A Minireview of the Solid-State Electrolytes for Zinc Batteries
Abstract
:1. Introduction
2. Methods for Polymer-Based Electrolyte Preparation
3. Solid-State Zinc Secondary Batteries with Ionic Liquid and Organic Electrolyte Additives
4. Solid-State Zinc Secondary Batteries with Alkaline Electrolytes
4.1. Zn–MnO2 Batteries
4.2. Zn–Ni Batteries
4.3. Zn–Air Batteries
5. Solid-State Zinc Secondary Batteries with Mild Acidic and Neutral Electrolytes
5.1. PVA-Based Electrolyte
5.1.1. MnO2 Cathode
5.1.2. Prussian-Blue-Analog-Based Cathode
5.2. PAM-Based Electrolytes
5.2.1. MnO2 Cathode
5.2.2. Vanadium-Based Cathode
5.3. Polysaccharide-Based Electrolytes
5.4. Alginate-Based Electrolyte
5.4.1. MnO2 Cathode
5.4.2. Vanadium-Based Cathode
5.5. Gelatin-Based Electrolyte
5.6. Nafion Membrane and Filter Paper
5.6.1. MnO2 Cathode
5.6.2. Vanadium-Based Cathode
5.6.3. Organic Cathode
5.7. Other Electrolytes
6. Solid-State Electrolyte-Based Hybrid-Ion Batteries
7. Advanced Functional Solid-State ZIBs
8. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M.R. Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Adv. Mater. 2010, 22, E170–E192. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Daniel, C.; Wood, D. Materials processing for lithium-ion batteries. J. Power Sources 2011, 196, 2452–2460. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, J.; Xia, Y. Recent Progress in Aqueous Lithium-Ion Batteries. Adv. Energy Mater. 2012, 2, 830–840. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, K.; Huo, W.; Wang, Y.; Yao, G.; Gu, X.; Cheng, H.; Mai, L.; Hu, C.; Wang, X. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 2019, 62, 275–281. [Google Scholar] [CrossRef]
- Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J.A.; Xu, K.; Wang, C. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549. [Google Scholar] [CrossRef]
- Song, M.; Tan, H.; Chao, D.; Fan, H.J. Recent Advances in Zn-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1802564. [Google Scholar] [CrossRef]
- Deng, Y.-P.; Liang, R.; Jiang, G.; Jiang, Y.; Yu, A.; Chen, Z. The Current State of Aqueous Zn-Based Rechargeable Batteries. ACS Energy Lett. 2020, 5, 1665–1675. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, G.; Yang, H.; Liu, X.; Dubois, M.; Gauthier, M.A.; Sun, S. Aqueous Zn-based rechargeable batteries: Recent progress and future perspectives. InfoMat 2022, 4, e12265. [Google Scholar] [CrossRef]
- Zeng, X.; Hao, J.; Wang, Z.; Mao, J.; Guo, Z. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019, 20, 410–437. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, G.; Du, L.; Yang, D.; Yang, H.; Sun, S. Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solid-State Zinc–Air Batteries: Recent Advances, Challenges, and Future Perspectives. Small Methods 2021, 5, 2000868. [Google Scholar] [CrossRef] [PubMed]
- Ming, J.; Guo, J.; Xia, C.; Wang, W.; Alshareef, H.N. Zinc-ion batteries: Materials, mechanisms, and applications. Mater. Sci. Eng. R Rep. 2019, 135, 58–84. [Google Scholar] [CrossRef]
- Lu, W.; Xie, C.; Zhang, H.; Li, X. Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries. ChemSusChem 2018, 11, 3996–4006. [Google Scholar] [CrossRef] [PubMed]
- Naveed, A.; Yang, H.; Yang, J.; Nuli, Y.; Wang, J. Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angew. Chem. Int. Ed. 2019, 58, 2760–2764. [Google Scholar] [CrossRef] [PubMed]
- Naveed, A.; Yang, H.J.; Shao, Y.Y.; Yang, J.; Yanna, N.L.; Liu, J.; Shi, S.Q.; Zhang, L.W.; Ye, A.J.; He, B.; et al. A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long-Cycle-Life Batteries. Adv. Mater. 2019, 31, 9. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030. [Google Scholar] [CrossRef]
- Al-Amin, M.; Islam, S.; Shibly, S.U.A.; Iffat, S. Comparative Review on the Aqueous Zinc-Ion Batteries (AZIBs) and Flexible Zinc-Ion Batteries (FZIBs). Nanomaterials 2022, 12, 3997. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Z.; Qiu, H.; Yang, W.; Zhao, Z.; Zhao, J.; Cui, G. Pursuit of reversible Zn electrochemistry: A time-honored challenge towards low-cost and green energy storage. NPG Asia Mater. 2020, 12, 4. [Google Scholar] [CrossRef]
- Baskoro, F.; Wong, H.Q.; Yen, H.-J. Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery. ACS Appl. Energy Mater. 2019, 2, 3937–3971. [Google Scholar] [CrossRef]
- Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069. [Google Scholar] [CrossRef]
- Li, Y.; Fu, J.; Zhong, C.; Wu, T.; Chen, Z.; Hu, W.; Amine, K.; Lu, J. Recent Advances in Flexible Zinc-Based Rechargeable Batteries. Adv. Energy Mater. 2019, 9, 1802605. [Google Scholar] [CrossRef]
- Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano 2017, 11, 9614–9635. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Li, Z.; Fan, Y. Implantable Energy-Harvesting Devices. Adv. Mater. 2018, 30, 1801511. [Google Scholar] [CrossRef]
