). Increasing the air pressure and die-to-collector [...] Read more.
This research aimed to prepare nonwovens from polylactic acid and polybutylene succinate using the melt-blown process while varying the melt-blown process parameters, including air pressure (0.2 and 0.4 MPa) and die-to-collector distance (15, 30, and 45 cm). Increasing the air pressure and die-to-collector distance resulted in the production of smaller fibers. Simultaneously, the tensile strength was dependent on the polymer, air pressure, and die-to-collector distance used, and the percentage elongation at the break tended to increase with an increasing die-to-collector distance. Regarding thermal properties, the PBS nonwovens exhibited an increased level of crystallinity when the die-to-collector distance was raised, consistent with the degree of crystallinity obtained from X-ray diffraction analysis. Polylactic acid could be successfully processed into nonwovens under all six investigated conditions, whereas nonwoven polybutylene succinate could not be formed at a die-to-collector distance of 15 cm. However, both polymers demonstrated the feasibility of being processed into nonwovens using the melt-blown technique, showing potential for applications in the textile industry. Full article
(This article belongs to the Special Issue Development in Fiber-Reinforced Polymer Composites)
Show Figures

Graphical abstract

16 pages, 9006 KiB  
Article
The Micro-Flow Mechanism of Polymer Flooding in Dual Heterogeneous Reservoirs Considering the Wettability
by Huiying Zhong, Bowen Shi, Yuanyuan He, Yongbin Bi, Yu Zhao and Kun Xie
Polymers 2023, 15(20), 4188; https://doi.org/10.3390/polym15204188 - 23 Oct 2023
Cited by 2 | Viewed by 1139
Abstract
There have been some studies conducted about the single factor viscoelasticity of polymer solution or wettability effect on the micro-flow mechanism of polymer flooding. In this paper, the flow mechanism of polymer solution in dual heterogeneous reservoir considering the wettability and gravity was [...] Read more.
There have been some studies conducted about the single factor viscoelasticity of polymer solution or wettability effect on the micro-flow mechanism of polymer flooding. In this paper, the flow mechanism of polymer solution in dual heterogeneous reservoir considering the wettability and gravity was studied. The influences of wettability and rock particle shape on flow characteristics were studied based on the characteristics of saturation and pressure distribution. Compared with the simulation results of polymer flooding in three different rock particle shapes porous media, the oil displacement efficiency of the circular particle model is the highest at 91.57%, which is 3.34% and 11.48% higher than that in the hexagonal and diamond models, respectively. The influence of wettability was studied by the circular particle model. The oil displacement efficiency under water-wet conditions was higher than that under oil-wet conditions. The displacement process considering gravity was affected by the crossflow caused by gravity and viscous force, and the micro-oil displacement efficiency was 9.87% lower than that of non-gravity. Considering the wettability, vertical crossflow will be formed. The oil displacement efficiency under water-wet conditions was 3.9% higher than in oil-wet conditions. The research results can not only expand and enrich the micro-flow mechanism of viscoelastic polymer solution, but also provide reference and guidance for polymer flooding scheme design. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 8576 KiB  
Article
Research on Resilient Modulus Prediction Model and Equivalence Analysis for Polymer Reinforced Subgrade Soil under Dry–Wet Cycle
by Yingcheng Luan, Wei Lu and Kun Fu
Polymers 2023, 15(20), 4187; https://doi.org/10.3390/polym15204187 - 23 Oct 2023
Cited by 2 | Viewed by 1259
Abstract
The subgrade soil of asphalt pavement is significantly susceptible to changes in moisture content, and therefore many projects introduce polymer-based reinforcement to ensure soil performance. This paper aims to incorporate a variable representing the dry–wet cycle into the prediction model of resilient modulus [...] Read more.
The subgrade soil of asphalt pavement is significantly susceptible to changes in moisture content, and therefore many projects introduce polymer-based reinforcement to ensure soil performance. This paper aims to incorporate a variable representing the dry–wet cycle into the prediction model of resilient modulus of polymer reinforced soil. The polymer adopted is a self-developed subgrade soil solidification material consisting of sodium dodecyl sulfate and polyvinyl oxide. The current resilient modulus prediction model is improved, notably involving the effects of the dry–wet cycle. Combined with finite element method (FEM) analysis, the actual stress state of pavement and the coupling effect of dry–wet cycle and vehicle load on the resilient modulus are studied. The deterioration in resilient modulus with the variation in seasonal climate and load response is also investigated. Results show that the deviator stress is negatively correlated with the resilient modulus while the bulk stress has a linearly positive relation. The decreasing rate at low deviator stress is larger than that at the high level. Moreover, the dry–wet cycle can reduce the resilient modulus and the reducing amplitude is the largest at the first dry–wet cycle. FEM analysis shows that the middle position of the subgrade slope has the largest initial resilient modulus with decreasing amplitude in the first year of dry–wet cycles, while the upper position shows a smaller change. The variation in resilient modulus is closely related to the changes in cumulative volumetric water content. Considering that different positions of subgrade bear the external vehicle load, the equivalent resilient modulus is more realistic for guiding the subgrade design. Full article
(This article belongs to the Special Issue Application and Development of Polymers in Geotechnical Engineering)
Show Figures

