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Abstract: A major goal of regenerative medicine of the central nervous system is to accelerate the
regeneration of nerve tissue, where astrocytes, despite their positive and negative roles, play a
critical role. Thus, scaffolds capable of producing astrocytes from neural precursor cells (NPCs) are
most desirable. Our study shows that NPCs are converted into reactive astrocytes upon cultivation
on coralline-derived calcium carbonate coated with poly-D-lysine (PDL-CS). As shown via nuclei
staining, the adhesion of neurospheres containing hundreds of hippocampal neural cells to PDL-CS
resulted in disaggregation of the cell cluster as well as the radial migration of dozens of cells away
from the neurosphere core. Migrating cells per neurosphere averaged 100 on PDL-CS, significantly
higher than on uncoated CS (28), PDL-coated glass (65), or uncoated glass (20). After 3 days of culture
on PDL-CS, cell migration plateaued and remained stable for four more days. In addition, NPCs
expressing nestin underwent continuous morphological changes from round to spiky, extending and
elongating their processes, resembling activated astrocytes. The extension of the process increased
continuously during the maturation of the culture and doubled after 7 days compared to day 1,
whereas bifurcation increased by twofold during the first 3 days before plateauing. In addition,
nestin positive cells’ shape, measured through the opposite circularity level correlation, decreased
approximately twofold after three days, indicating spiky transformation. Moreover, nestin-positive
cells co-expressing GFAP increased by 2.2 from day 1 to 7, reaching 40% of the NPC population
on day 7. In this way, PDL-CS promotes NPC differentiation into reactive astrocytes, which could
accelerate the repair of neural tissue.

Keywords: polylysine; calcium carbonate; hippocampal cells; neural progenitor cells; astrocytes;
nestin; glial fibrillary acidic protein

1. Introduction

The complexity of neuronal networks and the weakness of the regenerative capacity
of nervous tissue make regenerative medicine of the damaged central nervous system
especially challenging. Consequently, tissue engineering approaches for wound healing and
tissue restoration are needed for curing neurological tissue injuries. Biomaterial scaffolds
made from biocompatible and non-toxic substances are the most popular among these.
Biocompatible polymers have attracted significant attention in the realm of regenerative
medicine, because of their unique properties and chemical versatility. Cationic polymers
have often been used in biomedical applications because of their interaction with negatively
charged biomolecules, peptides, proteins, and nucleic acids. The use of polycationic
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polymers in cell membranes is widespread for transporting cargoes such as drugs and genes
and for improving cell–substrate interactions and adhesion [1,2]. Poly(amino acid)s are
cationic polymers that have several advantages in biomedicine, including biocompatibility,
bioactivity, and nontoxicity [3,4]. Consequently, poly(amino acid) has been used as a
substrate for the growth and differentiation of various cell and tissue types [5–8].

Polylysine is a cationic poly(amino acid)s which has attracted significant attention in
tissue engineering because of its biodegradability and biocompatibility. Due to its positively
charged nature, polylysine easily interacts with negatively charged surfaces on many types
of cells [9,10]. Poly-D-lysine (PDL), a synthetic homopolyamide of the amino acid lysine
has been found to be highly supportive of tissue regeneration and has long been used for
the culture of different cells types [11], including neural cells, promoting their adhesion,
survival, growth, and guidance of hippocampal, cortical, and cerebral neurons and glial
cells [12–16].

PDL has also been applied as a coating substance for increasing the bioregenerative
efficiency of nanoparticles and biomaterials [11,17–19], resulting in stable and prolonged
cell adhesion because of its positively charged hydrophilic properties [20]. For instance,
PDL has been shown to bind directly to skeletons of coral [20]. PDL-coated coral skeletons
(PDL-CS) enhance the CS effect on the survival, growth, connectivity, and activity of
hippocampal neurons in dissociated cultures compared to PDL-coated glass [20–27].

In addition to its positive role in neuronal growth and survival, PDL-CS increases the
activity of hippocampal astrocytic cells as indicated by the increased expression of their
cytoskeletal protein Glial Fibrillary Acidic Protein (GFAP) as well as a shift in morphology
from flat and smeared nascent cells to spiky [20,22,23,26]. The positive effect of PDL-CS
on astrocytic shape and activity suggests that it causes astrogliosis, in which nascent
astrocytes become reactive astrocytes, an essential part of the regeneration process after
brain injury [28,29]. The release of neurotrophic factors and cytokines by reactive astrocytes
plays an important role in regulating neuronal function in the brain [30,31]. These secreted
molecules can enhance cell survival, re-myelination, suppress the inflammatory response,
and encourage the migration and differentiation of neural precursor cells (NPCs) at the site
of injury, which differentiate into astrocytes and promote astrogliosis [32–35].