- Du, G.; Tao, M.; Li, J.; Yang, T.; Gao, W.; Deng, J.; Qi, Y.; Bao, S.-J.; Xu, M. Low-Operating Temperature, High-Rate and Durable Solid-State Sodium-Ion Battery Based on Polymer Electrolyte and Prussian Blue Cathode. Adv. Energy Mater. 2020, 10, 1903351. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, X.; Xu, D.; Wang, N.; Yu, C.; Hu, W.; Yan, X.; Mi, J.; Wen, B.; Wang, L.; et al. Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries. Electrochim. Acta 2018, 259, 100–109. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Fu, Y.; Dang, H.; Wang, D.; Ran, F. Optimization strategies toward advanced aqueous zinc-ion batteries: From facing key issues to viable solutions. Nano Energy 2023, 116, 108858. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Q.; Hu, X.; Wei, W.; Ji, X.; Kuang, G.; Zhou, L.; Chen, L.; Chen, Y. Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chin. Chem. Lett. 2023, 109143. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, T. Review on Recent Developments, Challenges, and Perspectives of Mn-Based Oxide Cathode Materials for Aqueous Zinc-Ion Batteries and the Status of Mn Resources in China. Energy Fuels 2023, 37, 4198–4221. [Google Scholar] [CrossRef]
- Lv, Y.; Xiao, Y.; Ma, L.; Zhi, C.; Chen, S. Recent Advances in Electrolytes for “Beyond Aqueous” Zinc-Ion Batteries. Adv. Mater. 2022, 34, 2106409. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Zhou, X.; Xie, X.; Xu, L.; Li, B.; Fang, G. Special Devices for Zinc-Ion Battery: Structure, Mechanism, and Application. ACS Appl. Electron. Mater. 2023, 5, 4746–4758. [Google Scholar] [CrossRef]
- Xiao, X.; Zheng, Z.; Zhong, X.; Gao, R.; Piao, Z.; Jiao, M.; Zhou, G. Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices. ACS Nano 2023, 17, 1764–1802. [Google Scholar] [CrossRef]
- Zheng, Z.; Shi, W.; Zhou, X.; Zhang, X.; Guo, W.; Shi, X.; Xiong, Y.; Zhu, Y. Agar-based hydrogel polymer electrolyte for high-performance zinc-ion batteries at all climatic temperatures. iScience 2023, 26, 106437. [Google Scholar] [CrossRef]
- Wang, Q.; He, X.; Wang, Y.; Ma, Y.; Zhang, D.; Li, Z.; Sun, H.; Wang, B.; Fan, L.-Z. In-situ constructing efficient gel polymer electrolyte with fluoride-rich interface enabling high-capacity, long-cycling sodium metal batteries. Electrochim. Acta 2023, 465, 142968. [Google Scholar] [CrossRef]
- Zhou, Y.-N.; Xiao, Z.; Han, D.; Yang, L.; Zhang, J.; Tang, W.; Shu, C.; Peng, C.; Zhou, D. Approaching Practically Accessible and Environmentally Adaptive Sodium Metal Batteries with High Loading Cathodes through In Situ Interlock Interface. Adv. Funct. Mater. 2022, 32, 2111314. [Google Scholar] [CrossRef]
- Hu, T.; Shen, X.; Peng, L.; Liu, Y.; Wang, X.; Ma, H.; Zhang, P.; Zhao, J. Preparation of single-ion conductor solid polymer electrolyte by multi-nozzle electrospinning process for lithium-ion batteries. J. Phys. Chem. Solids 2021, 158, 110229. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Li, T.; Huang, W.; Wang, L.; Tao, S. Li+ affinity ultra-thin solid polymer electrolyte for advanced all-solid-state lithium-ion battery. Chem. Eng. J. 2023, 461, 141995. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, H.; Meng, X.; Liu, A.; Chen, Y.; Ma, T. A cross-linked tin oxide/polymer composite gel electrolyte with adjustable porosity for enhanced sodium ion batteries. Chem. Eng. J. 2022, 431, 133922. [Google Scholar] [CrossRef]
- Shang, Z.; Zhang, H.; Qu, M.; Wang, R.; Wan, L.; Lei, D.; Li, Z. High adhesion hydrogel electrolytes enhanced by multifunctional group polymer enable high performance of flexible zinc-air batteries in wide temperature range. Chem. Eng. J. 2023, 468, 143836. [Google Scholar] [CrossRef]
- Kanabenja, W.; Passarapark, K.; Subchokpool, T.; Nawaaukkaratharnant, N.; Román, A.J.; Osswald, T.A.; Aumnate, C.; Potiyaraj, P. 3D printing filaments from plasticized Polyhydroxybutyrate/Polylactic acid blends reinforced with hydroxyapatite. Addit. Manuf. 2022, 59, 103130. [Google Scholar] [CrossRef]
- Poompiew, N.; Jirawatanaporn, N.; Okhawilai, M.; Qin, J.; Román, A.J.; Aumnate, C.; Osswald, T.A.; Potiyaraj, P. 3D-printed polyacrylamide-based hydrogel polymer electrolytes for flexible zinc-ion battery. Electrochim. Acta 2023, 466, 143076. [Google Scholar] [CrossRef]
- Mo, F.; Li, H.; Pei, Z.; Liang, G.; Ma, L.; Yang, Q.; Wang, D.; Huang, Y.; Zhi, C. A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Sci. Bull. 2018, 63, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Xia, D.; Li, M.; Cheng, D.; Wang, K.; Meng, Y.S.; Chen, Z.; Bae, J. Self-Healing and Anti-CO2 Hydrogels for Flexible Solid-State Zinc-Air Batteries. ACS Appl. Mater. Interfaces 2021, 13, 12033–12041. [Google Scholar] [CrossRef]
- Kimilita, P.D.; Hayashi, M.; Nkomba, H.M.; Fukunishi, H.; Lobo, N.; Mizuno, T.; Eale, L.E.; Mwilambwe, E.K. Stable quasi-solid-state zinc-ion battery based on the hydrated vanadium oxide cathode and polyacrylamide-organohydrogel electrolyte. Electrochim. Acta 2023, 462, 142702. [Google Scholar] [CrossRef]