Figure 1

14 pages, 2185 KiB  
Article
Enhanced and Proficient Soft Template Array of Polyaniline—TiO2 Nanocomposites Fibers Prepared Using Anionic Surfactant for Fuel Cell Hydrogen Storage
by Nacer Badi, Aashis S. Roy, Hatem A. Al-Aoh, Mohamed S. Motawea, Saleh A. Alghamdi, Abdulrhman M. Alsharari, Abdulrahman S. Albaqami and Alex Ignatiev
Polymers 2023, 15(20), 4186; https://doi.org/10.3390/polym15204186 - 22 Oct 2023
Cited by 1 | Viewed by 1711
Abstract
Porous TiO2-doped polyaniline and polyaniline nanocomposite fibers prepared by the in situ polymerization technique using anionic surfactant in an ice bath were studied. The prepared nanocomposites were characterized by FTIR spectroscopy and XRD patterns for structural analysis. The surface morphology of [...] Read more.
Porous TiO2-doped polyaniline and polyaniline nanocomposite fibers prepared by the in situ polymerization technique using anionic surfactant in an ice bath were studied. The prepared nanocomposites were characterized by FTIR spectroscopy and XRD patterns for structural analysis. The surface morphology of the polyaniline and its nanocomposites was examined using SEM images. DC conductivity shows the three levels of conductivity inherent in a semiconductor. Among the nanocomposites, the maximum DC conductivity is 5.6 S/cm for 3 wt.% polyaniline-TiO2 nanocomposite. Cyclic voltammetry shows the properties of PANI due to the redox peaks of 0.93 V and 0.24 V. Both peaks are due to the redox transition of PANI from the semiconductor to the conductive state. The hydrogen absorption capacity is approximately 4.5 wt.%, but at 60 °C the capacity doubles to approximately 7.3 wt.%. Conversely, 3 wt.% PANI—TiO2 nanocomposites have a high absorption capacity of 10.4 wt.% compared to other nanocomposites. An overall desorption capacity of 10.4 wt.% reduced to 96% was found for 3 wt.% TiO2-doped PANI nanocomposites. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

18 pages, 2345 KiB  
Article
Knot Formation on DNA Pushed Inside Chiral Nanochannels
by Renáta Rusková and Dušan Račko
Polymers 2023, 15(20), 4185; https://doi.org/10.3390/polym15204185 - 22 Oct 2023
Cited by 3 | Viewed by 8898
Abstract
We performed coarse-grained molecular dynamics simulations of DNA polymers pushed inside infinite open chiral and achiral channels. We investigated the behavior of the polymer metrics in terms of span, monomer distributions and changes of topological state of the polymer in the channels. We [...] Read more.
We performed coarse-grained molecular dynamics simulations of DNA polymers pushed inside infinite open chiral and achiral channels. We investigated the behavior of the polymer metrics in terms of span, monomer distributions and changes of topological state of the polymer in the channels. We also compared the regime of pushing a polymer inside the infinite channel to the case of polymer compression in finite channels of knot factories investigated in earlier works. We observed that the compression in the open channels affects the polymer metrics to different extents in chiral and achiral channels. We also observed that the chiral channels give rise to the formation of equichiral knots with the same handedness as the handedness of the chiral channels. Full article
(This article belongs to the Special Issue Polymers Physics: From Theory to Experimental Applications)
Show Figures

Graphical abstract

16 pages, 2382 KiB  
Article
Development of Chitosan/Sodium Carboxymethylcellulose Complexes to Improve the Simvastatin Release Rate: Polymer/Polymer and Drug/Polymer Interactions’ Effects on Kinetic Models
by Celia López-Manzanara Pérez, Norma Sofía Torres-Pabón, Almudena Laguna, Guillermo Torrado, Paloma M. de la Torre-Iglesias, Santiago Torrado-Santiago and Carlos Torrado-Salmerón
Polymers 2023, 15(20), 4184; https://doi.org/10.3390/polym15204184 - 22 Oct 2023
Cited by 5 | Viewed by 1556
Abstract
Simvastatin (SIM) is a potent lipid-lowering drug used to control hyper-cholesterolemia and prevent cardiovascular diseases. SIM presents low oral bioavailability (5%) because of its low aqueous solubility. In this work, polyelectrolyte complexes (PEC) are developed with different chitosan (CS) and carboxymethylcellulose (CMC) ratios [...] Read more.
Simvastatin (SIM) is a potent lipid-lowering drug used to control hyper-cholesterolemia and prevent cardiovascular diseases. SIM presents low oral bioavailability (5%) because of its low aqueous solubility. In this work, polyelectrolyte complexes (PEC) are developed with different chitosan (CS) and carboxymethylcellulose (CMC) ratios that will allow for an increase in the SIM dissolution rate (2.54-fold) in simulated intestinal medium (pH 4.5). Scanning Electron Microscopy (SEM) images revealed highly porous structures. The changes between both complexes, PEC-SIM:CS:CMC (1:1:2) and (1:2:1), were related to the relaxation of the polymer chains upon absorption of the dissolution medium. Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder X-ray diffraction (XRPD) studies were used to evaluate the polymer/polymer and drug/polymer interactions on the different PEC-SIM:CS:CMC ratios. In addition, the PEC-SIM:CS:CMC (1:2:1) complex exhibited a high ratio of protonated amino groups (NH3+) and an increase in intramolecular hydrogen bonds, which were correlated with a high expansion of the interpolymer chains and an increase in the SIM dissolution rate. Different kinetic models such as zero-order, first-order, Higuchi and Korsmeyer–Peppas were studied to evaluate the influence of CS/CMC ionic interactions on the ability to improve the release rate of poorly soluble drugs. Full article
Show Figures

