Electrospinning of Magnetite–Polyacrylonitrile Composites for the Production of Oxygen Reduction Reaction Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication Process of Electrospun Carbon Nanofiber Mats
2.2. Electrochemical Testing Procedure
3. Results
3.1. Characterization of Samples
3.2. Oxygen Reduction Reaction Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Yu, Y.; Niu, J.; Liu, Y.; Bridges, D.; Liu, X.; Pooran, J.; Zhang, Y.; Hu, A. Recent Progress of Metal–Air Batteries—A Mini Review. Appl. Sci. 2019, 9, 2787. [Google Scholar] [CrossRef]
- Fan, L.; Tu, Z.; Chan, S.H. Recent Development of Hydrogen and Fuel Cell Technologies: A Review. Energy Rep. 2021, 7, 8421–8446. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef]
- Bidault, F.; Brett, D.J.L.; Middleton, P.H.; Brandon, N.P. Review of Gas Diffusion Cathodes for Alkaline Fuel Cells. J. Power Sources 2009, 187, 39–48. [Google Scholar] [CrossRef]
- Dekel, D.R. Review of Cell Performance in Anion Exchange Membrane Fuel Cells. J. Power Sources 2018, 375, 158–169. [Google Scholar] [CrossRef]
- Mahata, A.; Nair, A.S.; Pathak, B. Recent Advancements in Pt-Nanostructure-Based Electrocatalysts for the Oxygen Reduction Reaction. Catal. Sci. Technol. 2019, 9, 4835–4863. [Google Scholar] [CrossRef]
- Zadick, A.; Dubau, L.; Sergent, N.; Berthomé, G.; Chatenet, M. Huge Instability of Pt/C Catalysts in Alkaline Medium. ACS Catal. 2015, 5, 4819–4824. [Google Scholar] [CrossRef]
- Morozan, A.; Jousselme, B.; Palacin, S. Low-Platinum and Platinum-Free Catalysts for the Oxygen Reduction Reaction at Fuel Cell Cathodes. Energy Environ. Sci. 2011, 4, 1238–1254. [Google Scholar] [CrossRef]
- Abbas, M.A.; Bang, J.H. Rising Again: Opportunities and Challenges for Platinum-Free Electrocatalysts. Chem. Mater. 2015, 27, 7218–7235. [Google Scholar] [CrossRef]
- Firouzjaie, H.A.; Mustain, W.E. Catalytic Advantages, Challenges, and Priorities in Alkaline Membrane Fuel Cells. ACS Catal. 2020, 10, 225–234. [Google Scholar] [CrossRef]
- Flores-Lasluisa, J.X.; Salinas-Torres, D.; López-Ramón, M.V.; Moreno-Castilla, C.; Álvarez, M.A.; Morallón, E.; Cazorla-Amorós, D. Electrocatalytic Activity of Calcined Manganese Ferrite Solid Nanospheres in the Oxygen Reduction Reaction. Environ. Res. 2022, 204, 112126. [Google Scholar] [CrossRef]
- Osgood, H.; Devaguptapu, S.V.; Xu, H.; Cho, J.; Wu, G. Transition Metal (Fe, Co, Ni, and Mn) Oxides for Oxygen Reduction and Evolution Bifunctional Catalysts in Alkaline Media. Nano Today 2016, 11, 601–625. [Google Scholar] [CrossRef]
- Bauer, L.; Brandstäter, L.; Letmate, M.; Palachandran, M.; Wadehn, F.O.; Wolfschmidt, C.; Grothe, T.; Güth, U.; Ehrmann, A. Electrospinning for the Modification of 3D Objects for the Potential Use in Tissue Engineering. Technologies 2022, 10, 66. [Google Scholar] [CrossRef]
- Morina, E.; Dotter, M.; Döpke, C.; Kola, I.; Spahiu, T.; Ehrmann, A. Homogeneity of Needleless Electrospun Nanofiber Mats. Nanomaterials 2023, 13, 2507. [Google Scholar] [CrossRef] [PubMed]
- Blachowicz, T.; Ehrmann, A. Optical Properties of Electrospun Nanofiber Mats. Membranes 2023, 13, 441. [Google Scholar] [CrossRef] [PubMed]
- Ra, E.J.; Raymundo-Piñero, E.; Lee, Y.H.; Béguin, F. High Power Supercapacitors Using Polyacrylonitrile-Based Carbon Nanofiber Paper. Carbon 2009, 47, 2984–2992. [Google Scholar] [CrossRef]