- Zhong, X.; Tian, P.; Chen, C.; Meng, X.; Mi, H.; Shi, F. Preparation and interface stability of alginate-based gel polymer electrolyte for rechargeable aqueous zinc ion batteries. J. Electroanal. Chem. 2022, 927, 116968. [Google Scholar] [CrossRef]
- Xu, J.J.; Ye, H.; Huang, J. Novel zinc ion conducting polymer gel electrolytes based on ionic liquids. Electrochem. Commun. 2005, 7, 1309–1317. [Google Scholar] [CrossRef]
- Yan, H.; Li, S.; Nan, Y.; Yang, S.; Li, B. Ultrafast Zinc–Ion–Conductor Interface toward High-Rate and Stable Zinc Metal Batteries. Adv. Energy Mater. 2021, 11, 2100186. [Google Scholar] [CrossRef]
- Hu, J.; Qu, Y.; Shi, F.; Wang, J.; He, X.; Liao, S.; Duan, L. Enhancing the Kinetics of Zinc Ion Deposition by Catalytic Ion in Polymer Electrolytes for Advanced Zn–MnO2 Batteries. Adv. Funct. Mater. 2022, 32, 2209463. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Bahtiyar, D.; Khan, H.W.; Shah, M.U.H.; Kiran, L.; Aydinol, M.K.; Yusuf, M.; Kamyab, H.; Rezania, S. Ionic liquids-assisted electrolytes in aqueous zinc ion batteries. J. Energy Storage 2023, 72, 108765. [Google Scholar] [CrossRef]
- Luo, J.; Jiang, X.; Huang, Y.; Nie, W.; Huang, X.; Tawiah, B.; Yu, X.; Jia, H. Poly(ionic liquid) additive: Aqueous electrolyte engineering for ion rectifying and calendar corrosion relieving. Chem. Eng. J. 2023, 470, 144152. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, C.; Li, J.; Du, Z.; Guo, F.; Zhang, W.; Dai, Y.; Zong, W.; Gao, X.; Zhu, J.; et al. A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy Environ. Sci. 2023, 16, 2540–2549. [Google Scholar] [CrossRef]
- Huang, S.; Wan, F.; Bi, S.; Zhu, J.; Niu, Z.; Chen, J. A Self-Healing Integrated All-in-One Zinc-Ion Battery. Angew. Chem. Int. Ed. 2019, 58, 4313–4317. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ning, F.; Luo, L.; Wu, J.; Xiang, Y.; Wu, X.; Xiong, L.; Peng, X. Initiating a high-temperature zinc ion battery through a triazolium-based ionic liquid. RSC Adv. 2022, 12, 8394–8403. [Google Scholar] [CrossRef]
- Chen, Z.; Mo, F.; Wang, T.; Yang, Q.; Huang, Z.; Wang, D.; Liang, G.; Chen, A.; Li, Q.; Guo, Y.; et al. Zinc/selenium conversion battery: A system highly compatible with both organic and aqueous electrolytes. Energy Environ. Sci. 2021, 14, 2441–2450. [Google Scholar] [CrossRef]
- Ni, G.; Zou, G.; Sun, M.; Xu, F.; Pan, Z.; Cao, F.; Zhou, C. Constructing Nonaqueous Rechargeable Zinc-Ion Batteries with Zinc Trifluoroacetate. ACS Appl. Energy Mater. 2022, 5, 12437–12447. [Google Scholar] [CrossRef]
- Amiri, A.; Sellers, R.; Naraghi, M.; Polycarpou, A.A. Multifunctional Quasi-Solid-State Zinc–Sulfur Battery. ACS Nano 2023, 17, 1217–1228. [Google Scholar] [CrossRef]
- Liu, C.; Xie, X.; Lu, B.; Zhou, J.; Liang, S. Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Lett. 2021, 6, 1015–1033. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Dai, L.; Yao, J. Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries. Adv. Mater. 2016, 28, 3000–3006. [Google Scholar] [CrossRef]
- Wang, Z.F.; Mo, F.N.; Ma, L.T.; Yang, Q.; Liang, G.J.; Liu, Z.X.; Li, H.F.; Li, N.; Zhang, H.Y.; Zhi, C.Y. Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn-MnO2 Battery and a Flexible Battery-Sensor System. Acs Appl. Mater. Interfaces 2018, 10, 44527–44534. [Google Scholar] [CrossRef]
- Zhang, X.G. Secondary batteries—Zinc systems|Zinc Electrodes: Overview. In Encyclopedia of Electrochemical Power Sources; Garche, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 454–468. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Zhang, X.G. A novel alkaline Zn/MnO2 cell with alkaline solid polymer electrolyte. Solid State Ion. 2003, 160, 155–159. [Google Scholar] [CrossRef]
- Iwakura, C.; Furukawa, N.; Ohnishi, T.; Sakamoto, K.; Nohara, S.; Inoue, H. Nickel/Metal Hydride Cells Using an Alkaline Polymer Gel Electrolyte Based on Potassium Salt of Crosslinked Poly(acrylic acid). Electrochemistry 2001, 69, 659–663. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, H.; Cao, Y.; Ai, X. Preparation and electrochemical characterization of the alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution. Electrochim. Acta 2004, 49, 2533–2539. [Google Scholar] [CrossRef]
- Gaikwad, A.M.; Zamarayeva, A.M.; Rousseau, J.; Chu, H.; Derin, I.; Steingart, D.A. Highly Stretchable Alkaline Batteries Based on an Embedded Conductive Fabric. Adv. Mater. 2012, 24, 5071–5076. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, K.; Yi, C.-W. Poly (acrylamide-co-acrylic acid) gel electrolytes for Ni-Zn secondary batteries. Bull. Korean Chem. Soc. 2013, 34, 717–718. [Google Scholar] [CrossRef]
- Guo, X.; Wu, L.; Li, L.; Zhang, J.; Wu, C.; Wang, L.; Chen, Y.; Zeng, W. Ultra-long cycle life flexible quasi-solid-state alkaline zinc batteries enabled by PEDOT:PSS encapsulated Ni3S2 nanorods. Surf. Interfaces 2023, 38, 102886. [Google Scholar] [CrossRef]