Graphical abstract

16 pages, 4329 KiB  
Article
Eco-Friendly Natural Rubber–Jute Composites for the Footwear Industry
by Giovanni Barrera Torres, Carlos T. Hiranobe, Erivaldo Antonio da Silva, Guilherme P. Cardim, Henrique P. Cardim, Flavio C. Cabrera, Elizabeth R. Lozada, Carlos M. Gutierrez-Aguilar, Juan C. Sánchez, Jaime A. Jaramillo Carvalho, Aldo E. Job and Renivaldo J. Santos
Polymers 2023, 15(20), 4183; https://doi.org/10.3390/polym15204183 - 21 Oct 2023
Cited by 5 | Viewed by 2840
Abstract
Nowadays, biocomposites represent a new generation of materials that are environmentally friendly, cost-effective, low-density, and not derived from petroleum. They have been widely used to protect the environment and generate new alternatives in the polymer industry. In this study, we incorporated untreated jute [...] Read more.
Nowadays, biocomposites represent a new generation of materials that are environmentally friendly, cost-effective, low-density, and not derived from petroleum. They have been widely used to protect the environment and generate new alternatives in the polymer industry. In this study, we incorporated untreated jute fibers (UJFs) and alkaline-treated jute fibers (TJFs) at 1–5 and 10 phr into TSR 10 natural rubber as reinforcement fillers. These composites were produced to be used in countersole shoes manufacturing. Untreated fibers were compared to those treated with 10% sodium hydroxide. The alkali treatment allowed the incorporation of fibers without compromising their mechanical properties. The TJF samples exhibited 8% less hardness, 70% more tensile strength, and the same flexibility compared to their pure rubber counterparts. Thanks to their properties and ergonomic appearance, the composites obtained here can be useful in many applications: construction materials (sound insulating boards, and flooring materials), the automotive industry (interior moldings), the footwear industry (shoe soles), and anti-static moldings. These new compounds can be employed in innovative processes to reduce their carbon footprint and negative impact on our planet. Using the Lorenz–Park equation, the loaded composites examined in this study exhibited values above 0.7, which means a competitive load–rubber interaction. Scanning electron microscopy (SEM) was used to investigate the morphology of the composites in detail. Full article
(This article belongs to the Special Issue Multi-Functional and Multi-Scale Aspects in Polymer Composites)
Show Figures

Graphical abstract

14 pages, 4224 KiB  
Article
Study of Damage Prediction of Carbon Fiber Tows Using Eddy Current Measurement
by Jeong U Roh, Hyein Kwon, Sangjin Lee, Jae Chung Ha, Seong Baek Yang, Haeseong Lee and Dong-Jun Kwon
Polymers 2023, 15(20), 4182; https://doi.org/10.3390/polym15204182 - 21 Oct 2023
Cited by 2 | Viewed by 1350
Abstract
When manufacturing fiber-reinforced composites, it is possible to improve the quality of fiber steel fire and reduce the number of cracks in the finished product if it is possible to quickly identify the defects of the fiber tow. Therefore, in this study, we [...] Read more.
When manufacturing fiber-reinforced composites, it is possible to improve the quality of fiber steel fire and reduce the number of cracks in the finished product if it is possible to quickly identify the defects of the fiber tow. Therefore, in this study, we developed a method to identify the condition of carbon fiber tow using eddy current test (ECT), which is used to improve the quality of composite materials. Using the eddy current detection sensor, we checked the impedance results according to the condition of the CF tow. We found that the materials of the workbench used in the experiment greatly affected the ECT results, so it is necessary to use a material with a non-conductive and smooth surface. We evaluated the impedance results of the carbon fiber at 2 mm intervals using the ECT sensor and summarized the impedance results according to the fiber width direction, presenting the condition of the section as a constant of variation (CV). If the condition of the carbon fiber tow was unstable, the deviation of the CV per section was large. In particular, the deviation of the CV per section was more than 0.15 when the arrangement of the fibers was changed, foreign substances were formed on the surface of the fibers, and damage occurred in the direction of the fiber width of more than 4 mm, so it was easy to evaluate the quality on CF tow. Full article
(This article belongs to the Special Issue New Developments in Fiber-Reinforced Polymer Composites)
Show Figures

Graphical abstract

14 pages, 3386 KiB  
Article
Characterization of Artificial Stone Produced with Blast Furnace Dust Waste Incorporated into a Mixture of Epoxy Resin and Cashew Nut Shell Oil
by Tatiane Brito Perim, Elaine Carvalho, Gabriela Barreto, Thaís Leal da Cruz Silva, Sérgio Neves Monteiro, Afonso Rangel Garcez de Azevedo and Carlos Maurício Fontes Vieira
Polymers 2023, 15(20), 4181; https://doi.org/10.3390/polym15204181 - 21 Oct 2023
Cited by 1 | Viewed by 1333
Abstract
The demand for materials with improved properties and less negative impact on the environment is growing. Artificial stones are examples of these materials produced with up to 90% of particulate material joined by a binder. This article evaluates the physical and mechanical properties [...] Read more.
The demand for materials with improved properties and less negative impact on the environment is growing. Artificial stones are examples of these materials produced with up to 90% of particulate material joined by a binder. This article evaluates the physical and mechanical properties of two artificial stones produced with processing steel residue (blast furnace dust waste) and quartz powder. Two binders were used: pure epoxy resin, denoted as ASPB100, or a mixture of 70 wt% epoxy resin with 30 wt% cashew nut shell oil, denoted as ASPB7030. The process took place under vibration, compression (3 MPa/20 min and 90 °C) and vacuum (80 Pa). ASPB100 showed water absorption of 0.07%, while for ASPB7030, it was 0.54%. They were classified as having high mechanical strength associated with bending stress values equal to 32 and 25 MPa, respectively. Stain resistance indicated that both artificial stones had their stains removed with the tested cleaning agents. In this way, the novel artificial stones produced are sustainable alternatives for the application of blast furnace waste and cashew nut shell oil, reducing their negative impacts on the environment. Full article
(This article belongs to the Special Issue Mechanical and Thermal Properties of Polymer Composites)
Show Figures