- Ornelas, O.; Sieben, J.M.; Ruiz-Rosas, R.; Morallón, E.; Cazorla-Amorós, D.; Geng, J.; Soin, N.; Siores, E.; Johnson, B.F.G. On the Origin of the High Capacitance of Nitrogen-Containing Carbon Nanotubes in Acidic and Alkaline Electrolytes. Chem. Commun. 2014, 50, 11343–11346. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.P. Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science 2009, 324, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.T.; Cullen, D.A.; Higgins, D.; Sneed, B.T.; Holby, E.F.; More, K.L.; Zelenay, P. Direct Atomic-Level Insight into the Active Sites of a High-Performance PGM-Free ORR Catalyst. Science 2017, 357, 479–484. [Google Scholar] [CrossRef]
- Mamun, A.; Sabantina, L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications—Technology, Mechanism, and Materials. Polymers 2023, 15, 1902. [Google Scholar] [CrossRef]
- Sabantina, L.; Rodríguez-Cano, M.Á.; Klöcker, M.; García-Mateos, F.J.; Ternero-Hidalgo, J.J.; Mamun, A.; Beermann, F.; Schwakenberg, M.; Voigt, A.L.; Rodríguez-Mirasol, J.; et al. Fixing PAN Nanofiber Mats during Stabilization for Carbonization and Creating Novel Metal/Carbon Composites. Polymers 2018, 10, 735. [Google Scholar] [CrossRef] [PubMed]
- Wortmann, M.; Layland, A.S.; Frese, N.; Kahmann, U.; Grothe, T.; Storck, J.L.; Blachowicz, T.; Grzybowski, J.; Hüsgen, B.; Ehrmann, A. On the Reliability of Highly Magnified Micrographs for Structural Analysis in Materials Science. Sci. Rep. 2020, 10, 14708. [Google Scholar] [CrossRef]
- El-Hadi, A.M.; Al-Jabri, F.Y. Influence of Electrospinning Parameters on Fiber Diameter and Mechanical Properties of Poly(3-Hydroxybutyrate) (PHB) and Polyanilines (PANI) Blends. Polymers 2016, 8, 97. [Google Scholar] [CrossRef] [PubMed]
- Beachley, V.; Wen, X. Effect of Electrospinning Parameters on the Nanofiber Diameter and Length. Mater. Sci. Eng. C 2009, 29, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J.; Ku, B.-C.; Kim, J.; Joh, H.-I. Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization. Adv. Chem. Eng. Sci. 2012, 2012, 275–282. [Google Scholar] [CrossRef]
- Hameed, N.; Sharp, J.; Nunna, S.; Creighton, C.; Magniez, K.; Jyotishkumar, P.; Salim, N.V.; Fox, B. Structural Transformation of Polyacrylonitrile Fibers during Stabilization and Low Temperature Carbonization. Polym. Degrad. Stab. 2016, 128, 39–45. [Google Scholar] [CrossRef]
- Artyushkova, K.; Matanovic, I.; Halevi, B.; Atanassov, P. Oxygen Binding to Active Sites of Fe-N-C ORR Electrocatalysts Observed by Ambient-Pressure XPS. J. Phys. Chem. C 2017, 121, 2836–2843. [Google Scholar] [CrossRef]
- Rayej, H.; Reza Vaezi, M.; Aghabarari, B.; Ruiz-Rosas, R.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T. Highly Active Fe-N-Reduced Graphene Oxide Electrocatalysts Using Sustainable Amino Acids as Nitrogen Source. Fuel 2022, 313, 122985. [Google Scholar] [CrossRef]
- Gabe, A.; Ruiz-Rosas, R.; González-Gaitán, C.; Morallón, E.; Cazorla-Amorós, D. Modeling of Oxygen Reduction Reaction in Porous Carbon Materials in Alkaline Medium. Effect of Microporosity. J. Power Sources 2019, 412, 451–464. [Google Scholar] [CrossRef]
- Zhou, R.; Zheng, Y.; Jaroniec, M.; Qiao, S.-Z. Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment. ACS Catal. 2016, 6, 4720–4728. [Google Scholar] [CrossRef]
- Masa, J.; Batchelor-McAuley, C.; Schuhmann, W.; Compton, R.G. Koutecky-Levich Analysis Applied to Nanoparticle Modified Rotating Disk Electrodes: Electrocatalysis or Misinterpretation. Nano Res. 2014, 7, 71–78. [Google Scholar] [CrossRef]