- Sapkota, P.; Kim, H. Zinc–air fuel cell, a potential candidate for alternative energy. J. Ind. Eng. Chem. 2009, 15, 445–450. [Google Scholar] [CrossRef]
- Xu, M.; Ivey, D.G.; Xie, Z.; Qu, W. Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement. J. Power Sources 2015, 283, 358–371. [Google Scholar] [CrossRef]
- Sumboja, A.; Ge, X.; Zong, Y.; Liu, Z. Progress in development of flexible metal–air batteries. Funct. Mater. Lett. 2016, 9, 1630001. [Google Scholar] [CrossRef]
- Vassal, N.; Salmon, E.; Fauvarque, J.F. Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO). Electrochim. Acta 2000, 45, 1527–1532. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, C.; Liu, B.; Liu, Z.; Bi, X.; Zhao, N.; Han, X.; Deng, Y.; Lu, J.; Hu, W. Atomic Layer Co3O4 Nanosheets: The Key to Knittable Zn–Air Batteries. Small 2018, 14, 1702987. [Google Scholar] [CrossRef]
- Liew, C.-W.; Ramesh, S.; Arof, A.K. Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int. J. Hydrogen Energy 2014, 39, 2953–2963. [Google Scholar] [CrossRef]
- Bhargav, P.B.; Sarada, B.; Sharma, A.; Rao, V.N. Electrical conduction and dielectric relaxation phenomena of PVA based polymer electrolyte films. J. Macromol. Sci. Part A 2009, 47, 131–137. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Guo, Z.; Ren, J.; Wang, Y.; Peng, H. Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc–Air Battery Based on Cross-Stacked Carbon Nanotube Sheets. Angew. Chem. Int. Ed. 2015, 54, 15390–15394. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, T.; Guo, Y.; Liu, P.; Han, X.; Wu, D. Agar-PVA/GO double network gel electrolyte for high performance flexible zinc-air batteries. Mater. Today Chem. 2023, 29, 101384. [Google Scholar] [CrossRef]
- García-Gaitán, E.; Morant-Miñana, M.C.; Frattini, D.; Maddalena, L.; Fina, A.; Gerbaldi, C.; Cantero, I.; Ortiz-Vitoriano, N. Agarose-based Gel Electrolytes for Sustainable Primary and Secondary Zinc-Air Batteries. Chem. Eng. J. 2023, 472, 144870. [Google Scholar] [CrossRef]
- Ma, L.; Chen, S.; Wang, D.; Yang, Q.; Mo, F.; Liang, G.; Li, N.; Zhang, H.; Zapien, J.A.; Zhi, C. Super-Stretchable Zinc–Air Batteries Based on an Alkaline-Tolerant Dual-Network Hydrogel Electrolyte. Adv. Energy Mater. 2019, 9, 1803046. [Google Scholar] [CrossRef]
- Park, J.; Park, M.; Nam, G.; Lee, J.-S.; Cho, J. All-Solid-State Cable-Type Flexible Zinc–Air Battery. Adv. Mater. 2015, 27, 1396–1401. [Google Scholar] [CrossRef]
- Fu, J.; Lee, D.U.; Hassan, F.M.; Yang, L.; Bai, Z.; Park, M.G.; Chen, Z. Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc–Air Batteries. Adv. Mater. 2015, 27, 5617–5622. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, J.; Song, X.; Zarrin, H.; Tian, X.; Qiao, J.; Rasen, L.; Li, K.; Chen, Z. A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc–air batteries. Energy Environ. Sci. 2016, 9, 663–670. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, J.; Song, X.; Jiang, G.; Zarrin, H.; Xu, P.; Li, K.; Yu, A.; Chen, Z. Laminated Cross-Linked Nanocellulose/Graphene Oxide Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Adv. Energy Mater. 2016, 6, 1600476. [Google Scholar] [CrossRef]
- Kim, H.-W.; Lim, J.-M.; Lee, H.-J.; Eom, S.-W.; Hong, Y.T.; Lee, S.-Y. Artificially engineered, bicontinuous anion-conducting/-repelling polymeric phases as a selective ion transport channel for rechargeable zinc–air battery separator membranes. J. Mater. Chem. A 2016, 4, 3711–3720. [Google Scholar] [CrossRef]
- Lin, C.; Shinde, S.S.; Li, X.; Kim, D.-H.; Li, N.; Sun, Y.; Song, X.; Zhang, H.; Lee, C.H.; Lee, S.U.; et al. Solid-State Rechargeable Zinc–Air Battery with Long Shelf Life Based on Nanoengineered Polymer Electrolyte. ChemSusChem 2018, 11, 3215–3224. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Ding, J.; Liu, B.; Liu, X.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. A Rechargeable Zn–Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Water-Retentive Gel Electrolyte with Reaction Modifier. Adv. Mater. 2020, 32, 1908127. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xu, N.; Fu, J.; Liu, Y.; Qiao, J. High-performance binary cross-linked alkaline anion polymer electrolyte membranes for all-solid-state supercapacitors and flexible rechargeable zinc–air batteries. J. Mater. Chem. A 2019, 7, 11257–11264. [Google Scholar] [CrossRef]
- Miao, H.; Chen, B.; Li, S.; Wu, X.; Wang, Q.; Zhang, C.; Sun, Z.; Li, H. All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte. J. Power Sources 2020, 450, 227653. [Google Scholar] [CrossRef]
- Shoji, T.; Hishinuma, M.; Yamamoto, T. Zinc-manganese dioxide galvanic cell using zinc sulphate as electrolyte. Rechargeability of the cell. J. Appl. Electrochem. 1988, 18, 521–526. [Google Scholar] [CrossRef]
- Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K.S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, X.; Meng, Y.; Yu, M.; Yi, J.; Wu, Y.; Lu, X.; Tong, Y. Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi-Solid-State Zn–MnO2 Battery. Adv. Mater. 2017, 29, 1700274. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Li, Y.; You, A.; Zhang, Z.; Li, G.; Lu, X.; Tong, Y. High-performance flexible quasi-solid-state Zn–MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth. J. Mater. Chem. A 2017, 5, 14838–14846. [Google Scholar] [CrossRef]
- Niu, Z.Q.; Dong, H.B.; Zhu, B.W.; Li, J.Z.; Hng, H.H.; Zhou, W.Y.; Chen, X.D.; Xie, S.S. Highly Stretchable, Integrated Supercapacitors Based on Single-Walled Carbon Nanotube Films with Continuous Reticulate Architecture. Adv. Mater. 2013, 25, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xia, H.; Zhao, Y. Poly(vinyl alcohol) Hydrogel Can Autonomously Self-Heal. ACS Macro Lett. 2012, 1, 1233–1236. [Google Scholar] [CrossRef]
- Lu, K.; Song, B.; Zhang, Y.X.; Ma, H.Y.; Zhang, J.T. Encapsulation of zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high-performance rechargeable zinc ion batteries. J. Mater. Chem. A 2017, 5, 23628–23633. [Google Scholar] [CrossRef]
- Li, H.; Liu, Z.; Liang, G.; Huang, Y.; Huang, Y.; Zhu, M.; Pei, Z.; Xue, Q.; Tang, Z.; Wang, Y.; et al. Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte. ACS Nano 2018, 12, 3140–3148. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.H.; Li, H.F.; Liu, Z.X.; Tang, Z.J.; Liang, G.J.; Mo, F.N.; Yang, Q.; Ma, L.T.; Zhi, C.Y. A Nanofibrillated Cellulose/Polyacrylamide Electrolyte-Based Flexible and Sewable High-Performance Zn-MnO2 Battery with Superior Shear Resistance. Small 2018, 14, 10. [Google Scholar] [CrossRef]
- Kontturi, E.; Laaksonen, P.; Linder, M.B.; Nonappa; Groschel, A.H.; Rojas, O.J.; Ikkala, O. Advanced Materials through Assembly of Nanocelluloses. Adv. Mater. 2018, 30, 39. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Duan, B.; Zhang, L.N. Fabrication and characterization of novel macroporous cellulose-alginate hydrogels. Polymer 2009, 50, 5467–5473. [Google Scholar] [CrossRef]
- Li, H.F.; Han, C.P.; Huang, Y.; Huang, Y.; Zhu, M.S.; Pei, Z.X.; Xue, Q.; Wang, Z.F.; Liu, Z.X.; Tang, Z.J.; et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951. [Google Scholar] [CrossRef]
- Sun, M.; Ji, G.; Zheng, J. A hydrogel electrolyte with ultrahigh ionic conductivity and transference number benefit from Zn2+ “highways” for dendrite-free Zn-MnO2 battery. Chem. Eng. J. 2023, 463, 142535. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, N.; Zeng, S.; Zhou, S.; Chen, M.; Di, J.; Li, Q. An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. J. Mater. Chem. A 2018, 6, 12237–12243. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, J.; Zhang, J.; Jin, S.; Jiang, Y.; Zhang, S.; Li, Z.; Zhi, C.; Du, G.; Zhou, H. Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte. RSC Adv. 2019, 9, 16313–16319. [Google Scholar] [CrossRef]
- Kundu, D.; Adams, B.D.; Duffort, V.; Vajargah, S.H.; Nazar, L.F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119. [Google Scholar] [CrossRef]
- Yan, M.; He, P.; Chen, Y.; Wang, S.; Wei, Q.; Zhao, K.; Xu, X.; An, Q.; Shuang, Y.; Shao, Y.; et al. Water-Lubricated Intercalation in V2O5·nH2O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries. Adv. Mater. 2018, 30, 1703725. [Google Scholar] [CrossRef] [PubMed]
- Sambandam, B.; Soundharrajan, V.; Kim, S.; Alfaruqi, M.H.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y.K.; Kim, J. K2V6O16·2.7H2O nanorod cathode: An advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. J. Mater. Chem. A 2018, 6, 15530–15539. [Google Scholar] [CrossRef]
- Pang, Q.; Sun, C.; Yu, Y.; Zhao, K.; Zhang, Z.; Voyles, P.M.; Chen, G.; Wei, Y.; Wang, X. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 2018, 8, 1800144. [Google Scholar] [CrossRef]
- Deng, W.; Zhou, Z.; Li, Y.; Zhang, M.; Yuan, X.; Hu, J.; Li, Z.; Li, C.; Li, R. High-Capacity Layered Magnesium Vanadate with Concentrated Gel Electrolyte toward High-Performance and Wide-Temperature Zinc-Ion Battery. ACS Nano 2020, 14, 15776–15785. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, G.; Ye, L.; He, J.; Xu, W.; Hong, S.; Chen, W.; Li, M.-C.; Liu, C.; Mei, C. High-energy and dendrite-free solid-state zinc metal battery enabled by a dual-network and water-confinement hydrogel electrolyte. Chem. Eng. J. 2023, 472, 144992. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, Y.; Wang, L.; Zhang, K.; Wang, Y.; Yan, L. Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth. J. Colloid Interface Sci. 2023, 633, 142–154. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.; Liu, J.; Li, Z.; Jin, S.; Li, Z.; Zhang, S.; Zhou, H. Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater. Today Energy 2019, 14, 100349. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Tang, Z.; Liang, G.; Yang, Q.; Li, H.; Ma, L.; Mo, F.; Zhi, C. A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. Energy Storage Mater. 2019, 23, 636–645. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, C.; Zhu, H.; Xie, X.; Gao, J.; Deng, C.; Han, M.; Liang, S.; Zhou, J. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 2020, 27, 109–116. [Google Scholar] [CrossRef]