Figure 1

18 pages, 3363 KiB  
Article
Sustainable Bio-Based Epoxy Resins with Tunable Thermal and Mechanic Properties and Superior Anti-Corrosion Performance
by Rubén Teijido, Leire Ruiz-Rubio, Senentxu Lanceros-Méndez, Qi Zhang and José Luis Vilas-Vilela
Polymers 2023, 15(20), 4180; https://doi.org/10.3390/polym15204180 - 21 Oct 2023
Cited by 4 | Viewed by 2353
Abstract
Bio-based epoxy thermoset resins have been developed from epoxidized soybean oil (ESO) cured with tannic acid (TA). These two substances of vegetable origin have been gathering attention due to their accessibility, favorable economic conditions, and convenient chemical functionalization. TA’s suitable high phenolic functionalization [...] Read more.
Bio-based epoxy thermoset resins have been developed from epoxidized soybean oil (ESO) cured with tannic acid (TA). These two substances of vegetable origin have been gathering attention due to their accessibility, favorable economic conditions, and convenient chemical functionalization. TA’s suitable high phenolic functionalization has been used to crosslink ESO by adjusting the −OH (from TA):epoxy (from ESO) molar ratio from 0.5:1 to 2.5:1. By means of Fourier-transform infrared spectroscopy, resulting in thermosets that evidenced optimal curing properties under moderate conditions (150–160 °C). The thermogravimetric analysis of the cured resins showed thermal stability up to 261 °C, with modulable mechanical and thermal properties determined by differential scanning calorimetry, dynamical mechanical thermal analysis, and tensile testing. Water contact angle measurements (83–87°) and water absorption tests (0.6–4.5 initial weight% intake) were performed to assess the suitability of the resins as waterproof coatings. Electrochemical impedance spectroscopy measurements were performed to characterize the anti-corrosive capability of these coatings on carbon steel substrates. Excellent barrier properties have been demonstrated due to the high electrical isolation and water impermeability of these oil-based coatings, without signs of deterioration over 6 months of immersion in a 3.5 wt.% NaCl solution. These results demonstrate the suitability of the developed materials as anti-corrosion coatings for specific applications. Full article
Show Figures

Figure 1

15 pages, 3201 KiB  
Article
Damage Evolution of Polypropylene–Basalt Hybrid Fiber Ceramsite Concrete under Chloride Erosion and Dry–Wet Cycle
by Hongbing Zhu, Siyu Wen, Xiu Li, Yahan Li and Zhenghao Fu
Polymers 2023, 15(20), 4179; https://doi.org/10.3390/polym15204179 - 21 Oct 2023
Cited by 3 | Viewed by 1101
Abstract
To investigate the influence of polypropylene–basalt hybrid fibers (PBHFCC) on the durability of ceramsite concrete, this study determined the appearance change, mass loss rate, relative dynamic elastic modulus, compressive strength and splitting tensile strength of ceramsite concrete with four kinds of hybrid fibers [...] Read more.
To investigate the influence of polypropylene–basalt hybrid fibers (PBHFCC) on the durability of ceramsite concrete, this study determined the appearance change, mass loss rate, relative dynamic elastic modulus, compressive strength and splitting tensile strength of ceramsite concrete with four kinds of hybrid fibers volume admixture under chloride erosion and dry–wet cycles. The results reveal that under this effect, the apparent damage of each group of specimens increased with the growth of the erosion time. The quality, compressive strength and splitting tensile strength of the specimens all increased gradually during the erosion age period of the first 72 d and gradually decreased after 72 d. The relative dynamic elastic modulus was similarly mutated in 48 d. When the hybrid fiber content of the specimens is 0.15 vol %, the enhancement effect of ceramsite concrete is better than that of the other three amounts. The relative dynamic elastic modulus value is used as a damage variable to establish the damage equation, and the damage evolution equation of PBHFCC considering the volume of hybrid fiber under chloride erosion and dry–wet cycle is derived. The conclusions can be used as a reference for the durability design and construction of PBHFCC. Full article
(This article belongs to the Special Issue Advances in Geopolymer and Cement Concrete Composites)
Show Figures

Figure 1

17 pages, 7661 KiB  
Article
From Waste Vegetable Oil to a Green Compatibilizer for HDPE/PA6 Blends
by Miriam Cappello, Giovanna Strangis, Patrizia Cinelli, Caterina Camodeca, Sara Filippi, Giovanni Polacco and Maurizia Seggiani
Polymers 2023, 15(20), 4178; https://doi.org/10.3390/polym15204178 - 21 Oct 2023
Cited by 3 | Viewed by 1542
Abstract
When properly compatibilized, the blending of polyethylene (PE) and polyamide (PA) leads to materials that combine low prices, suitable processability, impact resistance, and attractive mechanical properties. Moreover, the possibility of using these polymers without prior separation may be a suitable opportunity for their [...] Read more.
When properly compatibilized, the blending of polyethylene (PE) and polyamide (PA) leads to materials that combine low prices, suitable processability, impact resistance, and attractive mechanical properties. Moreover, the possibility of using these polymers without prior separation may be a suitable opportunity for their recycling. In this work, the use of an epoxidized waste vegetable oil (EWVO) was investigated as a green compatibilizer precursor (CP) for the reactive blending of a high-density PE (HDPE) with a polyamide-6 (PA6). EWVO was synthesized from waste vegetable cooking oil (WVO) using ion-exchange resin (Amberlite) as a heterogeneous catalyst. HDPE/PA6 blends were produced with different weight ratios (25/75, 75/25, 85/15) and amounts of EWVO (1, 2, 5 phr). Samples with WVO or a commercial fossil-based CP were also prepared for comparison. All the blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheology, and mechanical tests. In the case of HDPE/PA6 75/25 and 85/15 blends, the addition of EWVO at 2 phr showed a satisfactory compatibilizing effect, thus yielding a material with improved mechanical properties with respect to the blend without compatibilizer. On the contrary, the HDPE/PA6 25/75 ratio yielded a material with a high degree of crosslinking that could not be further processed or characterized. In conclusion, the results showed that EWVO had a suitable compatibilizing effect in HDPE/PA6 blends with high HDPE content, while it resulted in unsuitable for blends with high content of PA6. Full article
(This article belongs to the Section Circular and Green Polymer Science)
Show Figures