Due to astrocytes’ regenerative function, the accumulation of astrocytes near a wound
is fundamental to its recovery, so any method that generates astrocytes via the differen-
tiation of NPCs, attracts them to the injury site, and guides them to the wound would
be extremely beneficial for the recovery of damaged nerve tissue and astrogliosis. But,
neither PDL nor CS have been reported to affect the differentiation of NPCs to astrocytes.
Therefore, the purpose of this study was to test if PDL-CS influences the parameters that
can increase the number of reactive astrocytes at a wound, such as the migration of NPCs,
their differentiation into GFAP-expressing astrocytes, and their activation.

We show in this study that PDL-CS promotes the migration of nestin-positive NPCs,
elongates their processes, and induces them to become GFAP-expressing cells, suggesting
that it stimulates their differentiation into reactive astrocytes. As a result, PDL-CS may be
useful in promoting recovery from central nervous system injuries by enhancing astrogliosis.

2. Materials and Methods
2.1. Preparation of the Coral Skeleton

The exoskeletons of Trachyphyllia geoffroyi were sectioned into 0.2–1.0 mm sections
and treated with sodium hypochlorite solution (10%, RT, 10 min). Sigma-Aldrich 425044,
Burlington, MA, USA) and NaOH solution (1 M, 5 min, RT, Sigma Aldrich S8045) were
used to digest any adhering organic matter. The fragments were then transferred to a H2O2
solution (30% v:v aq, 10 min, RT, Romical, Be’er Sheva, Israel). Afterward, the fragments
were rinsed with distilled water, air-dried, and ground using a Smart Dentin Grinder
(KometaBio, Cresskill, NJ, USA). Following that, grains sized under 40 mm were sieved.
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2.2. Coating Coverslips with CS and PDL

A suspension of sieved CS grains was prepared in double distilled water (DDW, 25 mg
CS grains per mL). The solution was dispersed onto coverslips (12 mm, Menzel-Glaser,
100 mL/coverslip) and dried at 80 ◦C. After autoclaving, the coated coverslips were stored
at RT until use. Prior to culture, coated coverslips were coated with 100 mL PDL (30–70 kDa,
20 g/mL; A-003-M, Sigma-Aldrich, USA) overnight at 4 ◦C. Before culturing, PDL-coated
coverslips were washed with DDW and dried in a hood.

2.3. Preparation of Neurospheres

Preparation of neurospheres began with the extraction of neural cells from postnatal rats’
hippocampi. The cells were obtained from hippocampi of 1–2 day-old rat pups, according
to Baranes et al. [36]. The hippocampi were dissected out of the brain and dissociated using
trypsin (0.25%, 30 min, 37 ◦C; Sigma-Aldrich, USA). Using pasture pipets, the tissue was
triturated in Minimal Essential Eagle’s Medium (87%, Sigma-Aldrich, USA), heat-inactivated
fetal bovine serum (10%, Sigma-Aldrich, USA), D-glucose (2%, ThermoFisher Scientific,
Waltham, MA, USA), and L-glutamine (1%, ThermoFisher Scientific, Waltham, MA, USA).

Cells were arranged into neurospheres in accordance with Morad et al. [37]. Briefly,
the primary neural cells were resuspended in proliferation media containing Minimal
Essential Eagle’s Medium (45%, Sigma-Aldrich, USA), Dulbecco’s Modified Eagle Medium
(40%, Sigma-Aldrich, USA), Ham’s Nutrient Mixture F-12 (10% w:v, Sigma-Aldrich, USA),
D-glucose (0.75%, ThermoFisher Scientific, USA), B-27 (0.5%, ThermoFisher Scientific,
USA), bovine serum albumin (0.25%, Sigma-Aldrich, USA), L-glutamine (0.25%, Ther-
moFisher Scientific, USA), and epidermal growth factor (20 ng/mL; ThermoFisher Scien-
tific, USA). After being plated in 24-well plates at 105/mL−1, the cells were incubated at
37 ◦C with 10% CO2 for one week.