- Malagurski, I.; Levic, S.; Pantic, M.; Matijasevic, D.; Mitric, M.; Pavlovic, V.; Dimitrijevic-Brankovic, S. Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites. Carbohydr. Polym. 2017, 165, 313–321. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Zhao, J.W.; Hu, Z.L.; Li, J.D.; Li, J.J.; Zhang, Y.J.; Wang, C.; Cui, G.L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, H.G.; Tian, Z.; Zhu, J.H.; Liu, Y.; Jia, L.; You, D.J.; Li, X.M.; Kang, L.T. A Quasi-gel SiO2/Sodium Alginate (SA) Composite Electrolyte for Long-life Zinc-manganese Aqueous Batteries. J. Inorg. Mater. 2020, 35, 909–915. [Google Scholar] [CrossRef]
- Ding, F.; Xu, W.; Graff, G.L.; Zhang, J.; Sushko, M.L.; Chen, X.L.; Shao, Y.Y.; Engelhard, M.H.; Nie, Z.M.; Xiao, J.; et al. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.Y.; Liu, J.X.; Wang, L.B.; Long, X.H.; Liu, X.S.; Li, F.J.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.Y.; Zhu, T.Y.; Xu, N.S.; Huang, K. A Semisolid Electrolyte for Flexible Zn-Ion Batteries. ACS Appl. Energy Mater. 2019, 2, 6904–6910. [Google Scholar] [CrossRef]
- Zheng, Z.; Cao, H.; Shi, W.; She, C.; Zhou, X.; Liu, L.; Zhu, Y. Low-Cost Zinc–Alginate-Based Hydrogel–Polymer Electrolytes for Dendrite-Free Zinc-Ion Batteries with High Performances and Prolonged Lifetimes. Polymers 2023, 15, 212. [Google Scholar] [CrossRef]
- Han, Q.; Chi, X.; Zhang, S.; Liu, Y.; Zhou, B.; Yang, J.; Liu, Y. Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. J. Mater. Chem. A 2018, 6, 23046–23054. [Google Scholar] [CrossRef]
- Han, Q.; Chi, X.; Liu, Y.; Wang, L.; Du, Y.; Ren, Y.; Liu, Y. An inorganic salt reinforced Zn2+-conducting solid-state electrolyte for ultra-stable Zn metal batteries. J. Mater. Chem. A 2019, 7, 22287–22295. [Google Scholar] [CrossRef]
- Yadav, P.; Sanna Kotrappanavar, N.; Naik, P.B.; Beere, H.K.; Samanta, K.; Reddy, N.S.; Algethami, J.S.; Jalalah, M.; Harraz, F.A.; Ghosh, D. Fabrication of an Energy-Dense, Binder-Free Zn//V5O12·6H2O Solid-State In-Plane Flexible Battery via a Rapid and Scalable Approach. ACS Appl. Energy Mater. 2023, 6, 1799–1809. [Google Scholar] [CrossRef]
- Yuan, D.; Manalastas, W., Jr.; Zhang, L.; Chan, J.J.; Meng, S.; Chen, Y.; Srinivasan, M. Lignin@Nafion Membranes Forming Zn Solid–Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zinc-Ion Batteries. ChemSusChem 2019, 12, 4889–4900. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, P.; Zhang, Q.; Wang, Q.; Sun, D.; Tang, Y.; Ren, Y.; Wang, H. Advanced Filter Membrane Separator for Aqueous Zinc-Ion Batteries. Small 2020, 16, 2003106. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Vijayakumar, V.; Kurungot, S. Dendrite Growth Suppression by Zn2+-Integrated Nafion Ionomer Membranes: Beyond Porous Separators toward Aqueous Zn/V2O5 Batteries with Extended Cycle Life. Energy Technol. 2019, 7, 1900442. [Google Scholar] [CrossRef]
- Zhao, Q.; Huang, W.; Luo, Z.; Liu, L.; Lu, Y.; Li, Y.; Li, L.; Hu, J.; Ma, H.; Chen, J. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 2018, 4, eaao1761. [Google Scholar] [CrossRef] [PubMed]
- Mauritz, K.A.; Moore, R.B. State of Understanding of Nafion. Chem. Rev. 2004, 104, 4535–4586. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, J.; Han, L.; Wang, Z.; Wang, H.; Zhao, Q.; Liu, J.; Pan, F. A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 2019, 56, 92–99. [Google Scholar] [CrossRef]
- Qiu, T.; Wang, T.; Tang, W.; Li, Y.; Li, Y.; Lang, X.; Jiang, Q.; Tan, H. Rapidly Synthesized Single-Ion Conductive Hydrogel Electrolyte for High-Performance Quasi-Solid-State Zinc-ion Batteries. Angew. Chem. Int. Ed. 2023, e202312020. [Google Scholar] [CrossRef]
- Sivaraman, P.; Thakur, A.P.; Kushwaha, R.K.; Ratna, D.; Samui, A.B. All-solid secondary polyaniline-zinc battery. J. Appl. Electrochem. 2008, 38, 189–195. [Google Scholar] [CrossRef]
- Zheng, Z.; Yan, S.; Zhang, Y.; Zhang, X.; Zhou, J.; Ye, J.; Zhu, Y. An ultrathin natural cellulose based hydrogel membrane for the high-performance quasi-solid-state zinc-ion batteries. Chem. Eng. J. 2023, 475, 146314. [Google Scholar] [CrossRef]
- Li, L.; Manthiram, A. Long-Life, High-Voltage Acidic Zn–Air Batteries. Adv. Energy Mater. 2016, 6, 1502054. [Google Scholar] [CrossRef]
- Yu, X.; Gross, M.M.; Wang, S.; Manthiram, A. Aqueous Electrochemical Energy Storage with a Mediator-Ion Solid Electrolyte. Adv. Energy Mater. 2017, 7, 1602454. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Chen, L.; Guo, Z.; Xia, Y.; Wang, Y. High-voltage aqueous battery approaching 3 V using an acidic–alkaline double electrolyte. Chem. Commun. 2013, 49, 2204–2206. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Wang, Y.; Xia, Y. Re-building Daniell cell with a Li-ion exchange film. Sci. Rep. 2014, 4, 6916. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Q.; Chi, X.W.; Yang, J.H.; Liu, Y. An Ultrastable Na-Zn Solid-State Hybrid Battery Enabled by a Robust Dual-Cross-linked Polymer Electrolyte. Acs Appl. Mater. Interfaces 2020, 12, 17583–17591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, T.; Wu, X.; Zhou, Y.; Yang, C.; Zhu, T.; Dong, R. Using Li+ as the electrochemical messenger to fabricate an aqueous rechargeable Zn–Cu battery. Chem. Commun. 2015, 51, 7294–7297. [Google Scholar] [CrossRef]