- Ward, K.R.; Gara, M.; Lawrence, N.S.; Hartshorne, R.S.; Compton, R.G. Nanoparticle Modified Electrodes Can Show an Apparent Increase in Electrode Kinetics Due Solely to Altered Surface Geometry: The Effective Electrochemical Rate Constant for Non-Flat and Non-Uniform Electrode Surfaces. J. Electroanal. Chem. 2013, 695, 1–9. [Google Scholar] [CrossRef]
- Venegas, R.; Zúñiga, C.; Zagal, J.H.; Toro-Labbé, A.; Marco, J.F.; Menéndez, N.; Muñoz-Becerra, K.; Recio, F.J. Fe3O4 Templated Pyrolyzed Fe−N−C Catalysts. Understanding the Role of N-Functions and Fe3C on the ORR Activity and Mechanism. ChemElectroChem 2022, 9, e202200115. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Liu, X.; Pu, Z.; Kou, Z.; Zhu, P.; Mu, S. The Role of Iron Nitrides in the Fe–N–C Catalysis System towards the Oxygen Reduction Reaction. Nanoscale 2017, 9, 7641–7649. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.H.; Han, S.B.; Kim, D.H.; Won, J.E.; Park, K.W. Amino Acid-Derived Non-Precious Catalysts with Excellent Electrocatalytic Performance and Methanol Tolerance in Oxygen Reduction Reaction. Appl. Catal. B 2018, 238, 93–103. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, M.; Wang, K.; Chen, J.; Yu, T.; Song, S. Fe3O4@N-Doped Interconnected Hierarchical Porous Carbon and Its 3D Integrated Electrode for Oxygen Reduction in Acidic Media. Adv. Sci. 2020, 7, 2000407. [Google Scholar] [CrossRef] [PubMed]
- Guan, D.; Zhou, J.; Huang, Y.C.; Dong, C.L.; Wang, J.Q.; Zhou, W.; Shao, Z. Screening Highly Active Perovskites for Hydrogen-Evolving Reaction via Unifying Ionic Electronegativity Descriptor. Nat. Commun. 2019, 10, 3755. [Google Scholar] [CrossRef] [PubMed]
Samples | Stabilized (wt.%) | Carbonized (wt.%) | Overall Yield (wt.%) |
---|---|---|---|
Fe25 (25 wt.% Fe3O4) | 89.5 | 61.9 | 55.4 |
Fe30 (30 wt.% Fe3O4) | 79.2 | - | - |
Fe40 (40 wt.% Fe3O4) | 93.7 | 21.5 | 20.2 |
Samples | Onset Potential at 0.1 mA cm−2 | Half-Wave Potential at jL = 0.5 mA cm−2 | Number of Electrons (at 0.6 V vs. RHE) | Number of Electrons (at 0.3 V vs. RHE) |
---|---|---|---|---|
Fe25 | 0.888 V | 0.596 V | 2.18 | 3.44 |
Fe30 | 0.920 V | 0.716 V | 3.08 | 4.37 |
Fe40 | 0.872 V | 0.554 V | 2.04 | 2.95 |
PtC | 0.988 V | 0.753 V | 4.03 | 4.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamun, A.; García-Mateos, F.J.; Sabantina, L.; Klöcker, M.; Diestelhorst, E.; Ruiz-Rosas, R.; Rosas, J.M.; Rodríguez-Mirasol, J.; Blachowicz, T.; Cordero, T. Electrospinning of Magnetite–Polyacrylonitrile Composites for the Production of Oxygen Reduction Reaction Catalysts. Polymers 2023, 15, 4064. https://doi.org/10.3390/polym15204064
Mamun A, García-Mateos FJ, Sabantina L, Klöcker M, Diestelhorst E, Ruiz-Rosas R, Rosas JM, Rodríguez-Mirasol J, Blachowicz T, Cordero T. Electrospinning of Magnetite–Polyacrylonitrile Composites for the Production of Oxygen Reduction Reaction Catalysts. Polymers. 2023; 15(20):4064. https://doi.org/10.3390/polym15204064
Chicago/Turabian StyleMamun, Al, Francisco José García-Mateos, Lilia Sabantina, Michaela Klöcker, Elise Diestelhorst, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomasz Blachowicz, and Tomás Cordero. 2023. "Electrospinning of Magnetite–Polyacrylonitrile Composites for the Production of Oxygen Reduction Reaction Catalysts" Polymers 15, no. 20: 4064. https://doi.org/10.3390/polym15204064
APA StyleMamun, A., García-Mateos, F. J., Sabantina, L., Klöcker, M., Diestelhorst, E., Ruiz-Rosas, R., Rosas, J. M., Rodríguez-Mirasol, J., Blachowicz, T., & Cordero, T. (2023). Electrospinning of Magnetite–Polyacrylonitrile Composites for the Production of Oxygen Reduction Reaction Catalysts. Polymers, 15(20), 4064. https://doi.org/10.3390/polym15204064