The cells accumulated into neurospheres, each containing hundreds of cells. Each
coverslip was loaded with 20–40 neurospheres in 100 µL of supplemented media consisting
of Minimal Essential Eagle’s Medium (45%, Sigma-Aldrich, USA), Dulbecco’s Modified
Eagle Medium (40%, Sigma-Aldrich, USA), Ham’s Nutrient Mixture F-12 (10%, Sigma-
Aldrich, USA), D-glucose (0.75%, ThermoFisher Scientific, USA), B-27 (0.5%, ThermoFisher
Scientific, USA), bovine serum albumin (0.25%, Sigma-Aldrich, USA), L-glutamine (0.25%,
ThermoFisher Scientific, USA), kynurenic acid (0.01%, Sigma-Aldrich, USA), and 0.01%
of an anti-mitotic composed of 70% uridine (Sigma-Aldrich, USA) and 30% fluoro-deoxy-
uridine (Sigma-Aldrich, USA). Cultures were incubated overnight at 37 ◦C with 10% CO2.
On the following day, 0.5 mL of supplemented culture medium was added to each well
and the cells were incubated at 37 ◦C, 10% CO2, for 1, 3, and 7 days.

2.4. Immunofluorescence

The neurospheres were fixed with 4% paraformaldehyde (10 min, RT, Sigma-Aldrich,
USA), permeabilized with 0.25% Triton X-100 (5 min, RT, TEDIA, Fairfield, OH, USA),
and blocked for 1 h (RT, 3% inactivated normal goat serum plus 0.1% Triton X-100). The
samples were then incubated (overnight, 4 ◦C) with rabbit IgG polyclonal antibodies
raised against GFAP and an IgG mouse monoclonal antibody raised against nestin pro-
tein (Abcam, Cambridge, UK), followed by secondary goat anti-rabbit IgG (Millipore,
Burlington, MA, USA) and goat anti-mouse IgG (Millipore, USA). Nuclei were stained
with 4′,6-diamidino-2-phenylindole (DAPI, Sigma, USA). Fluoromount containing 2.5%
1,4-diazabicyclo[2.2.2]octane (DABCO, Sigma, USA) was used for mounting.

2.5. Image Analyses

The fluorescent images were acquired using an inverted Zeiss Axio-observer Z1 (Zeiss,
Southern Germany) microscope equipped with an objective of X10/0.3 and fluorescent
DAPI, FITC, and Rhodamine filter cubes. This image analysis was performed with ImageJ
using the Fiji package [4], an open-source platform for biological-image analysis (https:
//imagej.net/software/fiji/ (accessed on 1 November 2022)).

https://imagej.net/software/fiji/
https://imagej.net/software/fiji/
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After manually removing the neurosphere core from the images, we counted the cells
using the “Find Maxima” function on the DAPI channel (stains nuclei). The migration dis-
tances were measured by manually marking the distance from the core using the segmented
line tool. The branch length was measured by adjusting the threshold to show outlines of
branches. The images were then subjected to Sholl analysis using the default parameters in
the dialog box. With the “Wand” tool and “Shape Descriptors” measurement, cell branches
were individually selected and measured for circularity. The program calculates circularity
by dividing area by perimeter; 1.0 indicates a perfect circle and values approaching 0 indi-
cate increasingly elongated polygons. Lastly, we measured colocalization after removing
the neurosphere cores. Colocalization analysis was conducted using the “Colocalization
Threshold” function, using the default parameters in the dialog box. To determine the level
of colocalization, we used %Volume. The %Volume represents the percentage of pixels in
the image with both red and green intensities above the threshold.

2.6. Statistics

The data are expressed as means (±SD), α = 0.05. The multiple comparison analyses
were carried out either using one-way ANOVA followed by Fisher’s Least Significant
Difference test for parametric analyses with normal distributions or using Kruskal–Wallis
ANOVA followed by a Dunn’s test for nonparametric analyses. GraphPad Prism 9.0 was
used for all the statistical analyses, and group differences were considered statistically
significant when p ≤ 0.05 was achieved (* ≤0.05, ** ≤0.01, *** ≤0.001).