- Jameson, A.; Khazaeli, A.; Barz, D.P.J. A rechargeable zinc copper battery using a selective cation exchange membrane. J. Power Sources 2020, 453, 227873. [Google Scholar] [CrossRef]
- Weng, G.-M.; Li, Z.; Cong, G.; Zhou, Y.; Lu, Y.-C. Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy Environ. Sci. 2017, 10, 735–741. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, G.; Xu, P.; Kashkooli, A.G.; Mousavi, M.; Yu, A.; Chen, Z. An all-aqueous redox flow battery with unprecedented energy density. Energy Environ. Sci. 2018, 11, 2010–2015. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, H.; Xu, W.; Wang, W.; Li, X. A Long Cycle Life, Self-Healing Zinc–Iodine Flow Battery with High Power Density. Angew. Chem. 2018, 130, 11341–11346. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Ding, Y.; Peng, S.; Guo, X.; Zhao, Y.; He, G.; Yu, G. Progress and prospects of next-generation redox flow batteries. Energy Storage Mater. 2018, 15, 324–350. [Google Scholar] [CrossRef]
- Lu, K.; Zhang, H.; Song, B.; Pan, W.; Ma, H.; Zhang, J. Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery. Electrochim. Acta 2019, 296, 755–761. [Google Scholar] [CrossRef]
- Pan, H.; Li, B.; Mei, D.; Nie, Z.; Shao, Y.; Li, G.; Li, X.S.; Han, K.S.; Mueller, K.T.; Sprenkle, V.; et al. Controlling Solid–Liquid Conversion Reactions for a Highly Reversible Aqueous Zinc–Iodine Battery. ACS Energy Lett. 2017, 2, 2674–2680. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Jiang, K. A high energy efficiency and long life aqueous Zn–I2 battery. J. Mater. Chem. A 2020, 8, 3785–3794. [Google Scholar] [CrossRef]
- Sonigara, K.K.; Zhao, J.; Machhi, H.K.; Cui, G.; Soni, S.S. Self-Assembled Solid-State Gel Catholyte Combating Iodide Diffusion and Self-Discharge for a Stable Flexible Aqueous Zn–I2 Battery. Adv. Energy Mater. 2020, 10, 2001997. [Google Scholar] [CrossRef]
- Zhao, J.; Sonigara, K.K.; Li, J.; Zhang, J.; Chen, B.; Zhang, J.; Soni, S.S.; Zhou, X.; Cui, G.; Chen, L. A Smart Flexible Zinc Battery with Cooling Recovery Ability. Angew. Chem. Int. Ed. 2017, 56, 7871–7875. [Google Scholar] [CrossRef] [PubMed]
- Patrick Williams, W.; Quinn, P.J.; Tsonev, L.I.; Koynova, R.D. The effects of glycerol on the phase behaviour of hydrated distearoylphosphatidylethanolamine and its possible relation to the mode of action of cryoprotectants. Biochim. Biophys. Acta Biomembr. 1991, 1062, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Hoseini, S.M.; Seifi Jamnani, M. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. Int. Commun. Heat Mass Transf. 2011, 38, 1283–1290. [Google Scholar] [CrossRef]
- Mo, F.N.; Liang, G.J.; Meng, Q.Q.; Liu, Z.X.; Li, H.F.; Fan, J.; Zhi, C.Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at-20 degrees C. Energy Environ. Sci. 2019, 12, 706–715. [Google Scholar] [CrossRef]
- Santamaria-Echart, A.; Fernandes, I.; Barreiro, F.; Retegi, A.; Arbelaiz, A.; Corcuera, M.A.; Eceiza, A. Development of waterborne polyurethane-ureas added with plant extracts: Study of different incorporation routes and their influence on particle size, thermal, mechanical and antibacterial properties. Prog. Org. Coat. 2018, 117, 76–90. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, W.; Wang, A.; Huang, A.; Chen, J.; Xu, J.; Wong, C.-P. Anti-freezing flexible aqueous Zn–MnO2 batteries working at −35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J. Mater. Chem. A 2020, 8, 6828–6841. [Google Scholar] [CrossRef]
- Shi, S.; Peng, X.; Liu, T.; Chen, Y.-N.; He, C.; Wang, H. Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. Polymer 2017, 111, 168–176. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, D.; Wang, J.; Li, T.; Zhou, X.; Gan, T.; Handschuh-Wang, S.; Zhou, X. Rational Fabrication of Anti-Freezing, Non-Drying Tough Organohydrogels by One-Pot Solvent Displacement. Angew. Chem. Int. Ed. 2018, 57, 6568–6571. [Google Scholar] [CrossRef]
- Quan, Y.H.; Chen, M.F.; Zhou, W.J.; Tian, Q.H.; Chen, J.Z. High-Performance Anti-freezing Flexible Zn-MnO(2)Battery Based on Polyacrylamide/Graphene Oxide/Ethylene Glycol Gel Electrolyte. Front. Chem. 2020, 8, 9. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Wang, J.; Hu, M.; Feng, Y.; Wang, P.; Wang, Y.; Nie, N.; Zhang, J.; Chen, H.; et al. Concentrated Hydrogel Electrolyte-Enabled Aqueous Rechargeable NiCo//Zn Battery Working from −20 to 50 °C. ACS Appl. Mater. Interfaces 2019, 11, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hu, M.; Wang, J.; Nie, N.; Wang, Y.; Wang, Y.; Zhang, J.; Huang, Y. An intrinsically 400% stretchable and 50% compressible NiCo//Zn battery. Nano Energy 2019, 58, 338–346. [Google Scholar] [CrossRef]