Figure 1

12 pages, 3960 KiB  
Article
Embedded Graphite and Carbon Nanofibers in a Polyurethane Matrix Used as Anodes in Microbial Fuel Cells for Wastewater Treatment
by Pedro Pérez-Rodríguez, Carlos A. Covarrubias-Gordillo, José A. Rodríguez-De la Garza, Cynthia L. Barrera-Martínez and Silvia Y. Martínez-Amador
Polymers 2023, 15(20), 4177; https://doi.org/10.3390/polym15204177 - 21 Oct 2023
Cited by 1 | Viewed by 1423
Abstract
Composites of polyurethane and graphite and polyurethane and carbon nanofibers (PU/Graphite 0.5% and PU/CNF 1%) were synthesized and used as anodes in dual-compartment microbial fuel cells (MFCs) for municipal wastewater treatment; electrical energy generation and organic matter removal were assessed. The maximum power [...] Read more.
Composites of polyurethane and graphite and polyurethane and carbon nanofibers (PU/Graphite 0.5% and PU/CNF 1%) were synthesized and used as anodes in dual-compartment microbial fuel cells (MFCs) for municipal wastewater treatment; electrical energy generation and organic matter removal were assessed. The maximum power density, coulombic efficiency and chemical oxygen demand (COD) removal efficiency in the MFCs packed with the PU/Graphite 0.5% and PU/CNF 1% composites were 232.32 mW/m3 and 90.78 mW/m3, 5.87 and 4.41%, and 51.38 and 68.62%, respectively. In addition, the internal resistance of the MFCs with the best bioelectrochemical performance (PU/Graphite 0.5%) was 1051.11 Ω. The results obtained in this study demonstrate the feasibility of using these types of materials in dual-compartment MFCs for wastewater treatment with electric power generation. Full article
Show Figures

Figure 1

14 pages, 2351 KiB  
Review
Manipulating Molecular Self-Assembly Process at the Solid–Liquid Interface Probed by Scanning Tunneling Microscopy
by Zhi Li, Yanan Li and Chengjie Yin
Polymers 2023, 15(20), 4176; https://doi.org/10.3390/polym15204176 - 20 Oct 2023
Cited by 1 | Viewed by 1719
Abstract
The phenomenon of ordered self-assembly on solid substrates is a topic of interest in both fundamental surface science research and its applications in nanotechnology. The regulation and control of two-dimensional (2D) self-assembled supra-molecular structures on surfaces have been realized through applying external stimuli. [...] Read more.
The phenomenon of ordered self-assembly on solid substrates is a topic of interest in both fundamental surface science research and its applications in nanotechnology. The regulation and control of two-dimensional (2D) self-assembled supra-molecular structures on surfaces have been realized through applying external stimuli. By utilizing scanning tunneling microscopy (STM), researchers can investigate the detailed phase transition process of self-assembled monolayers (SAMs), providing insight into the interplay between intermolecular weak interactions and substrate–molecule interactions, which govern the formation of molecular self-assembly. This review will discuss the structural transition of self-assembly probed by STM in response to external stimuli and provide state-of-the-art methods such as tip-induced confinement for the alignment of SAM domains and selective chirality. Finally, we discuss the challenges and opportunities in the field of self-assembly and STM. Full article
(This article belongs to the Special Issue Functional Polymer Composites Applied in Batteries)
Show Figures

Figure 1

23 pages, 6444 KiB  
Article
Reverse Micellar Dyeing of Cotton Fabric with Reactive Dye Using Biodegradable Non-Ionic Surfactant as Nanoscale Carrier: An Optimisation Study by One-Factor-at-One-Time Approach
by Yiu Lun Alan Tang, Shixin Jin, Cheng Hao Lee, Ho Shing Law, Jiali Yu, Yanming Wang and Chi-wai Kan
Polymers 2023, 15(20), 4175; https://doi.org/10.3390/polym15204175 - 20 Oct 2023
Cited by 5 | Viewed by 1910
Abstract
This study investigates the feasibility of using biodegradable secondary alcohol ethoxylate (SAE) non-ionic surfactant as a building block for the formation of reverse micelles, functioning as reactive dye carriers for the dyeing of cotton fabric in non-aqueous octane medium. Ten dyeing parameters were [...] Read more.
This study investigates the feasibility of using biodegradable secondary alcohol ethoxylate (SAE) non-ionic surfactant as a building block for the formation of reverse micelles, functioning as reactive dye carriers for the dyeing of cotton fabric in non-aqueous octane medium. Ten dyeing parameters were optimised, by a one-factor-at-a-time approach, namely: (i) effect of colour fixation agent; (ii) surfactant-to-water mole ratio; (iii) surfactant-to-co-surfactant mole ratio; (iv) volume of soda ash; (v) volume of dye; (vi) solvent-to-cotton ratio; (vii) dyeing temperature; (viii) dyeing time; (ix) fixation time; (x) soda-ash-to-cotton ratio. The colour properties, fastness properties and physical properties of SAE-dyed samples were experimentally compared with the conventional water-dyed samples. The optimised condition was found when SAE samples were dyed as follows: (a) 1:20 surfactant-to-water ratio; (b) 1:8 surfactant-to-co-surfactant ratio; (c) 10:1 solvent ratio; (d) 40 min dyeing time; (e) 60 min fixation time; and (f) 70 °C dyeing and fixation temperature. The results showed that SAE-dyed samples have better colour strength, lower reflectance percentage and comparable levelness, fastness and physical properties than that of water-dyed samples. SEM images revealed that the dyed cotton fibres had no severe surface damage caused by an SAE-based reverse micellar dyeing system. The TEM image depicts that the reverse micelle was of nanoscale, spherical-shaped and had a core–shell structure, validating the presence of reverse micelle as a reactive dye carrier and the potential of an SAE-based reverse micellar system for dyeing of cotton fabrics. Full article
Show Figures