3. Results

Upon laying hippocampal neurospheres on PDL-CS substrate, radial cell outgrowth
and spreading progressed from the first day of culture through to the seventh day
(Figure 1A,B). In the days following the onset of culture, the neurosphere structure dis-
aggregated (Figure 1B,C), with neurosphere cells dispersed far from the origin by day
7. As shown in Figure 1D, PDL on the CS promoted cell migration, as cell migration on
PDL-CS was higher than that on PDL-depleted CS (p < 0.05). As migration progressed, the
distances the migrating cells covered increased linearly (p≤ 0.05 and p≤ 0.001, respectively;
Figure 1E,F). According to the cell-number-to-culture-age analysis, most cells migrated
within 3 days with little change in migration thereafter (p ≤ 0.05; Figure 1F).

In the neurospheres, nestin-positive neural precursor cells (NPCs) made contact with
PDL-CS by spreading their processes and migrating outward, resulting in markedly dif-
ferent patterns of cell dispersal and morphological differentiation (Figure 2A–C). Early
morphological changes in neurosphere cultures were evident from their filamentous ap-
pearance on day 1 (Figure 2A). There was an increase in ramified nestin+ cell dispersion as
migration and differentiation progressed (Figure 2B,C). Over time, the mean process length
increased in a non-linear and progressive manner (p ≤ 0.001; Figure 2D). Similarly, nestin+

cell morphology with respect to branch processes appeared to progress from days 1 to 3,
but to remain constant from days 3 to 7 (p ≤ 0.001; Figure 2E).
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Figure 1. Activation of cell migration by attaching neurospheres to coral skeletons. These images
show cell nuclei in (A) 1-, (B) 3-, and (C) 7-day-old cultures. Green arrows = DAPI; red arrows = coral
skeleton grains. (D) Nuclei counting (4–7 days old) on glass and CS, coated or uncoated with poly-
D-lysine. (E) cell migration distance. (F) Maximum distance for cell migration. (D–F) One-way
ANOVA followed by Fisher’s Least Significant Difference (*, p ≤ 0.05; ***, p ≤ 0.001; ns, p > 0.05).
(G) number of migrating cells. Kruskal–Wallis ANOVA followed by Dunn’s test (p < 0.05): *, p ≤ 0.05;
***, p ≤ 0.001; ns, p > 0.05.
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Figure 2. Nestin+ NPCs extend and ramify processes on PDL-CS. Anti-nestin antibody-stained cells
at 1 (A), 3 (B), and 7 days of culture (C). The data are presented as the mean (±SD) of (D) process
length and (E) number of branches. (D) One-way ANOVA followed by Fisher’s Least Significant
Difference (p < 0.0001); (E) Kruskal–Wallis ANOVA followed by Dunn’s test (p ≤ 0.001): ***, p ≤ 0.001;
ns, p > 0.05.

The nestin+ NPCs on PDL-CS gradually became spiky and filamentous, similar to
activated astrocytes (Figure 3B,C). As shown in Figure 3D–F, nestin was clearly expressed
in the cytoplasm and processes of the cells. A spiky appearance developed during culture
maturation and plateaued at 3 days (p ≤ 0.001; Figure 3G).

The colocalization analysis of cultures stained with anti-nestin and anti-GFAP anti-
bodies was conducted to determine whether nestin+ NPC differentiation on PDL-CS was
indeed directed towards glial lineage. In day 7 cultures, both cell subtypes were present
and outgrew their processes (Figure 4A–C). Both proteins were highly expressed in the cell
processes (Figure 4D,E). A portion of the processes expressed either one of the proteins, but
there were also processes expressing both (Figure 4F). During culture aging, nestin/GFAP
colocalization increased by more than twofold, particularly between days 3 and 7.
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Figure 3. Nestin+ NPCs acquire an astrocytic shape on PDL-CS. DAPI (blue) and anti-nestin antibody
(green) stained cells at (A,D) 1, (B,E) 3, and (C,F) 7 days. (D–F) Magnification of the red-framed area
(A,B,C, respectively). A cell with a different circularity is indicated by an arrow. (G) Circularity of cells
(mean (±SD)). One-way ANOVA followed by Fisher’s Least Significant Difference test (p ≤ 0.001).
***, p ≤ 0.001; ns, p > 0.05.
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Figure 4. GFAP and nestin colocalization in NPCs grown on PDL-CS. The following are images of
cells stained with (A) anti-GFAP antibody (green), (B) anti-nestin antibody (red), and (A,B) DAPI
(blue) at day 7 of culture. (C) Merged image of (A,B) (yellow indicates nestin/GFAP colocalization).
(D–F) Magnification of the red-framed area (of A,B,C, respectively). (G) A plot of the correlation
between GFAP/nestin expression (% yellow/total (red + green) pixels). Kruskal–Wallis ANOVA
followed by Dunn’s test (p ≤ 0.001). *, p ≤ 0.05; ***, p ≤ 0.001; ns, p > 0.05.