- Wei, T.; Ren, Y.; Li, Z.; Zhang, X.; Ji, D.; Hu, L. Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from −20 to 60 °C. Chem. Eng. J. 2022, 434, 134646. [Google Scholar] [CrossRef]
- Xu, W.; Liu, C.; Wu, Q.; Xie, W.; Kim, W.-Y.; Lee, S.-Y.; Gwon, J. A stretchable solid-state zinc ion battery based on a cellulose nanofiber–polyacrylamide hydrogel electrolyte and a Mg0.23V2O5·1.0H2O cathode. J. Mater. Chem. A 2020, 8, 18327–18337. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Jia, R.; Jiang, K.; Shen, G.; Chen, D. A Flexible Concentric Circle Structured Zinc-Ion Micro-Battery with Electrodeposited Electrodes. Small Methods 2020, 4, 2000363. [Google Scholar] [CrossRef]
- Huang, J.; Chi, X.; Du, Y.; Qiu, Q.; Liu, Y. Ultrastable Zinc Anodes Enabled by Anti-Dehydration Ionic Liquid Polymer Electrolyte for Aqueous Zn Batteries. ACS Appl. Mater. Interfaces 2021, 13, 4008–4016. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; He, S.; Li, Y.; Wang, S.; Hou, X. Hydrogen bond acceptor lined hydrogel electrolyte toward Dendrite-Free aqueous Zn ion batteries with low temperature adaptability. Chem. Eng. J. 2023, 464, 142607. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, W.; Wei, M.; Zhang, P.; Zhao, S.; Pei, P.; Qiu, L.; Wang, H.; Meng, Z.; Wang, K. A photonic hydrogel for health self-monitoring of solid-state electrolytes in zinc-air batteries. Energy Storage Mater. 2022, 53, 136–147. [Google Scholar] [CrossRef]
- Huang, S.; Hou, L.; Li, T.; Jiao, Y.; Wu, P. Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for High-Performance Zinc-Ion Batteries. Adv. Mater. 2022, 34, 2110140. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Zhou, W.; Wu, T.; Chen, M.; Han, X.; Tian, Q.; Xu, J.; Chen, J. Sorbitol-modified cellulose hydrogel electrolyte derived from wheat straws towards high-performance environmentally adaptive flexible zinc-ion batteries. Chem. Eng. J. 2022, 446, 137056. [Google Scholar] [CrossRef]
Electrolyte | Ionic Conductivity (mS cm−1) | Energy/Power Density | Cyclic Performance | Reference |
---|---|---|---|---|
KOH-doped PVA | 15 | 581 Wh kg−1 | 120 cycles at 50 mA g−1 | [79] |
Quaternary ammonia (QA)-functionalized nanocellulose | 23 | 492 mAh g−1 | 200 cycles at 250 mA g−1 | [80] |
Laminated nanocellulose/GO membrane with QA | 33.3 | - | 30 cycles at 1 mA cm−2 | [81] |
KOH-doped PVA/PAA nanofiber membrane | 11.2 | - | 250 cycles at 20 mA cm−2 | [82] |
QA modified PVA | 23.1 | 223 Wh kg−1 | 120 cycles at 1 mA cm−2 | [83] |
KI-PVA-PAA-GO | 155 | 742 mAh g−1 | 20 cycles at 2 mA cm−2 | [84] |
PVA-GG-GA-PCL | 123 | 11.87 Wh kg−1 | 100 cycles at 2 mA cm−2 | [85] |
KOH-doped PAM | 215.6 | 720 mAh g−1 | 140 cycles at 5 mA cm−2 | [86] |
Electrolyte | Specific Capacity | Cyclic Performance | Reference |
---|---|---|---|
PAM/glycerol/acetonitrile/ZnSO4 | 262 mAh g−1 @ 500 mA g−1/60 °C 138 mAh g−1 @ 500 mA g−1/−20 °C | 500 cycles @ 60 °C 500 cycles @ −20 °C | [158] |
Sodium polyacrylate/6 M electrolyte | 125 mAh g−1 @ 16 C/50 °C 120 mAh g−1 @ 19 C/−20 °C | 900 cycles @ 50 °C 10000 cycles @ −20 °C | [156] |
PAM–cellulose nanofiber hydrogel | 300 mAh g−1 @ 500 mA g−1/50 °C 267 mAh g−1 @ 500 mA g−1/−18 °C | 100 cycles @ −18 °C | [159] |
6 M ZnCl2/PVA | 171 µAh cm−2 @ 1.0 mA cm−2/80 °C | - | [160] |
Acetamide/zinc perchlorate hexahydrate/PAM | 250 mAh g−1 @ 50 °C | 30 cycles @ 50 °C | [161] |
PAM/ZnSO4/Glycerol/xanthan gum | 125 mAh g−1 @ 200 mA g−1/0 °C | - | [108] |
PAM cross-linked with DMSO and cellulose nanofibers | 118 mAh g−1 @ 200 mA g−1/−20 °C | 350 cycles @ −20 °C | [162] |
PAM/SA/PMMA nanoparticles | 37 mW cm−2 @ −20 °C (Zinc-air) | - | [163] |
PAM/modified polysaccharides carboxymethyl chitosan/Zn(ClO4)2 salts | 70 mAh g−1 @ 5 A g−1/−30 °C | 2500 cycles @ −30 °C | [164] |
Sorbitol-modified cellulose hydrogel/ 16 M ZnCl2 | 64.4 mAh g−1 @ 1 A g−1/−40 °C | 1000 cycles @ −40 °C | [165] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, W.; Zheng, Z.; Zhou, J.; Liu, D.; Song, J.; Zhu, Y. A Minireview of the Solid-State Electrolytes for Zinc Batteries. Polymers 2023, 15, 4047. https://doi.org/10.3390/polym15204047
Yao W, Zheng Z, Zhou J, Liu D, Song J, Zhu Y. A Minireview of the Solid-State Electrolytes for Zinc Batteries. Polymers. 2023; 15(20):4047. https://doi.org/10.3390/polym15204047
Chicago/Turabian StyleYao, Wangbing, Zhuoyuan Zheng, Jie Zhou, Dongming Liu, Jinbao Song, and Yusong Zhu. 2023. "A Minireview of the Solid-State Electrolytes for Zinc Batteries" Polymers 15, no. 20: 4047. https://doi.org/10.3390/polym15204047
APA StyleYao, W., Zheng, Z., Zhou, J., Liu, D., Song, J., & Zhu, Y. (2023). A Minireview of the Solid-State Electrolytes for Zinc Batteries. Polymers, 15(20), 4047. https://doi.org/10.3390/polym15204047