Graphical abstract

23 pages, 6646 KiB  
Article
Preparation and Photocatalytic Performance of Sodium Alginate/Polyacrylamide/Polypyrrole-TiO2 Nanocomposite Hydrogels
by Amatjan Sawut, Tongmeng Wu, Rena Simayi, Xueying Jiao and Yurou Feng
Polymers 2023, 15(20), 4174; https://doi.org/10.3390/polym15204174 - 20 Oct 2023
Cited by 5 | Viewed by 1789
Abstract
The application of photocatalysis technology in environmental pollution treatment has garnered increasing attention, and enhancing the photocatalytic efficiency and recyclability of photocatalysts represents a pivotal research focus for future endeavors. In this paper, polypyrrole titanium dioxide nanocomposite (PPy-TiO2) was prepared using [...] Read more.
The application of photocatalysis technology in environmental pollution treatment has garnered increasing attention, and enhancing the photocatalytic efficiency and recyclability of photocatalysts represents a pivotal research focus for future endeavors. In this paper, polypyrrole titanium dioxide nanocomposite (PPy-TiO2) was prepared using in situ polymerization method and dispersed in sodium alginate/polyacrylamide (SA/PAM) hydrogel matrix to prepare SA/PAM/PPy-TiO2 nanocomposite hydrogels. The nanocomposite hydrogels were characterized by XPS, FT-IR, XRD, TGA, SEM, and TEM. The results showed that the composite materials were successfully prepared and PPy-TiO2 was uniformly dispersed in the hydrogel matrix. The incorporation of PPy in the SA/PAM/TiO2 composite hydrogel resulted in enhanced visible light absorption, reduced recombination efficiency of photoelectron-hole pairs in TiO2, and facilitated the photocatalytic degradation of methylene blue (MB) and methyl orange (MO) under sunlight irradiation. The photocatalytic efficiency of the composite hydrogel for MB was nearly 100%, whereas for MO, it reached 91.85% after exposure to sunlight for 120 min. In comparison with nano-TiO2 and PPy-TiO2, the SA/PAM/PPy-TiO2 nanocomposite hydrogel exhibited a higher degradation rate of MB and demonstrated ease in separation and recovery from the reaction solution. Furthermore, even after undergoing five cycles of recycling, there was no significant decrease observed in photodegradation efficiency. Full article
(This article belongs to the Special Issue Advances in Functional Hybrid Polymeric Composites)
Show Figures

Figure 1

19 pages, 4176 KiB  
Article
Sustainable Polyhydroxyalkanoate Production from Food Waste via Bacillus mycoides ICRI89: Enhanced 3D Printing with Poly (Methyl Methacrylate) Blend
by Marian Rofeal, Fady Abdelmalek and Joanna Pietrasik
Polymers 2023, 15(20), 4173; https://doi.org/10.3390/polym15204173 - 20 Oct 2023
Cited by 1 | Viewed by 1736
Abstract
In view of implementing green technologies for bioplastic turning polices, novel durable feedstock for Bacillus mycoides ICRI89 used for efficient polyhydroxybutyrate (PHB) generation is proposed herein. First, two food waste (FW) pretreatment methods were compared, where the ultrasonication approach for 7 min was [...] Read more.
In view of implementing green technologies for bioplastic turning polices, novel durable feedstock for Bacillus mycoides ICRI89 used for efficient polyhydroxybutyrate (PHB) generation is proposed herein. First, two food waste (FW) pretreatment methods were compared, where the ultrasonication approach for 7 min was effective in easing the following enzymatic action. After treatment with a mixture of cellulase/amylases, an impressive 25.3 ± 0.22 g/L of glucose was liberated per 50 g of FW. Furthermore, a notable 2.11 ± 0.06 g/L PHB and 3.56 ± 0.11 g/L cell dry eight (CDW) over 120 h were generated, representing a productivity percentage of 59.3 wt% using 25% FW hydrolysate. The blend of polyhydroxybutyrate/poly (methyl methacrylate) (PHB/PMMA = 1:2) possessed the most satisfactory mechanical properties. For the first time, PHB was chemically crosslinked with PMMA using dicumyl peroxide (DCP), where a concentration of 0.3 wt% had a considerable effect on increasing the mechanical stability of the blend. FTIR analysis confirmed the molecular interaction between PHB and PMMA showing a modest expansion of the C=O stretching vibration at 1725 cm−1. The DCP-PHB/PMMA blend had significant thermal stability and biodegradation profiles comparable to those of the main constituent polymers. More importantly, a 3-Dimetional (3D) filament was successfully extruded with a diameter of 1.75 mm, where no blockages or air bubbles were noticed via SEM. A new PHB/PMMA “key of life” 3D model has been printed with a filling percentage of 60% and a short printing time of 19.2 min. To conclude, high-performance polymeric 3D models have been fabricated to meet the pressing demands for future applications of sustainable polymers. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 23559 KiB  
Article
Stable Surface Modification by Cold Atmospheric-Pressure Plasma: Comparative Study on Cellulose-Based and Synthetic Polymers
by Alina Silvia Chiper and Gabriela Borcia
Polymers 2023, 15(20), 4172; https://doi.org/10.3390/polym15204172 - 20 Oct 2023
Cited by 3 | Viewed by 1420
Abstract
This study’s aim is a comparison of the plasma-induced effects on polymers exposed in helium and argon gaseous environments in a pulsed dielectric barrier discharge at atmospheric pressure. Cellulose-based and synthetic polymers are tested with regard to a range of parameters, such as [...] Read more.
This study’s aim is a comparison of the plasma-induced effects on polymers exposed in helium and argon gaseous environments in a pulsed dielectric barrier discharge at atmospheric pressure. Cellulose-based and synthetic polymers are tested with regard to a range of parameters, such as wettability, adhesion, surface energy and polarity, the oxygen amount in their structure, and surface morphology. The surface properties are analyzed by contact angle measurements, X-ray photoelectron spectroscopy, and scanning electron microscopy images. The results point to the efficient and remarkably stable modifications of the plasma-exposed surfaces, such as their enhanced adhesion, surface energy, and oxygen incorporation. Additionally, plasma provides significant oxygen uptake in cellulose-based materials that bear already prior to treatment a high amount of oxygen in their structure. The comparison between the properties of the non-permeable, homogeneous, smooth-surface synthetic polymer and those of the loosely packed, porous, heterogeneous cellulose-based polymers points to the different rates of plasma-induced modification, whereby a progressive alteration of cellulosic surface properties over much larger ranges of exposure durations is noted. Present experimental conditions ensure mild treatments on such sensitive material, such as paper, and this is without alterations of the surface morphology and the physical degradation of the material over a large range of treatment duration. Full article
(This article belongs to the Special Issue Advances in Plasma Processes for Polymers, 3rd Edition)
Show Figures