4. Discussion

Our study demonstrates that PDL-CS promotes hippocampal NPC differentiation
towards glial lineage by enhancing their motility, ramifications, and GFAP expression
within their processes. To perform this differentiative function effectively, PDL-CS must
combine calcium carbonate together with a polymer coating. Based on the findings of this
study, PDL-CS may serve as a scaffold for the regeneration of nervous tissue by stimulating
the generation of reactive astrocytes from NPCs.

PDL-CS’s strength as a tissue regenerator can be assessed by measuring the extent
to which cells are dissociated from the neurospheres. The cell clusters mainly dissociated
during the first 3 days, and the size of the clusters did not decrease significantly thereafter
(Figure 1C vs. Figure 1A), suggesting that only part of the cells detached. Based on a
calculated average of 200 cells/neurosphere [24], we estimate this portion to be 5–10%. The
partial cell detachment could be due to tight cell–cell interactions in neurospheres [26,27].

As a cell motility enhancer, PDL-CS is most effective because migrating cells on
PDL-CS have longer migration distances than cells on uncoated CS or on PDL-coated or
-uncoated glass (Figure 1C). As motility was measured using nuclei staining of the entire
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population, the enhanced migration on PDL-CS might have been due to an increase in
proliferation. However, this possibility is unlikely, as migrating distances and numbers
plateaued after 3 days on PDL-CS (Figure 1G). This idea is contradictory to the fact that PDL-
CS has been found to stimulate cell proliferation in dissociated hippocampal cultures [19].
Since migration and proliferation are reciprocally regulated [28], PDL-CS might induce the
migration of NPCs while reducing their proliferation in hippocampal neurosphere cultures.

The strong and continuous promotion of process growth is another regenerative
strength of PDL-CS. In the 7 days of measurement, the NPCs’ morphological reaction
to this matrix was linear, manifested by a continuous elongation of their processes. It is
possible, however, that the elongation that was observed on the first day was overestimated
due to cell migration, as similar migration and process length values were observed
(approximately 100 µm). Additionally, the process-branching and overall spiking of NPCs
were maximal at day 3, suggesting that they were related to cell migration. Several studies
have confirmed this relationship between cell shape and migration [29–31]. From day 3 to
7, however, elongation continued to increase but migration did not, suggesting that NPCs’
contact with PDL-CS is the cause of process elongation rather than migration. Accordingly,
PDL-CS promotes migration, promotes neural cell growth and ramification, and transforms
NPCs to a spiky configuration similar to reactive astrocytes. In addition, growing NPCs on
PDL-CS differentiated them to express GFAP, as revealed by nestin-GFAP colocalization
measurements (Figure 4). Interestingly, colocalization increased between days 3 and 7,
but not before, indicating that PDL-CS triggers process growth and branching, as well as
cell migration, before elevating GFAP. GFAP expression can also indicate PDL-CS’ ability
to increase astrocytic reactivity as discussed here and in other studies when primary
hippocampal astrocytes were activated on PDL-CS [25,32]. A similar response of astrocytic
cells is seen following TBI [33,34] as well as ischemia [35].

Based on the findings of this study, PDL-CS appears to increase differentiation through
additive action with CS. PDL has demonstrated an inductive capacity by promoting the
differentiation of embryonic stem cells into neurons [36]. Moreover, PDL has a similar
structure to poly-L-lysine, so it may have a similar effect—increasing differentiation-related
genes [37] and promoting the differentiation of stem cells [38–40] as well as NPCs [36]. As
for coralline aragonite, it has been found to promote the differentiation of mesenchymal
stem cells [41,42]. The effect of PDL and CS on differentiation may, therefore, be synergized
when they are linked.

Thus, PDL-CS promotes the migration and differentiation of NPCs, which is crucial
for wound healing in the central nervous system. By implanting PDL-CS grafts into brain
wounds, NPCs can migrate, differentiate into astrocytes, and increase the astrogliosis
process, leading to tissue regeneration, though scarring is also possible.
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Abbreviations

NPCs Neural Precursor Cells
PDL Poly-D-lysine
CS Coral Skeleton
PDL-CS PDL-coated Coral Skeleton
GFAP Glial Fibrillary Acidic Protein
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