Figure 1

21 pages, 3652 KiB  
Article
Biocomposites Based on Electrospun Fibers of Poly(3-hydroxybutyrate) and Nanoplatelets of Graphene Oxide: Thermal Characteristics and Segmental Dynamics at Hydrothermal and Ozonation Impact
by Svetlana G. Karpova, Anatoly A. Olkhov, Ivetta A. Varyan, Natalia G. Shilkina, Alexander A. Berlin, Anatoly A. Popov and Alexey L. Iordanskii
Polymers 2023, 15(20), 4171; https://doi.org/10.3390/polym15204171 - 20 Oct 2023
Viewed by 1367
Abstract
In order to create new biodegradable nanocomposites for biomedicine, packaging, and environmentally effective adsorbents, ultra-thin composite fibers consisting of poly(3-hydroxybutyrate) (PHB) and graphene oxide (GO) were obtained by electrospinning. Comprehensive studies of ultrathin fibers combining thermal characteristics, dynamic electron paramagnetic resonance (ESR) probe [...] Read more.
In order to create new biodegradable nanocomposites for biomedicine, packaging, and environmentally effective adsorbents, ultra-thin composite fibers consisting of poly(3-hydroxybutyrate) (PHB) and graphene oxide (GO) were obtained by electrospinning. Comprehensive studies of ultrathin fibers combining thermal characteristics, dynamic electron paramagnetic resonance (ESR) probe measurements, and scanning electron microscopy (SEM) were carried out. It is shown that at the addition of 0.05, 0.1, 0.3, and 1% OG, the morphology and geometry of the fibers and their thermal and dynamic characteristics depend on the composite content. The features of the crystalline and amorphous structure of the PHB fibers were investigated by the ESR and DSC methods. For all compositions of PHB/GO, a nonlinear dependence of the correlation time of molecular mobility TEMPO probe (τ) and enthalpy of biopolyether melting (ΔH) is observed. The influence of external factors on the structural-dynamic properties of the composite fiber, such as hydrothermal exposure of samples in aqueous medium at 70 °C and ozonolysis, leads to extreme dependencies of τ and ΔH, which reflect two processes affecting the structure in opposite ways. The plasticizing effect of water leads to thermal destruction of the orientation of the pass-through chains in the amorphous regions of PHB and a subsequent decrease in the crystalline phase, and the aggregation of GO nanoplates into associates, reducing the number of GO-macromolecule contacts, thus increasing segmental mobility, as confirmed by decreasing τ values. The obtained PHB/GO fibrillar composites should find application in the future for the creation of new therapeutic and packaging systems with improved biocompatibility and high-barrier properties. Full article
Show Figures

Figure 1

13 pages, 5026 KiB  
Article
Photocurable Polymer-Based 3D Printing: Advanced Flexible Strain Sensors for Human Kinematics Monitoring
by Christopher Billings, Ridwan Siddique and Yingtao Liu
Polymers 2023, 15(20), 4170; https://doi.org/10.3390/polym15204170 - 20 Oct 2023
Cited by 3 | Viewed by 1723
Abstract
Vat photopolymerization-based additive manufacturing (AM) is critical in improving solutions for wearable sensors. The ability to add nanoparticles to increase the polymer resin’s mechanical, electrical, and chemical properties creates a strong proposition for investigating custom nanocomposites for the medical field. This work uses [...] Read more.
Vat photopolymerization-based additive manufacturing (AM) is critical in improving solutions for wearable sensors. The ability to add nanoparticles to increase the polymer resin’s mechanical, electrical, and chemical properties creates a strong proposition for investigating custom nanocomposites for the medical field. This work uses a low-cost biocompatible polymer resin enhanced with multi-walled carbon nanotubes (MWCNTs), and a digital light processing-based AM system to develop accurate strain sensors. These sensors demonstrate the ability to carry a 244% maximum strain while lasting hundreds of cycles without degradation at lower strain ranges. In addition, the printing process allows for detailed prints to be accomplished at a sub-30 micron spatial resolution while also assisting alignment of the MWCNTs in the printing plane. Moreover, high-magnification imagery demonstrates uniform MWCNT dispersion by utilizing planetary shear mixing and identifying MWCNT pullout at fracture locations. Finally, the proposed nanocomposite is used to print customized and wearable strain sensors for finger motion monitoring and can detect different amounts of flexion and extension. The 3D printed nanocomposite sensors demonstrate characteristics that make it a strong candidate for the applications of human kinematics monitoring and sensing. Full article
Show Figures

Figure 1

17 pages, 2398 KiB  
Article
Investigation and Prediction of Tensile, Flexural, and Compressive Properties of Tough PLA Material Using Definitive Screening Design
by Abdulsalam A. Al-Tamimi, Adi Pandžić and Edin Kadrić
Polymers 2023, 15(20), 4169; https://doi.org/10.3390/polym15204169 - 20 Oct 2023
Cited by 4 | Viewed by 1781
Abstract
The material extrusion fused deposition modeling (FDM) technique has become a widely used technique that enables the production of complex parts for various applications. To overcome limitations of PLA material such as low impact toughness, commercially available materials such as UltiMaker Tough PLA [...] Read more.
The material extrusion fused deposition modeling (FDM) technique has become a widely used technique that enables the production of complex parts for various applications. To overcome limitations of PLA material such as low impact toughness, commercially available materials such as UltiMaker Tough PLA were produced to improve the parent PLA material that can be widely applied in many engineering applications. In this study, 3D-printed parts (test specimens) considering six different printing parameters (i.e., layer height, wall thickness, infill density, build plate temperature, printing speed, and printing temperature) are experimentally investigated to understand their impact on the mechanical properties of Tough PLA material. Three different standardized tests of tensile, flexural, and compressive properties were conducted to determine the maximum force and Young’s modulus. These six properties were used as responses in a design of experiment, definitive screening design (DSD), to build six regression models. Analysis of variance (ANOVA) is performed to evaluate the effects of each of the six printing parameters on Tough PLA mechanical properties. It is shown that all regression models are statistically significant (p<0.05) with high values of adjusted and predicted R2. Conducted confirmation tests resulted in low relative errors between experimental and predicted data, indicating that the developed models are adequately accurate and reliable for the prediction of tensile, flexural, and compressive properties of Tough PLA material. Full article
(This article belongs to the Special Issue Mechanical and Physical Properties of 3D Printed Polymer Materials)
Show Figures

Graphical abstract

14 pages, 7916 KiB  
Article
Influence of Isothermal Aging on Microstructure and Shear Property of Novel Epoxy Composite SAC305 Solder Joints
by Peng Zhang, Songbai Xue, Lu Liu, Jianhao Wang, Hiroaki Tatsumi and Hiroshi Nishikawa
Polymers 2023, 15(20), 4168; https://doi.org/10.3390/polym15204168 - 20 Oct 2023
Cited by 4 | Viewed by 1582
Abstract
With the rapid iteration of microsystem integrated technology, the miniaturization of electronic devices requires packaging materials with higher reliability. In this work, the microstructure evolution and mechanical properties of novel epoxy composite SAC305 solder joints were studied after isothermal aging to evaluate the [...] Read more.
With the rapid iteration of microsystem integrated technology, the miniaturization of electronic devices requires packaging materials with higher reliability. In this work, the microstructure evolution and mechanical properties of novel epoxy composite SAC305 solder joints were studied after isothermal aging to evaluate the enhanced effect of epoxy addition. The thickness variation and morphological evolution of the interfacial layer were analyzed. The results showed that, as the aging time was prolonged, the Cu6Sn5 interfacial layer remarkably coarsened and Cu3Sn compounds formed between the Cu6Sn5 layer and Cu pad due to the continuous atomic diffusion. Compared with the monolithic joint, the epoxy composite SAC305 joints had a lower overall IMC growth rate during aging, closely related to the initial morphologies of the interfacial layers. The shear test results showed an apparent decrease in the shear forces of all the solder joints as the aging time increased. Nevertheless, because of the extra mechanical support provided by the epoxy layer, the epoxy composite joints demonstrated notably enhanced mechanical properties. After 1000 h aging treatment, the shear force of SAC305 joints containing 8 wt.% epoxy was 26.28 N, showing a 24.08% increase over the monolithic joint. Cu-Sn IMCs were detected on the shear fracture of the monolithic joint after 1000 h aging, indicating the fracture occurred near the interface and displayed a ductile/brittle mixed fracture. Concerning the epoxy composite joints, cracks were still initiated and extended within the solder bulk, demonstrating a noticeable enhancement in ductility due to the addition of epoxy. Full article
(This article belongs to the Special Issue Resin-Based Polymer Materials and Related Applications)
Show Figures

Graphical abstract

19 pages, 6811 KiB  
Article
Mechanical Anisotropy of Injection-Molded PP/PS Polymer Blends and Correlation with Morphology
by Tetsuo Takayama and Rin Shibazaki
Polymers 2023, 15(20), 4167; https://doi.org/10.3390/polym15204167 - 20 Oct 2023
Viewed by 1319
Abstract
The molecular orientation formed by melt-forming processes depends strongly on the flow direction. Quantifying this anisotropy, which is more pronounced in polymer blends, is important for assessing the mechanical properties of thermoplastic molded products. For injection-molded polymer blends, this study used short-beam shear [...] Read more.
The molecular orientation formed by melt-forming processes depends strongly on the flow direction. Quantifying this anisotropy, which is more pronounced in polymer blends, is important for assessing the mechanical properties of thermoplastic molded products. For injection-molded polymer blends, this study used short-beam shear testing to evaluate the mechanical anisotropy as a stress concentration factor, and clarified the correlation between the evaluation results and the phase structure. Furthermore, because only shear yielding occurs with short-beam shear testing, the yielding conditions related to uniaxial tensile loading were identified by comparing the results with those of three-point bending tests. For continuous-phase PP, the phase structure formed a sea-island structure. The yield condition under uniaxial tensile loading was interface debonding. For continuous-phase PS, the phase structure was dispersed and elongated in the flow direction. The addition of styrene–ethylene–butadiene–styrene (SEBS) altered this structure. The yielding condition under uniaxial tensile loading was shear yielding. The aspect ratio of the dispersed phase was found to correlate with the stress concentration factor. When the PP forming the sea-island structure was of continuous phase, the log-complex law was sufficient to explain the shear yield initiation stress without consideration of the interfacial interaction stress. Full article
(This article belongs to the Special Issue Injection Molding of Polymers and Polymer Composites)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop